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Preface to the English edition

This English edition is almost identical to the German original Lineare
Operatoren in Hilbertraumen, published by B. G. Teubner, Stuttgart in
1976. A few proofs have been simplified, some additional exercises have
been included, and a small number of new results has been added (e.g.,
Theorem 11.11 and Theorem 11.23). In addition a great number of minor
errors has been corrected.

Frankfurt, January 1980 J. Weidmann
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Preface to the German edition

The purpose of this book is to give an introduction to the theory of linear
operators on Hilbert spaces and then to proceed to the interesting applica-
tions of differential operators to mathematical physics. Besides the usual
introductory courses common to both mathematicians and physicists, only
a fundamental knowledge of complex analysis and of ordinary differential
equations is assumed. The most important results of Lebesgue integration
theory, to the extent that they are used in this book, are compiled with
complete proofs in Appendix A. I hope therefore that students from the
fourth semester on will be able to read this book without major difficulty.
However, it might also be of some interest and use to the teaching and
research mathematician or physicist, since among other things it makes
easily accessible several new results of the spectral theory of differential
operators.

In order to limit the length of the text, I present the results of abstract
functional analysis only insofar as they are significant for this book. I
prove those theorems (for example, the closed graph theorem) that also
hold in more general Banach spaces by Hilbert space methods whenever
this leads to simplification. The typical concepts of Hilbert space theory,
“orthogonal” and “self-adjoint,” stand clearly at the center. The spectral
theorem for self-adjoint operators and its applications are the central
topics of this book. A detailed exposition of the theory of expansions in
terms of generalized eigenfunctions and of the spectral theory of ordinary
differential operators (Weyl-Titchmarsh—Kodaira) was not possible within
the framework of this book.

In the first three chapters pre-Hilbert spaces and Hilbert spaces are
introduced, and their basic geometric and topologic properties are proved.
Chapters 4 and 5 contain the fundamentals of the theory of (not neces-

X



X Preface to the German edition

sarily bounded) linear operators on Hilbert spaces, including general
spectral theory. Besides the numerous examples scattered throughout the
text, in Chapter 6 certain important classes of linear operators are studied
in detail. Chapter 7 contains the spectral theory of self-adjoint operators
(first for compact operators, and then for the general case), as well as some
important consequences and a detailed characterization of the spectral
points. In Chapter 8 von Neumann’s extension theory for symmetric
operators is developed and is applied to, among other things, the Sturm-
Liouville operators. Chapter 9 provides some important results of perturba-
tion theory for self-adjoint operators. Chapter 10 begins with proofs of the
most significant facts about Fourier transforms in L,(R™), applications to
partial differential operators, in particular to Schrodinger and Dirac opera-
tors, follow. Finally, Chapter 11 gives a short introduction to (time depen-
dent) scattering theory with some typical results; to my regret, I could only
touch upon the far reaching results of recent years.

Exercises are not used later in the text, with a few exceptions. They
mainly serve to deepen understanding of the material and give opportunity
for practice; however, I often use them to formulate further results which I
cannot treat in the text. The level of difficulty of the exercises varies
widely. Because I give many exercises with detailed hints, they can be
solved in general without much difficulty.

Now I want to very heartily thank all those who helped me with the
production of this book. Mrs. Hose turned my notes into an excellent
typed manuscript with infinite diligence. Messrs. R. Hollstein, D. Keim
and H. Kiich spent much time reading the whole manuscript and discuss-
ing with me their suggestions for improvement. Messrs. R. Colgen and W.
Stork helped me with the proofreading. I thank the publisher and the
editors for their pleasant cooperation.

My teacher Konrad Jorgens inspired me to study this subject; he

influenced the present exposition in several ways. I dedicate this volume to
his memory.

Hattersheim am Main, the summer of 1976 Joachim Weidmann
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Vector spaces with a scalar product,
pre-Hilbert spaces

In what follows we consider vector spaces over a field I§, where K is either
the field C of complex numbers or the field R of real numbers; accord-
ingly, we speak of a complex or a real vector space. For every c €K let c*
be the complex conjugate of ¢; so for c ER the star has no significance.

As a rule, we assume the most important notions and results of linear
algebra to be known.

1.1 Sesquilinear forms

Let H be a vector space over . A mapping s : HX H—>K is called a
sesquilinear form on H if for all f, g, h € H and a, b € K we have

s(f, ag + bh) = as(f, g) + bs(f, h), (1.1)
s(af + bg, h) = a*s(f, h) + b*s(g, h). (1.2)

If (1.2) holds without stars, then s is called a bilinear form on H; in
particular every sesquilinear form on a real vector space is a bilinear form.

Property (1.1) is obviously equivalent to the two properties

s(f,g+h) = s(f, 8) + s(f, h), (1Y)
s(f, ag) = as(f, 8). (1.17)
Similarly, (1.2) is equivalent to
s(f+8 k) = s(f, h) + s(g, h), (1.2)
s(af, g) = a*s(f, 8). (1.27)



2 1 Vector spaces with a scalar product, pre-Hilbert spaces

If 5 is a sesquilinear form on H, then the mapping g : H— K that is defined
by q(f)=s(f, f) for each f € H is called the quadratic form on H generated
or induced by s. For each quadratic form ¢ we obviously have

q(af) = |af’q(f) forall f€EH, ack; (1.3)

so we have, in particular, g(af) = q(f) for every a € § with |a|=1.

The following theorem shows that in a complex vector space the generat-
ing sesquilinear form is uniquely determined by the quadratic form; for
real vector spaces this is not necessarily true in general; see Exercise 1.2.

Theorem 1.1 (Polarization identity). Let H be a complex vector space, s a
sesquilinear form on H, and q the quadratic form generated by s. Then for all
[, 8 € H we have

s(f,8) = 3{a(f+8)—a(f—g)+ig(f—ig) —ig(f+ig)}. (1.4)

The proof of this identity may be given by calculating the right side of
(1.4) according to the rules (1.1) and (1.2).

Theorem 1.2 (Parallelogram law). Let s be a sesquilinear form on a vector
space H, and let q be the corresponding quadratic form on H. Then for all
f, 8 € H we have

q(f+g)+ q(f—g) =2[q(f)+q(g)]. (1.5)

PrROOF. For every f, g € H we have

q(f+e)+q(f—g)=s(f,.f)+s(f.g)+s(g f)+s(gg)
+s(ff)—s(fg)—s(g f)+s(gg)

=2q(f)+2q(g). o

A sesquilinear form s on H is said to be Hermitian provided that for every
|, 2 € H we have

s(f, g) = s(g, f)*. (1.6)

A Hermitian bilinear form on a real vector space is said to be symmetric.

If s 1s a Hermitian sesquilinear form, and g the quadratic form generated
by s, then we obviously have q(f) € R for all f € H; we say briefly that g is
real. The following theorem shows, among other things, that Hermitian
sesquilinear forms can be characterized by this property of their associated
quadratic forms. We also obtain that symmetric bilinear forms are
uniquely determined by the corresponding quadratic forms.

Theorem 1.3. Let H be a vector space over K, s a sesquilinear form on H, and
q the quadratic form generated by s.



1.1 Sesquilinear forms 3

(a) If K=C, then the following statements are equivalent:
(1) s is Hermitian,
(1) q is real,
(1) for all f, g € H we have

Re s(f, g) = 3{a(f+8)—a(f~2)}, (1.7)
) for all f, g € H we have
Im s(f, g) = ;{q(f—ig)— q(f+ig))}. (1.7)

(b) If K= R, then the following statements are equivalent:
(1) s is symmetric,
(i1) for all f, g € H we have

s(f,8) = Ha(f+8)—a(f—g)). (1.8)

PRrOOF.

(a). (i) follows from (1): q(f)* = s(f, f)* =s(f, f)=q(f), i.e., g(f) is real.
(iii) follows from (ii): Because q(h) ER for all h € H, it follows from
(1.4) that

Re s(f, g) = Re{q(f+g8)— q(f—g) + ig(f—ig) — ig(f+ ig))
= i{e(f+g)—q(f-2)}.

(iv) follows from (ii1): Because of (ii1) we have
Im s(f, g) = —Re{is(f, 8)}
= Res(f, —ig) = 5{q(f— ig) — q(f +1ig)}.
(1) follows from (1v):
s(g f)* =Res(g, f)—ilms(g, f) = Ims(g, if) — i Ims(g, f)
=i{a(g+f)—a(g—f)—ig(g—if) +ig(g +if))
= {a(f+8)—a(f~ &) +ig(f~ig) — ig(f+ig)} = s(f, 8);

here we have used (1.3) witha= —1,a=i, and a= —i.

(b) (1) follows from (i) by calculating the right side of (i1) while using the
symmetry of s.
(1) follows from (i1):

s(g.f) =i{a(g+f)—a(g—f))
={a(f+8)—a(f-2)} = s(f, ). O

A Hermitian sesquilinear form is said to be non-negative when

s(f,f) >0 forall f€ H; (1.9)
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it is said to be positive when

s(f,f)>0 forall fEH with f=0. (1.10)

Since we have s(0, 0) =0, every positive sesquilinear form is non-negative.
We also say that the corresponding quadratic forms are non-negative,
respectively positive. (Because of Theorem 1.3, the word “Hermitian” may
be omitted from this definition in the complex case; this does not hold in
the real case, cf. Exercise 1.3.)

Theorem 1.4. If s is a non-negative sesquilinear form on H, and q denotes the
quadratic form generated by s, then for every f, g € H we have the Schwarz
inequality

Is(f, &) <[a(f)a(g)]">. (1.11)

If s is positive, then the equality sign in (1.11) holds if and only if f and g are
linearly dependent; the equality s(f, g)=[q(f)q(g)]'/* holds if and only if
there exists a ¢ > 0 such that f= cg or g=cf.

PROOF. Let f, g € H. For all 1t € R we have

0 < g(f+1g) = q(f) + 2t Re (f, g) + t%9(g).

This second degree polynomial in ¢ has either no root or a double root.
Since this holds for a polynomial ar? +2b¢ + ¢ if and only if #*— ac <0, it
follows that

[Res(f,8)]" < q(f)a(2)- (1.12)

If one chooses a € § such that |a| =1 and as(f, g) =|s(f, g)| holds, then it
follows from (1.12) with A = ag that

Is(f, &)I* =[Re as(f, g)]* =[Re s(f, k) ]*
< q(f)g(h) = q(f)q(ag) = q(f)q(g);

this is the Schwarz inequality.

Let s now be positive and let s(f, g)=[q(f)q(2)]"/? be true. If g=0,
then the equality g=0f proves the assertion. Consequently, let g0.
Because of the equality [Re s(f, g)F — ¢(f)q(g) =0, the polynomial consid-
ered above has a double root ¢,; hence we have g(f+¢,g)=0 ie., f=
—t,8- From —tys(g, g)=s(f, 8) >0 it follows that —z,> 0. If we have
Is(f, 2)| =[9(f)q(g)]'/* and choose a and h as above, then s(f, h)=
[g(f)q(h)]'/? follows. According to the part just proved we then have
either g =0=0f, or there exists a ¢ > 0 such that f= ch = acg. In both cases
f and g are linearly dependent. One can verify the converses of the last
two assertions by simple calculation. O

ExampLE 1. For each m €N (N denotes the set {1,2,3,...} of positive
integers) let C” be the complex vector space of the m-tuples f=
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(ot s fn) 8=(81:8 -+ .58, ... of complex numbers with the
addition

f+g = (fl+g]9f2+g23 .. afm+gm)
and multiplication by a€C

of = (afy afy, ..., af,).

If (a3); r=1,..., m 18 @ complex m X m matrix, then
m
s(f,g) = > a,frg. for fgel”
J k=1

defines a sesquilinear form on C". s is Hermitian if and only if the matrix
(ay) is Hermitian, i.e., if for every j, k=1, 2, ..., m we have Ay = a,j;. s 18
non-negative (positive) if, for example, (a;) 1s a diagonal matrix with
non-negative (positive) entries in the diagonal. An important special case
of a positive sesquilinear form on C” occurs when (a;,) is the unit matrix.
Then

s(f, 8) = Zlf}*g,--
P

ExAMPLE 2. On the real vector space R™ (symmetric, non-negative, posi-
tive) bilinear forms can be given accordingly.

ExampLE 3. Let C[0, 1] be the complex vector space of complex-valued
continuous functions defined on [0, 1] with the addition

(f+g)(x) = flx) + g(x)
and multiplication by a €C
(af)(x) = af(x).

If r : [0, 1]>C is continuous, then by
1
s(/,8) = [ S(*g(x)r(x) dx  f,g€C[0,1]

a sesquilinear form is defined on C[0, 1]. It is Hermitian if and only if r is
real-valued; it is non-negative if and only if r(x) > 0 for all x €[0, 1]; it is
positive if and only if r(x)> 0 for all x &[0, 1] and r does not vanish
identically on any non-trivial interval.

ExAMPLE 4. Let Cg[0, 1] be the real vector space of real-valued continuous
functions defined on [0, 1]. For each continuous function r : [0, 1] >R the
bilinear form

s(,8) = [ J(Da(r(x)dx  fgEc[o1]
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is symmetric. Concerning non-negativity and positivity the same assertions
hold as in Example 3.

ExampPLE 5. If k:[0, 1] X [0, 1]—>C is continuous, then by
1,1

(/. 8) =f f k(x,y)f(x)*g(y) dy dx
0 70

a sesquilinear form is defined on C[0, 1]. This is Hermitian if and only if
the kernel k 1s Hermitian, i.e., if for every x, y €[0, 1] we have k(x, y) =

k(y, x)*.
EXERCISES

1.1. Prove the assertions given in Examples 1-5.

(-1 o)
-1 0
generates a non-zero sesquilinear form on R? (cf. Example 2), the quadratic

form of which vanishes. Consequently, in a real vector space sesquilinear
forms are not determined uniquely by the corresponding quadratic forms.

1.2. The matrix

1.3. Let s be the sesquilinear form on R? generated by the matrix

(o 1)

If |a| <2 (Ja| <2), then we have s(f,f)>0 for all f€R? such that f0
(s(f, f) = 0 for all f € R?). If a0, then s is not symmetric.

1.4. Let s be a non-negative sesquilinear form on H, g the quadratic form gener-
ated by s, and N={ f€ H : g(f)=0}. Show that

(a) N is a subspace (sub-vectorspace) of H.

(b) If fEN and g € H, then we have s(f, g)=0 and g(f+ g) = q(g).

(c) In the Schwarz inequality the equality sign holds if and only if f and g are
linearly dependent modulo N, i.e., if there are numbers a, b EK not
vanishing simultaneously and such that af+ bg € N.

(d) We have s(f, g)=[q(f)q(g)]'/? if and only if there is a ¢ >0 such that
f—cgENorg—cf EN.

1.5. Prove the Cauchy inequality
2

m
> g
Jj=1

m N m
< 2 P2 gl
j=1 " j=1

with the aid of Example | and the Schwarz inequality.

1.2 Scalar products and norms

A positive sesquilinear form on H is called a scalar product (or inner
product) on H. In what follows scalar products will be denoted mostly by
{., .y and occasionally they will be given an index in order to distinguish
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between them. A non-negative sesquilinear form is called a semi-scalar
product. Examples for (semi-) scalar products may be obtained from the
exercises in Section 1.1.
The mapping s : HX H—W is a scalar product if and only if for all

f, g h€ H and a € K we have

(1) s(f, g+ =s(f, 8)+s(f, h),

(1) s(f, ag)= as(f, ),

(i) s(f, g)=s(g, ), (1.13)
() s(f, f) >0,

v) s(f, f)>0if f#0.

For the proof we only have to observe that the properties (1.1) and (1.2)
follow from (i), (i1) and (ii1). Similarly, a mapping s : H X H—-K is a
semi-scalar product if and only if s satisfies properties [(1.13) (i-iv)].

A mapping p : H—>R is called a norm on H if for all f, ge Hand ac K

we have

@ p(f) >0,

(ii) p(af)=lalp(f), (1.14)
(i) p(f+ g) < p(f) + p(g) (triangle inequality),

av) p(f) >0 provided f+#0.
A mapping p : H—R is called a seminorm on H if it satisfies the properties
[(1.14) (1-ii1)]. In what follows norms will mostly be denoted by || . || and
for more precise distinctions they will occasionally be given different
indices.

REMARK. If p is a seminorm on H, then for all f, g € H we have

p(fxg) > |p(f) — p(g)l

PrROOF. The triangle inequality implies

p(f)=p(f-g+g) < p(f—g) +p(g),
thus

p(f) —p(g) < p(f-g).
Similarly, p(g)=p(g —f+f) <p(g—f)+p(f); thus

—(p(f)—pr(2)) < p(f-28)

From these two inequalities p(f— g) > | p(f) — p(g)| follows. One can show
the inequality p(f+ g) > | p(f) —p(g)| in a similar way. 1

ExampLE 1. In C™ (or R™) let us define two norms by

m

Ifly=2 1l and [|flle, =max{|f]:/j=1,..., m}.

J=1

Ifcj>0forj=1,2,...,m, then by

m

p(f) = 2 ¢lfl and p(f) =max{c|f| :j=1,...,m)}

J=1
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two seminorms are defined. These seminorms are norms if all the ¢; are
positive.

ExaMpLE 2. If r is a non-negative continuous function on [0, 1], then by

ORN () (x)] dx
and
Poo(f) = max{r(x)|f(x)] : 0<x <1}

two seminorms are defined on CJ[0, 1]. These are norms if r does not
vanish identically on any non-trivial interval. For r(x)=1 these norms will
be denoted by || . ||; and || . ||, respectively:

10 = [ 1700 dx,
0
[fllo = max{|f(x)] : 0<x <1}

A large number of norms can be generated with the aid of scalar products
because of the following theorem.

Theorem 1.5. If s is a semi-scalar product on H, then p(f)=[s(f, f)]'/*
defines a seminorm on H.
If {.,.> is a scalar product on H, then || fl| = {f, f>'/? defines a norm on

H.

Proor. Property [(1.14) (i1)] follows immediately from [(1.13) (iv)]; [(1.14)
(v)] follows from [(1.13) (v)]. It 1s sufficient to prove the remaining
properties for the first case. Because of [(1.13) (11)] and [(1.13) (iii)] we have

plaf) =[s(af, aof)]'* =[|aP’s(£. )] = lal[s(£, /)] = lal p(f),
which is [(1.14) (i1)]. With the aid of the Schwarz inequality it follows that

p(f+8)° =p(f)y +2Res(f, g) +p(g)
< p(fY +2s(f, ) + p(8)* < p(f)* + 2p(f)p(g) + p(g)
= (p(f) +r(8))",

which is the triangle inequality [(1.14) (iii)]. O

From the Schwarz inequality for non-negative sesquilinear forms we
obtain for the norm || . || (seminorm p) induced by a scalar product {., .>
(semi-scalar product s) that

K[, )]
ls(f, &)I

I f1HI gl (1.15)
p(f)r(g). (1.15)

<
<
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Proposition. If {.,.> is a scalar product on H and || . || denotes the norm
generated by it (cf. Theorem 1.5), then ||f+gll=|f|l+ | g|l if and only if
there exists an a > 0 such that f= ag or g = af.

PrOOF. If f=ag with a > 0, then we have

If+ gl =111+ a)gll = (1 +a)llgll = llagll + Il gll = Il + I gl

(this part of the assertion holds for any norm). Conversely, if || f+ g|| = ]| f|
+ || g|| then

A2+ 2070 11 gl + &l = 11f + gl? = IfIP +2 Re {f, &) + |l &Il
thus Re <, g = || fI || gll- Using (1.15) this implies <, g> = || f|| | ]| Now

Theorem 1.4 gives the assertion. |
For a norm || . || (seminorm p) induced by a scalar product (semi-scalar
product) the parallelogram identity
Lf+ gl + 11f = glI” = 21 A1 + 1 &), (1.16)
respectively
p(f+8)" +p(f~2) = 2(p(f)"+p(8)°). (1.16")

follows from Theorem 1.2.

If one considers a (semi-)norm as the length of a vector, then these
equalities have the following geometric meaning: In a parallelogram the
sum of the squares of the diagonals equals the sum of the squares of the
sides. According to (1.4) [respectively (1.8)] the scalar product (., .>
(respectively semi-scalar product s) which we started with is given by the
polarization identity

UIf+HalP =1 f—glP+illf—igl®— il f+ig)*}, K=C,

fg) =
) {%{nf+gn2—nf—g||2},K=R,

(1.17)
respectively

Hop(f+e)—p(f—g) +ip(f—ig)*—ip(f+ig)}, K=C,

s(f, 8) =
: Hp(f+g)-p(f—8)°}) K=R.

(1.17")

The following theorem enables us to decide if a given (semi-)norm is
generated by a (semi-)scalar product.

Theorem 1.6 (Jordan and von Neumann). 4 norm || . || on a vector space H
is generated by a scalar product {. ,.> in the sense of Theorem 1.5 if and only
if the parallelogram identity (1.16) is satisfied. If this is so then the scalar
product {.,.> is given by (1.17). A corresponding statement holds true for
seminorms and semi-scalar products.
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PROOF. If the norm || . || is induced by the scalar product <. , .), then (1.16)
holds true and the scalar product can be recaptured from the norm by
means of (1.17). It remains to be shown that if || . || satisfies the parallelo-
gram identity and <. , .) is defined by (1.17), then (., . is a scalar product
and generates the norm || . |. We restrict ourselves to the proof in the
complex case; the real case goes analogously and is even a little simpler.

Let {.,.)> be defined by (1.17). We show that <., .> is a scalar product.

[(1.13) (iv-v)]: For all f € H by virtue of the definition of {.,.> we have

CHEY = ${IF+FIP =012+ il f= if ) — il £+ if )2}
= {4 F12=0+2i| £12 = 2i)| F112} = I 1>

The properties [(1.13) (iv—v)] of (., .> now follow from the corresponding
properties of the norm || . ||. At the same time we obtain that || .|| is
generated by (., .>.

[(1.13) (iii)]: For all f, g € H we have

(g f* =3{llg+fIP—llg—fIP+ il g—if|*— il g+ if |}*
=i {lIf+elP=IIf—glP =il f+ igl*+il| f— igl*}
= (f, &>

[(1.13) (1)]: For all f, g, h € H because of (1.16) we have

S g> + SRy
=s{If+glP =11 f— gl +i| f—ig|*—i| f+ ig])?
+|| f+ h|P = || f = B+l f— ik|? — i|| f+ iR|*}

=i+ )+ (£ ) - 52

2
-I( -5+ EF (- 222 ) - £
+in(f—ig“2“”)+ig ||+zn( e et
—ill(f+ig+h) " ——z||(f+zg+h)—ig;h||2}
=-{||f+g ”||2+||g tp-nr-E e &5
wilf—iER R i E R - i+ i - £ )
-, £22 g+h (118)

Since by (1.17) we obviously have {f, 0> =0, from (1.18) it follows by
substituting 4 =0 that

2 f, 28> = {f, g (1.19)
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From (1.18) and (1.19) it follows that

gy + <y =25 550 ) = g+ o,

which is the required property.
[(1.13) (i1)]: We already know that {f, g> =2{f, g/2>. From this and
from property [(1.13) (i)] we obtain by induction that

27"m{f, 8> =<{f, 27"mg) forall n,meN,

(N, is the set of non-negative integers {0, 1, 2, ... }). If a > 0, then there
exist numbers g, =27 "®m(k) such that gq,—a as k—>o0. By the proposi-
tion preceding Example 1 we have

|| f£ agll— || f* agl||
If +ia gl — || f £ iagl||

therefore because of (1.17)
{f,ag>—><{f ag) as k— .

From this it follows that

a, — al gl

@ — af | gl

/AN AN

alf, g> = lim q,{f, g> = lim {f, a,g)> = {f, ag).
k—>00 k—o0
Furthermore, we have

fo—g> =3 (If—elP = I f+ &l +ill f+ igl®~ | f~ ig|*)
= _<fa g>;
consequently {f, ag> = a{/, g, for all a € R. As we also have

(figy = {IIf+iglP—|lf—igl®+ill f+ g> = ill f— gl*}

= i{f, &
The equality {f, ag) = a{/, g, follows for all a € C. The proof for semi-
norms is completely analogous. ]

If His a (complex or real) vector space and <. , .) is a scalar product on H,
then we call the pair (H, {.,.>) a vector space with scalar product or a
pre-Hilbert space. If it is clear which scalar product is meant on H, then we
shall briefly write H for the pair mentioned. If || . || is a norm on H, then
we call the pair (H, || . ||) a normed space. Here we shall also only write H
in most cases. By Theorem 1.5 the norm || f|| = {f, f>!/? is defined in a
natural way on every pre-Hilbert space. Therefore in what follows we shall
consider every pre-Hilbert space as a normed space.

ExXAMPLE 3. On C” respectively R” by
f&>= 218
j=
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a scalar product 1s defined. The corresponding norm

m 1/2
Nl = { > |f,~12}
j=1

is the Euclidean length of the vector f, thus || f— g|| is the Euclidean distance
of the points f and g.

ExampLE 4. On C[O0, 1] by

> = [ 1% dx, 1= { [ eoRax)”

a scalar product and the corresponding norm are defined.

ExXAMPLE 5. Let /, be the Hilbert sequence space, i.e., the set of (real or
complex) sequences f=(f,)=(f}, f, . - - ) for which £%_,| f,|* < c0. Then /,

n=1

will be a (real or complex) vector space if one defines addition and
multiplication as follows:

f+g=(f,+g,), af = (af,) for f,g€l, and a€EK.

It is clear that this definition of multiplication is meaningful since along
with 2%_,|f.|*< oo we also have S%_,|af,|* < co. If f and g are in /,, then

n=1

for every N €N we have

N N N o0 00
S+l < z{ S 1+ S |g,.|2} < z{ S e+ S |g,.|2},

n=1 n=1 n=1 n=1 n=1

consequently we also have

S i+ g < 2{ SR+ S lg,,|2} < w,
n=1

n=1 n=1

i.e, f+ g€l It is easy to see that by

{frg)= 2 fg» fg€l

n=1

a scalar product is defined on /,; the series converges, because |f}g,| <
(£.]*+|&.//2. The induced norm is

=1 3 lf,.lz}l/z

n=1

Unless otherwise stated, in what follows /, will always denote the complex
sequence space.



1.2 Scalar products and norms 13

EXERCISES
1.6. The norms in Examples 1 and 2 are not generated by scalar products.

1.7. The proposition after Theorem 1.5 does not hold true in general for norms
that are not generated by scalar products.

1.8. Let p be a seminorm on H generated by a semi-scalar product and let
N={feH:p(f)=0}. We have p(f+g)=p(f)+p(g) if and only if there
exists an @ > 0 such that f—ag&ENorg—af€N.

1.9. (a) Let A? be the set of functions f holomorphic on C;={z€C : |z| < 1} for
which

J G+ dxdy < e
1

(the integral can be understood as an improper Riemann integral or as a
Lebesgue integral). A? is a vector space. By

e = fc Fx+p)*g(x+iy) dx dy, | f|} = fc |f(x+ )P dx dy

a scalar product and the corresponding norm are defined on A2
(b) Let H? be the set of functions f holomorphic on C, for which the limit

lim fzwlf(re"')lz dt
r—1+v9
is finite. H? is a vector space (Hardy-class). By
. 2 : 1/2
171, = { tim [*]f (re*)P dt}
r—1470
a norm is defined on H2. This norm is generated by the scalar product
(f g = lim [*7f (rety*g(re™) dt.
r—1v0

© Iff(2)=2F-0fu2", 8(2) =2_08,2" are the Taylor series of f and g, then
we have

8

1
n+1

<fsg>l = 2

n=0

j:gn: <fs g>2 = 2 gof:gn'

(d) H? is a subspace of A2 and we have || f||? < 1| f||3 for f € H2
(e) For all f € H? we have

27 ;
1513 = sup { [/ (re")P de: 0<r <1},

1.10. Let A be an arbitrary set, let p : A—(0, 00), and let ,(A ; p) be the set of
functions f : A—C that vanish outside a countable set (that may vary with f)
and for which 3, c spu(@)| f (@) < .
(@) (LA ; p) is a subspace of the space of all complex valued functions on A.

(b) By
f,8> = 2 wa)f(a)*g(a), f,8E€L(A; ),

aEA

a scalar product is defined on /(A ; p).
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1.11. Let A be an arbitrary set; for each a € A let (H,, <., .>,) be a pre-Hilbert

space. Then

H={ f=(fdeea€ 1L H,:

aEA

/70 for at most countably many a €A, 3 ||f.|IA < eo}
aEA

is a vector space (with componentwise addition and multiplication). By

) (8D = 2 LS 8D (fo)s (82) EH,

aEA

a scalar product is defined on H, i.e., (H, {.,.>) is a pre-Hilbert space.



Hilbert spaces

2.1 Convergence and completeness

Let (H, || . ||) be a normed space. A sequence (f,) in H is said to be
convergent 1if there exists an f € H such that || f, — f|| >0 as n—oo. There
exists at most one f € H with || f, — f||—>0; since from || f, —f|| >0 and
1, — gl -0 it follows that || f— gI| < || f~ £, ]| + | f, — gl >0, thus f=g. We
say that the sequence (f,) tends to f and call f the /imit of the sequence (f,).
In symbols we write f=lim, , _f or f,—>f as n—oo. If no confusion is
possible, we shall occasionally abbreviate these by writing f=1lim f, or

f—=

Proposition.
(a) From f,—f it follows that || f,||— | fl|; the sequence (]| f,||) is bounded.
(b) If (H, <., .>) is a pre-Hilbert space, then we also have that f —f and

g,—g imply {f,, g,>—><f, ).

PROOF.

(a) By the proposition preceding Example 1 of Section 1.2, we have
L= 1S < S, = fll; from this the assertion follows.

(b) We have [(f,, g,> = <[, g2| <K, &> = {fw 821+ S 80 =< fi 80| <
ISl 1| & — &ll +11.f, = fIl | gll =0, since the sequence (|| f,]]) is bounded
on account of (a). O

A sequence (f,) in H is called a Cauchy sequence if for each € >0 there
exists an n, €N such that for n, m >n, we have ||f,—f, || <e. In what
follows, we shall briefly write for this || f, —f,||—0 as n, m—oo0. Every
convergent sequence is a Cauchy sequence: if f is the limit of the sequence
(f), then || £, = F, 1l < WL, —=Sfll + 1| f—f.]l =0 as n, m— 0. Conversely, in an

15
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arbitrary normed space (or pre-Hilbert space) not every Cauchy sequence
is convergent, as Example 1 below shows.

Proposition.
(@) If (f,) is a Cauchy sequence, then the sequnce (|| f,||) is convergent (thus
it is bounded).

(b) If (H, <., .)) is a pre-Hilbert space and (f,), (g,) are Cauchy sequences,
then the sequence ({f,, g,>) is convergent.

PROOF.

@ As 11— | £ulll < I f, = £,Il, the sequence (||, ) is a Cauchy sequence
in R, thus it is convergent and bounded.

(b) By (a) there exists a ¢ >0 such that ||f || <c and || g,|l <c for all
n, m € N. Since

IKSs 800 = LJoms B> | <IKSs 82— 82 | F S = Jis &)
< c(ll 8 = gmll + 11 f — full)s

the sequence ((f,, g, ) is also a Cauchy sequence. O

ExampLE 1. Let (C[O, 1], <., .>) be the pre-Hilbert space introduced in
Section 1.2, Example 4. We show that not every Cauchy sequence is
convergent. For this let the sequence (f,) in C[0, 1] be defined in the
following way: f,(x)=1 for all x €[0, 1], and

¥ £ 1
or O<x<5
f(x) =4 1—(x—%)n for %<x<-:-12—+—nl—,
0 for %—+%<x< 1,
forn=2,3,.... This s;quence is a Cauchy sequence, since for 2<n<m

we have

1
.

Iy =l < f Z TN () = L0 dx <

To prove that the sequence (f,) is not convergent let us assume that there
exists an f € C[0, 1] such that f,—f, i.e., ||f, —f||—0. Then for 2<n<m
we have

1
[5G - 1P dx+ FOOR dx
0 (1/2)+(1/n)
1

= [5G0 = 1 dx + £(x) = () dx

(1/2)+(1/n)
1
< [/ (x) = ful2)P dx.
0
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Since the right-hand side tends to 0 as m— o0, we have
f 2 f(x) = 1] dx + If(x)Pdx =0 for n> 2.
(1/2)+(1/n)

Since f is continuous, it follows from this that
f(x) =1 for x E[O, %],
f(x) =0 for xE(%, 1].

However, this contradicts the continuity of f. Therefore the sequence (f,)
cannot be convergent in C[0, 1].

A normed space (H, ] .|) is said to be complete if every Cauchy
sequence is convergent. A complete normed space is called a Banach
space; a complete pre-Hilbert space is called a Hilbert space.

ExampLE 2. The space C[0, 1] becomes a Banach space with the norm
(cf. Section 1.2, Example 2)

I flle = max {|f(x)] : 0<x <1}

(By Exercise 1.6 it is not a Hilbert space.) For suppose (f,) is a Cauchy
sequence, 1.e., assume that for every € >0 there exists an n, €N such that
for all n, m>n, and for all x €[0, 1] we have |f,(x)—f,(x)| <e. Then
(f,(x)) 1s convergent for every x €[0, 1]; let f(x)=lim f,(x). First we show
that this f is continuous. For € > 0 let n, be chosen as above and for this n,
let § >0 be chosen so that for |x; — x,| <8 we have |f, (x;)—f, (x))] <e.
From this it follows for |x, — x,| <& that

|f(x1) = fCe)l < [f(xy) _fno(xl)l + |fn0(xl) _fno(x2)| + |fn0(x2) — f(x))
= lim_[£,(x) = fux0l + [fun(x2) = £ ()
+ lm [£(%) = fu(x)] < 3e

This proves the continuity of f. Now we show that f,—f. For € >0 let n, be
chosen again as above. Then for n > n, we have

1 fu = flloo = max {|f,(x)=f(x)] : 0<x <1}
=max{ lim | £ (x)—f,(x)] : 0<x < }<e,

consequently f —f.
ExampLE 3. C" and R™ are Banach spaces with the norms || . ||;, || . |l
and | . || from Section 1.2, Examples 1 and 3. This follows easily from the

fact that a sequence (f,) is a Cauchy sequence (convergent sequence) in C”
or R” if and only if it converges componentwise. (The proof can also be
obtained as a special case of Example 4.) C™ (respectively R™) is therefore
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a Hilbert space with the scalar product

Sigd =3 pe.

Jj=1

EXAMPLE 4. Let the scalar product and the norm in /, be defined by

o0 00 1/2
(fg) = Elf::g,,, 1Al = { > fnz} ,

n=1

as in Section 1.2, Example 5. We show that /, is complete, therefore it is a
Hilbert space. Let (f ®) be a Cauchy sequence, f ™ =(f, ., f5 ws f3. ws - + - )-
As

fion = fml < NS = £,

the sequence (f, ,),en is a Cauchy sequence for each jEN, i.e., there are
numbers f; € C such that f, ,—f as n—oo. It remains to prove that
f=(fHe 12 and f W f as n— 0. For >0 let ny €N be chosen so that for
n, m > ny we have || f ™ — f ™| <e. Then for all k €N we have

2 £, n—f* = lim 2 £ w = fml® < lim sup | f @ = F )2 < &,
j=1 m—»oojml M 00
therefore also

o0
2 Nfn—fP <€ for n>n,
=1

It follows from this that f ™V — f € [,, thus f € J,, also, and || f *” — f|| <€ for
n>ny ie., f W>f.

ExXAMPLE 5. The Lebesgue space L,(M) for a Lebesgue measurable subset M
of R™: For the concepts and results of this example a knowledge of
Lebesgue’s integration theory is needed (cf. Appendix A). This will be
assumed in what follows. The notions of “measurable,” “almost every-
where,” and “integrable” refer to Lebesgue measure in R™.

Let M be a measurable subset of R™. First we treat the function space

LAM) = { f : f measurable complex-valued on M, f |f(X)]?dx < }
M

£,(M) is a vector space, since with f, g € £,(M), a € C the functions af and
f+ g are also measurable and because of

laf (x)| = lal |f(x)] and |f(x)+g(x)]* < 2|f(x)f + 2| g(x)[*

we have

fM|af(x)|2 dx < oo and fM| F(x) + g(x)]? dx < 0.
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It is obvious that by s(f, g) = fpf *(x)g(x) dx, f, g €£,(M) a semi-scalar
product is defined on £,(M). Let

N (M) = { f: f measurable complex-valued function on M,
f(x)=0 almost everywhere on M}.

Then 9U(M) is a subspace of £,(M) and we have
N(M) = {fEL(M) : s(f, f)=0}.

Now we define

Lo(M) = E5(M)/ TUM);

Thus we build equivalence classes in £,(M) by placing two functions in the
same class if they coincide almost everywhere. Addition of these classes
and multiplication by a complex number are defined via representatives: If
f and § are the equivalence classes of f and g and a €C, then

= (af)", af +b = (af+bg)".

The scalar product of two equivalence classes fand § is defined by

.8y = s(f,8) = [ 7 *(x)g(x) dx,

where f and g are representatives of f and . It is evident that this
definition does not depend on the choice of f and g. From ( f, f > =0t
follows that the representatives of f vanish almost everywhere, i.e., f is the
zero element of £,(M)/9U(M). Therefore (., .> is actually a scalar prod-
uct, and L,(M) is thus a pre-Hilbert space. In what follows we shall denote
the functions f € £,(M) and the corresponding equivalence classes f €&
L,(M) by the same symbol f. The function f is then always an arbitrary
representative of the corresponding equivalence class.

Theorem 2.1. (Ly(M), {., .>) is complete, thus it is a Hilbert space. If f,—f,
then there is a subsequence ( fn, ) of (f,) such that

f,,j(x) — f(x) as j—> o0, almost everywherein M
(here f,,j( .) and f( . ) are arbitrary representatives of f,,J , respectively f).

PRrOOF. Let (f,) be a Cauchy sequence in L,(M). For each j € N there exists
an n; such that

lfw—fl <27 for nom >,

Without loss of generality we may assume that n,,, >n; for all j € N. Then
we have in particular || fn f |<27/. In what follows let f(.) be an
arbitrary (however, in the Test of the proof fixed) representative of f,.
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For all k€N let g, : M—>R be defined by the equality
k
gk(x) = Z lfnj_H(x) _fnj(x)l
j=1

The sequence (gZ( .)) is non-decreasing, and

k 2
[ 82 dx = 1l < ( > 2‘/’) <1
Jj=1

for all k€N. By B. Levi’s theorem (Theorem A 7) the sequence g?, and
thus also the sequence (g, ), is convergent almost everywhere. Then the
sequence of the functions

k—1

S =t 2 ()
P

also converges almost everywhere to a measurable function f( . ). We show
that f( . ) € £,(M) and that in the sense of L,(M) we have f,—f as n— 0.
For each € >0 let n(¢) and j(¢) be chosen so that for n > n(e) and j > j(€) we
have

S 1, () = 0P dx = I, = P < e

The functions | S C) =1l )> are non-negative, their integrals are
bounded by € and for j—> o0 we have

lf;xj(x) - fn(x)l2 — | f(x) — f,,(x)|2 almost everywhere in M.

By Fatou’s lemma it follows from this that | f(. ) — f,( . )|* is integrable and
that we have

fM|f(x) —f(x)?dx <e for n > n(e).

Therefore f(.)—f.( .)€ £,(M) and, consequently, f( . ) € £,(M). Besides,
we have || f— f,||* <e for n>n(e), i.e., f,—f in the sense of Ly(M). The
second part of the assertion is proved by the fact that f,,j (x)—f(x) almost
everywhere. R

If we look only at real valued functions in this example, then we obtain
the real Hilbert space L, g(M).

ExAMPLE 6. All the reasoning of Example 5 can be carried out analogously
if p is a measure generated by a regular interval function on R™ (cf. Ap-
pendix A), M is a p-measurable subset of R™ and L,(M; p) is the
corresponding space of square integrable functions with respect to p.
Theorem 2.1 holds true for L,(M ; p) also. We omit the details here.
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EXERCISES

2.1. Let (f,) be a sequence in the normed space (H, || . ||) with ZL_ 1| f,1] < o0.
(a) f,—0 and the sequence (2., f) is a Cauchy sequence.
(b) If His a Banach space, then the sequence (Z7.., f) is convergent; we write
2221 f; for the limit of this sequence.

2.2. (a) In Exercise 1.11 H is a Hilbert space if and only if all H, are Hilbert
spaces.
(b) The space (A ; u) of Exercise 1.10 is a Hilbert space.
(c) The spaces A% and H? of Exercise 1.9 are Hilbert spaces.
Hint: This can be proved with the aid of Exercise 1.9(c) or the mean value
property of holomorphic functions.

2.3. (a) Let C¥[0, 1] be the vector space of k times continuously differentiable
complex (or real) valued functions defined on [0, 1]. By

k 1.,. .
oo =2 [TO)*8(x) dax

a scalar product is defined on C*[0, 1]. The space (C*[0, 1], (., .D>;) is not
complete.

(b) Let W, (0, 1) be the space of those complex-valued functions on [0, 1]
that are kK — 1 times continuously differentiable, whose (k — 1)th derivative
is absolutely continuous (cf. Appendix A 5) and whose kth derivate is in
L,(0, 1). By

k 1., .
Foge = 2 [TOx)*8(x) dx

a scalar product is defined on W, (0, 1). The pair (W, (0, 1), <., .);)is a
Hilbert space.

(c) C¥0, 1] is a subspace of W, (0, I). For each f € W, ,(0, 1) there exists a
sequence ( f,) from C*[0, 1] such that f,—f in the sense of W, ,(0, 1).

2.2 Topological notions

Let (H, || . ||) be a normed space. A subset A of H is said to be open if for
each f € A there exists an € > 0 such that the ball

K(f.e) = {g€H: | g—fll <e}

lies in A.

ExampLE 1. For each r>0 and each he H the ball K(h,r)={g€eH:
Il g — k|| <r} is open. It will be called the open ball around h with radius r.
The assertion is obvious for r=0, as K(h, r) is then empty (the empty
set is open). Now let r >0, g € K(h, r), then we have

e=r—|g—h| >0
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and for each f € K(g, €)
fh=Sll <[th—gll+llg=fll <Ilh—gl+e=r,

Le., K(g, e)<K(h,r).
A subset A of H is said to be closed if CA= H\ A, the complement of A,
is open.

ExampLE 2. For each f€H and each r>0 the ball K(f,r)={g€H:
|g—fll <r} is closed, because for g € CK(f, r) we have ||g—f||—r>0
and K(g, |lg—fl|—r)CCK(/, r). The set K(f, r) is called the closed ball
around f with radius r.

Closed sets can be characterized in another way. For this we mention
another definition. An element f € H is called a contact point of the subset
A of H if for each € >0 there exists a g € A such that || g — f|| <e. The set
of all contact points of A will be denoted by A. We obviously have A C A.

Proposition.

(1) Ac B implies A C B.

(2) We have f € A if and only if there exists a sequence (f,) in A such that
f—=f _

(3) We have A= A.

ProOF. (1) and (2) are clear.

(3) Let f €A, € >0. Then there exists a g € A such that ||g — f]| <e/2 and
for this g there exists an A& A such that ||h— g|| <e/2; consequently
llh — f|| <e. Therefore f € A holds, i.e., AC A. Since AC A, it follows that
A=A, O

Theorem 2.2. A is closed. A is closed if and only if A=A. The set A is the
smallest closed subset of H that contains A.

Proor. First we show that A is closed, i.e., CA is open. Let f € CA. Since
A=A, then we have f €CA, i.e., fis not a contact point of A. Therefore
there is an € >0 such that K(f, €)n A= and consequently K(f, ¢) Cc CA.
If A=A, then A is closed by the first part of our theorem. If A is closed,
then CA is open, i.e., for each fECA there exists an € >0 such that
K(f, €N A=. However, this means that no element f of CA is a contact
point of A, therefore AC A and thus A= A.

If B His closed and A C B, then it follows that Ac B= B, therefore
ACB. O

On the basis of Theorem 2.2 it is justified to call A the closure (closed hull)
of A.
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ExampPLE 3. For r > 0 the closed ball K(/, r) is the closure of K(f, r). For if
g € K(f, r), then for all n €N the element g = f+ ‘ 1 — %)(g-—f) belongs

to K(f, r) and we have g,—>g. Hence K(f, r) CK(f, r). As K(, r) is closed,
we also have K(f, r)C K(/, r).

Theorem 2.3. The closure of a subspace of H is a subspace.

PrROOF. Let T be a subspace of H, let f, g€ T and let a, b € K. Then there
are sequences (f,) and (g,) in T such that f,—f, g —g. It follows that

af + bg = alim f, + b lim g, = lim (af, + bg,).

As af, + bg, € T, it follows that af + bg € T. O
If (H,|.]) 1s a normed space and T is a subspace of H, then the
restriction of || . || to T defines a norm on T. Thus T becomes a normed

space (T, || . ||) in a natural way. Analogously, if (H, <{., .>) is a pre-Hilbert
space, then we can consider T as a pre-Hilbert space (T, {., .D).

Theorem 2.4. A subspace T of a Banach space (H, {. ») (respectively a
Hilbert space (H, <., .))) is closed if and only if (T, || . ||) is a Banach space
(respectively (T, {.,.)) is a Hilbert space).

ProOOF. If T is closed, and (f,) is a Cauchy sequence in T, then there exists
an f € H such that f,—f; therefore fET=T, ie., T is complete. If T is
complete and f € T, then there exists a sequence (f,) from T such that
f,—f; as (f)) is a Cauchy sequence, (f,) is convergentin T,ie., fE€T. []

Let A and B now be subsets of a normed space H. The set A is said to
be dense relative to B if B C A holds. If, in addition, A C B, then we say
that A is a dense subset of B (or briefly A is dense in B). If A is dense
relative to H, then we say briefly that A is dense.

Proposition. If A, is dense relative to A, and A, is dense relative to A, then
A, is dense relative to A;.

ProoF. From A, C A, and A, C A, it follows that A; C A; = A,. 0

EXAMPLE 4. A sequence of complex numbers f=(f,) is said to be finitary if
only finitely many members f, are different from zero, 1.e., f=

(fi far - - 5 Jor 0,0, ... ). The set of finitary sequences is a subspace /,  of
L,. We show that /,  is dense (in /). Let f=(f,) be an arbitrary element of
I,. Then for each j €N we have f P=(f;,...,f,0,0,...)€/ ¢ and
If=fOP= 2 >0 as j— oo
n=j+1

Consequently f P, i.e, fE L ;.
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ExXAMPLE 5. Let P be the vector space of polynomials in one variable. P
can be considered as a subspace of the pre-Hilbert space (C[0, 1], {., .>)
from Section 1.2, Example 4. P is dense in C[0, 1]: By Weierstrass’
approximation theorem (cf. Hewitt-Stromberg [18], (7.31)) for each con-
tinuous f and for every e€>0 there exists a polynomial p such that
max {|f(x)— p(x)| : x €[0, 1]} <e. We also have then that || f—p]| <g, i.e.,
f1s a contact point of P.

ExAMPLE 6. Let M be a measurable subset of R™. Let

Ly o(M) = { f € Ly(M): there exists a K >0 such that
| f(x)] <K almost everywhere in M,
and f(x)=0 almost everywhere in {x EM: [x|>K}].

L, o(M) 1s dense in Ly(M). For let f be an element of L,(M) and for each
neN let

f(x) if |x|<n and f(x)<n
0 otherwise.

£ = |

Then we have | f,(x)| <|f(x)| for all nEN and all x €M, and f,(x)—f(x)
as n—o0. By Lebesgue’s dominated convergence theorem it now follows

that
|]f,,-f|]2=f|f,,(x)—f(x)|2dx—>0 as n — o0.
M

Therefore f,—f. Since f, € L, (M), the assertion follows.
EXAMPLE 7. A subset J of R™ of the form
J={x=(x,...,x,) ER™: ajéxjébj,j=1, 2,...,m}

with a;, b; ER, is called an interval in R™; here any combination of the
signs < and < is permitted. A function f: R"—C is called a step
function if there are finitely many intervals J,, ..., J, and complex
numbers c,, . . ., ¢, such that

n

f(X) = 2 C}X.;(x),

Jj=1

where x, denotes the characteristic function of A, i.e.,

_J1 for x€A
Xa(x) {O otherwise.

The set T(R™) of step functions on R™ is obviously a vector space (the
linear operations are defined as usual). We show that T(R™) is a dense
subspace of L}(R™). To prove this it is enough to show that T(R™) is dense
in L, o(R™). Itis obvious that T(R™) C L, o(R™). Let f € L, o(R™). Then fis
integrable and there exists (cf. Theorem A6) a sequence (f,) from T(R™)
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such that f,(x)—f(x) almost everywhere in R™ and

flﬂ,(X)—-f(x)l dx -0 as n-— oo.

(Integrals for which no domain of integration is given are always taken
over the whole space R™.) If for K > 0 we have |f(x)| < K almost every-
where, then we may assume that |f,(x)| <K for all x €R™, and for all
n € N. Consequently, we have

1o = fIF < 2K [ 1£,(x) = f(x)| dx >0 as n— oo,
ie., f,—f

ExaMpLE 8. Let Cs°(R™) be the space of infinitely many times differentia-
ble complex-valued functions with compact support (i.e., for every f &
Cs°(R™) there exists a compact subset K in R™ such that f vanishes outside
K; the smallest set K of this kind is called the support of f, in symbols
supp f). We show: Cs°(R™) is a dense subspace of Ly(R™). For the proof it
is enough to show that Cs°(R™) is dense relative to T(R™). To prove this it
is enough to show that for every interval J the characteristic function ¥, is
a contact point of Cs°(R™). For this, let us define 8, € C5°(R™) by

§.(x) = | €XP {(|x|2—52)_]} for |x|<e,
0 for |x|>e¢,

and

S, = {fge(x) dx}_l 5,.

The reader can verify himself that §, € Cs°(R™) and supp §,={x €
R™ : |x| <€} hold. If J is now an interval in R™ and for n €N we define

(%) = [8,,(x=2)xA») by, x ER",

then we have f, € C§°(R™),

1 for x€R™ with d(x, CJ)>%,

fn(x) = 1
0 for x€R™ with d(x,J) >;,

and 0< f,(x)<1 for all x €R™ (here d(x, A) stands for the Euclidean
distance of the point x from the set A). We have f,(x)—x (x) for all x that
do not lie on the boundary of J. Therefore f,(x)—x,(x) almost every-
where. Thus by the Lebesgue dominated convergence theorem it follows
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that
1y = %P = [1£,(x) = x 0P dx >0,

i.e., f,—Xx, in the sense of L,(R™).

A subset A of a normed space is said to be separable if there exists an at
most countable subset B of A which is dense in A. If T is a subspace of H
and B is a subset of H, then B is said to be total with respect to T if the
linear hull L(B) (the set of finite linear combinations of elements of B, or,
in other words, the smallest subspace of H that contains B) is dense
relative to T. We use the concept total in if B C T, and total if T= H.

ExaMPLE 9. The spaces C™ and R™ are separable, as the set of elements
with rational components (in C™ this means that the real and imaginary
parts of the components are rational) is enumerable and dense.

Theorem 2.5, Let (H, || . ||) be a normed space.

(@) If A is a separable subset of H, then A is separable, also.

(b) If A is separable and A, C A, then A, is separable, too.

(c) A subspace T of H is separable if and only if there exists an at most
countable subset A of H that is total with respect to T.

PROOF.

(a) Let B be at most countable and dense in A. Since A is dense in A, the
set B is also dense in A.

(b) Let B={f, : nE€N} be an at most countable set that is dense relative
to A. Let J be the set of those pairs (n, m) EN XN for which there
exists an f € A, such that ||f—f,||<1/m. For every n, m& J let us
choose a g,, €A, such that | g,, —f.| <1/m. The set B, =
{8 : (n, m) € J} is then at most countable. We show that it is dense
with respect to Ay, i.e., A, is separable. Let f € A;. As B is dense in A,
B is also dense relative to A,. Therefore for every kK €N there exists an
n(k) such that || f,, — fll < 1/k. Hence (n(k), k) € J and we have

2
| &nciey, & — FII < 1l ntiey, & = Jucioll + | fociy — fII < e

1.€., 8y, k—S as k—oco. Hence B is a dense subset of A.

(c) If Tis separable, then there exists an at most countable subset B which
is dense in T. Since L(B)D B, the set L(B) is dense in T, too. Let B
now be at most countable and let T c L(B). Then L(B) is separable, for
the set L,(B) of finite linear combinations of elements of B with
rational coefficients is dense in L(B) and L,(B) is countable. Since
T c L(B), the subspace T is separable, also.

ExampLE 10. /, is separable, as the set of unit vectors {e,=(§,),en: nE
N} is total in /,: the linear hull of the unit vectors is /, ,.
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ExXAMPLE 11. L,(R™) 1s separable. By Example 7 it is enough to show that
T(R™) is separable. Let S, be the set of characteristic functions of intervals
with rational end points. The set S, is countable and obviously dense in
the set S of characteristic functions of all intervals, therefore m:) L(S).
Because L(S)= T(R™), it follows from this that L(S;)D> T(R™), i.e., T(R™)
is separable.

ExaMPLE 12. For every measurable subset M of R™ the space L,(M) is
separable. The space L,(M) may be considered as a subspace of L,(R™)
provided we identify each f € L,(M) with the element f € L,(R™) defined

by

iy = [ f(x) for xEM,
f() { 0 for x&M.

EXAMPLE 13. Let p be a measure on R™ (cf. Appendix A) and let M be a
p-measurable subset of R™. The Hilbert space L,(M, p) (cf. Section 2.1,
Example 6) is separable. This can be proved for M= R™ as in Example 11
(in the course of the proof of S C S, one has to notice that the boundaries
of intervals in general have measures different from zero). For a general M
we obtain the assertion by considering L,(M, p) as a subspace of L,(R™, p).
The space T(R™) of step functions is dense in L,(R™, p).

EXERCISES

2.4. A subset A of a normed space H is separable if and only if its closed linear
hull L(A) is separable.

2.5. Prove that the function §, from Example 8 is infinitely many times differen-
tiable.

2.6. Let G be an open subset of R™, let p be a measure on R™, and let Ly(G, p) be
defined as in Section 2.1, Example 6.
(@) If L, o(G, p) is the subspace of L,(G, p) consisting of all bounded
functions with compact support in G, then L, (G, p) is dense in Ly(G, p).
(b) If T(G) is the space of step functions whose supports are contained in G
(these are then compact subsets of G!), then T(G) is dense in Ly(G, p).
(c) Cs°(G), the space of infinitely many times continuously differentiable
functions with compact support in G, is dense in L,(G, p).

2.7. The spaces A? and H? of Exercise 1.9 are separable (cf. also Exercise 2.2c).

2.8. (a) Prove the separability of L,(a, b) for — 00 <a <b < oo with the aid of the
Weierstrass approximation theorem (cf. Example 5).
(b) With the aid of (a), prove the separability of L,(R).
(c) Prove the separability of L,(R™) analogously.

2.9. (a) A subset A of a normed space is not separable if and only if there exists
an a > 0 and an uncountable subset B of A such that for all f, g € B, f+*g
we have || f—g|l > a.
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(b) If a subspace T is not separable, then for each a >0 there exists such a set
B.
(c) L,(A; p) 1s separable if and only if A is at most countable.

2.10. Let H be a pre-Hilbert space and let T be a dense subspace of H.
(a) The closures of {fE€T: | fl|<1} and of { fE T: || fll <1} are equal to
K(, 1).
(b) For every f€H we have |f|=sup {|(f,g)|:g€T gl <1}=
sup {[<f,g>| : gET, |l gll <1}



Orthogonality

3.1 The projection theorem

Let (H, {., .>) be a pre-Hilbert space. Two elements f, g € H are said to be
orthogonal (in symbols f 1L g) if {f, g>=0. If f1 g, then we obviously have
If+gll>=|fII> + || g]|; this formula often is referred to as the Pythagorean
theorem. An element f € H is said to be orthogonal to the subset A of H (in
symbols f1 A), if f1 g for all g € A. Two subsets A and B of H are said to
be orthogonal (in symbols AL B)if {f,g>=0forallfEA, g€B. If Aisa
subset of H, then the set At={f&€H:f1L A} is called the orthogonal
complement of A.

Proposition.

(a) We have {O}l = H, H+ = {0}, i.e., 0 is the only element orthogonal to
every element.

(b) For every subset A of H the set A+ is a closed subspace of H.

(c) AC B implies BXCc A+,

(d) We have A+ = L(A)* =L(A)".

PRrooOF.

(a) For every f& H we have <0, f>=0. If f+0, then {f, f> 50, i.e., f is
not orthogonal to H.

(b) If f, g€ AL and a, b €K, then for all 2 € A it follows that
Caf + bg, hy = a*{f, h) + b* g, h) =0,

i.e., af + bg € A+. Therefore A+ is a subspace. It remains to prove that
ALtc AL Let f€ AL, and let (f,) be a sequence from AL such that

29
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f,—f. Then we have for all h € A that
k) =1lim{f, h) =0,

consequently f € A+,

(c) If fe B, then we have {f, h) =0 for all & € B, therefore also for all
he A, and thus fE AL,

(d) Since A C L(A)C L(A), from (c) it follows that

l__(,?\'jl CL(A)" CA*L.

It remains to prove that A~ CL(A)". If f € AL, then we have {f, h} =
0 for all & € A, and therefore for all 2 € L(A), as well. If h € L(A), then
there exists a sequence (h,) from L(A) such that h,—h. Consequently,
we have

Sy by = himlf, k> = 0.
ie., f € L(A)*. B

In order to prove the projection theorem we need an approximation
theorem, which we prove with somewhat more generality than we actually
need. A subset A of a vector space is said to be convex if from x, y € A and
0<a<1 it follows that ax+ (1 —a)y €EA. Any subspace is obviously
convex.

Theorem 3.1. Let H be a Hilbert space and let A be a non-empty closed
convex subset of H. Then for each f € H there exists a unique g € A such that

If— gl = d(f, A) = inf{|| f— h| : hEA)}.

PrOOF. There always exists a sequence (g,) of elements of A such that
g, — fll=>d=4d(f, A). If we replace f by g,—f and g by g, — f in the
parallelogram identity (1.16), then on account of the inequality || f— h| >d
for all h€ A, we have

18, = 8lI> = 2118, — fI* + 2118, = f1I?— 4 f—3(g, + &)’
<2lg, —fII+2g,— fIIP—4d* -0

as n, m— oo (here we have used the fact that (g, + g,,)/2 lies in A, since A
1s convex). Hence (g,) is a Cauchy sequence. As H 1s a Hilbert space, there
exists a g € H such that g,—>g. We have g € A, since A is closed. Moreover,
we have

g — fll = lim|| g, — f]| = 4.

It remains to prove that g is uniquely defined. If g, h € A are such that
|f—gll=1|f— h||=d, then for the sequence (g,)=(g, h, g, h, g, ...) we
obviously have || g, — f||=d. By the above reasoning (g,) is a Cauchy
sequence, i.e. we have g = h. 0
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Theorem 3.2 (Projection theorem). Let H be a Hilbert space, and let T be a
closed subspace of H. Then we have T++ =T. Each f € H can be uniquely
decomposed in the form f=g+ h with g € T and h € TL. This g is called the
(orthogonal) projection of f onto T.

ProOF. As T is convex and closed, by Theorem 3.1 there exists a g€ T
such that || f—g||=d(f, T). Let us set h=f—g.

h € T+: We have to prove that for all w € T we have {w, h> =0. For
w=0 this is clear, so let we T, ws=0. Then for all a €K the element
g+ aw also belongs to T. Therefore

@’ =d(f, T < || f=(g+aw)|’ = ||h— aw]|?
= ||A|* — 2 Re(alh, w)) + |af|w|®
= d? — 2 Re(alh, w)) + |a]*||w]]*.
With a = ||w||"*(w, k) it follows from this that

1wl ~2[<w, BY|* <0,
so {w, h)=0.

In order to prove the uniqueness of the representation f=g+ h let us
assume that f=g+ h=g"+ h' withg, g € T, and h, ' € TL. Then we have
g—g €Tand ' — he T4, therefore

g—g =nN-heTnT+ = {0}
It follows from this that g=g’ and A= Ah'.

It remains to prove that T=T=++.

Tc TLL:If fE T, then by the definition of T+ we have {f, g> =0 for
allge T4, i, fis orthogonal to T+, fEe T+,

TL+LcT: Let fEeTLL. On the basis of what we have already proved
the element f may be represented in the form f=g+h with g€ TC T+4,
h € TL. From this it follows that hA=f—g& T+ N TL., hence h=0, i.e,

f=g€T. O

Proposition. L

(a) Let H be a Hilbert space. For every subset A of H we have A++ =L(A),
i.e., A+" is the smallest closed subspace containing A.

(b) In a Hilbert space H we have A+ = {0} if and only if L(A)=H holds,
i.e. if Ais total.

PROOF. L

(@) Since A+ =L(A)*, the projection theorem shows that L(A)=
LAt =ALtE

(b) If A+ ={0}, then we have L(A)= A+ ={0}*=H. If ALl =H, then
we have At =At+Lt=H1 ={0}, as A+ is a closed subspace. ]

If T, and T, are subspaces of a vector space such that T)n T,={0},
then
T\+T,={f+g:fET,g€ET,}
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is a direct sum (consequently we write T;+ T,), i.e., each element from
Ty + T, has exactly one representation of the form f+ g with f € T; and
g€ T, If T, and T, are subspaces of a pre-Hilbert space with T, L T,, then
we have TN T,={0}. In this case we call the direct sum T,+ T, an
orthogonal sum and we denote it by T, T,.

Theorem 3.3.

(a) Let H be a pre-Hilbert space, and let T, and T, be orthogonal subspaces.
If T\® T, is closed, then T, and T, are closed.

(b) If His a Hilbert space and T,, T, are closed orthogonal subspaces, then
T, DT, is closed.

(c) If H is a Hilbert space and T and T, are closed subspaces such that
Ty C T, then there exists exactly one closed subspace T, such that T,C T,
T,LT,and T=T,® T,.

For the subspace T,, defined uniquely by part (c) of this theorem, we write
briefly T,=T© T,. The subspace T, is called the orthogonal complement
of T, with respect to T. For T=H we obtain that HO T, = T .

PRrOOF.

(a) We show that T, is closed (the proof for T, goes the same way). Let
fET, and let (f,) be a sequence from T, such that f —f. Since
T,CT,®T, we have T,CT,® T,=T,®T,. Hence fET, DT, and
thus we have f=g, +g, with g, €T, g,E T,. On the other hand, it
follows from f €T, that f, L T, and so f1 T,, and, consequently,
g =f—g € T,n T;*. Therefore g,=0. From this it follows that f=g
eT;.

(b) We have to prove that T, @ T,Cc T, T,. Let fE T, D T,; then there
exists a sequence (f; ,+f, JET\®T, with f, €T, f, €T, and
fin +f2, ,—/f. Since

2 2 2
“fl,n + 5 n ”'fl,m "fz,m” = “fl,n "fl,m” + ”fz,n _fZ,m” )

Ll

the sequences (f; ,) and (f, ,) are Cauchy sequences. Consequently
fi.. A ET, £, »—>f, € T,. From this it follows that

f=lim(f, ,+f,,)=fA+HLETOT,

(c) By Theorem 2.4 T is a Hilbert space. Without loss of generality we
may assume that T= H. In this case let us set T,=T;-. Then by the
projection theorem (Theorem 3.2) we have H=T;@® T,. In order to
prove uniqueness, let us choose an arbitrary subspace T, such that
H=T,® T;. Then we surely have T;c T;*. If f€ T\%, then f=f, +f,
with f,€ T, f,E T;. Here we must have f, =0, since 0=(f,, f> =
i £ = £ill>. Therefore we have f=f, € Ts, i.e., Tf- C T4 and thus
Tt=T,. O]
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EXAMPLE 1. Let — o0 <a<c<b< 0. In Lya, b) by

T, = {f€Lya,b) : f(x)=0 almost everywherein (a,c))
T, = {f€Ly(a, b): f(x)=0 almost everywherein (c, b)}

two subspaces are defined, and we have L,(a,b)=T,®T,: For g€ T,
and h € T, we obviously have { g, A> =0. Moreover, for each f € Ly(a, b)
we have g=x(a,c)fE TL,h=x. ,E€T,and f=g+h.

EXAMPLE 2. In Ly(—a, a) by
T. ={f€L(~a,a):f(x)=*xf(—x) almosteverywherein (—a,a)}

two subspaces are defined and Ly(—a,a)=T, D T_: For g& T, and
he T_ we have

a 0 0

(g by = [ g(x)*h(x) dx = [~ g(x)*h(x) dx = [ g(x)*h(x) dx = 0.
Let us set f, (x) =3(f(x) = f(— x)). Then for each f € L,(— a, a) we have
f+ €T, and f=f_+ f_. The subspace T, is the space of even functions.
T_ is the space of odd functions.

If T,,..., T, are mutually orthogonal subspaces of H, then we call the
(direct) sum of these spaces an orthogonal sum and we write

.EBI'I} =T, ®T,D---DT,.
j=
Parts (a) and (b) of Theorem 3.3 can be extended to this case. For
infinitely many subspaces see Exercise 3.3.

If Ais an arbitrary set and (H,, ., . ),) 1s a pre-Hilbert space for each
a € A, then by Exercise 1.11 the space

H= {1=(fsere T H,:

aEA

f,#0 for at most countably many a €A, and Z ||f0,[|2 < 00}

aEA

1s a pre-Hilbert space with the scalar product

(f) (8)) = ZA<fa, 8.0. for (f,), (8) EH.
ac

By Exercise 2.2a the space H is a Hilbert space if and only if all H, are
Hilbert spaces. If we identify H, with the subspace of elements (f3)gen
such that f; =0 for 8+#a, then the spaces H, become pairwise orthogonal
subspaces of H. Therefore (H, {.,.)>) is called the orthogonal sum of the
spaces (H,, <., .),) in symbols H=@® _.,H, (if A is finite, then H=
HaEHOI)‘
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Theorem 3.4. Let H be a Hilbert space. If T is a closed subspace and S is a
[inite dimensional subspace, then T+ S is closed.

PrROOF. The problem can be reduced by induction, to the case where S is
one dimensional; S= L(f). If we write f=f,+ f, with f{€ T and f,€ T+,
then we have T+ S=T® L(f,). Therefore T+ S is closed by Theorem

3.3(b). ]
EXERCISES
3.1. Let H be the pre-Hilbert space { f € C[0, 1] : f(1)=0} with the scalar product

3.2.

3.3.

34.

3.5.

(f, 8> = fof(t)*g(z) dt. The subspace T={(fEH: f¢f() dz=0} is closed,
T+ H, and T+ = {0}.

Let H be the pre-Hilbert space C[—1, 1] with the scalar product {f, g)> =
S L f(O*g(o) dt. The subspaces Ty={fEH: f(£)=0 for <0} and T,=
{(fE€H: f(H)=0 for ¢t >0} are closed and such that T, L T,. The orthogonal
sum T,®D T, is not closed (cf. Theorem 3.3(b)).

Let H be a Hilbert space, and let {T,: a € A} be a family of pairwise

orthogonal subspaces of H.

@ If (f)ell,caT, and f,#0 for at most countably many e«, and
Taca llfil? < oo, then f=T 4 f, can be defined. The subspace T of all f
of this form is called the orthogonal sum of T, in symbols T=@ . T,.
Hint: Build a sequence (a,) from those a for which f, 0 and define
Zaeafe as 27~ f, - This definition is independent of the choice of the
sequence (a,,).

(b) T is closed if and only if all T, are closed.

(cy If all T, are different from {0}, then T is separable if and only if A is
countable and all T, are separable.

Let H be a pre-Hilbert space, let D be a dense subspace of H, and let N be a
finite dimensional subspace of H. Then DN N+ is dense in N+,
Hint: By induction on n=dim N we can reduce the problem to the case n= 1,
ie, N=L(g), g#0. Then there exists an A€ D such that (g, h>=1. If
fE N, then there exists a sequence (f,) from D such that f,—f. For the
sequence f, = f,—< g, f,> h we then have f,eDN N+ and f,— f.

Let H be a pre-Hilbert space and let T, and T, be subspaces of H such that
T,L T,. Then we have T, @ T,O T,@ T,. If H is a Hilbert space, then we have
Tl @ T2= 7-] @ T2.

3.2 Orthonormal systems and orthonormal bases

Let (H, {.,.>) be a pre-Hilbert space. A family M= {e, : a € A} of
elements from H is called an orthonormal system: (ONS) if we have

(e ey =208, for a, BEA
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(8,5 denotes the Kronecker delta, i.e., §,, =1 for all « € A and §,, =0 for
a5 3). An orthonormal system M is called an orthonormal basis (ONB) of
the subspace T if M is total in T (i.e., M C T and L(M)D T). If Mis an ONB
of H, then M is called an orthonormal basis.

Proposition.

(a) Each ONS is linearly independent (i.e., every finite subsystem is linearly
independent).

(b) Each ONB M is a maximal ONS (i.e., if M’ is an ONS such that
M C M, then we have M’ = M).

(¢c) If His a Hilbert space, then each maximal ONS is an ONB.

PROOF.
(@) If {e,..., e,} is a finite subsystem of an ONS, then {e|,..., e} is

also an ONS. If 27_,q,¢, =0, then it follows that

Therefore g; =0 for all ;.

(b) Let M be an ONB. If M were not maximal, then there would be an
e € H such that e L M; consequently e L L(M), this contradicts L(M)
= H.

(c) Let M be a maximal ONS in the Hilbert space H. If M were not total,
i.e., if we had L(M)* {0}, then there would be an e € L(M)* such
that |le]|=1. Hence M'=MU {e} would be a larger ONS which
contradicts the maximality of M. 0O

ExampLE 1. The set of unit vectors {e, .. ., e,} is an ONB in K" (¢, is the
vector with 1 at the jth place and zero otherwise).

ExAMPLE 2. The set of unit vectors { e, =(8;,),en : K €N} is an ONB in /,.

EXAMPLE 3. An ONB in A?is {e, : n €Ny} with e,(z)=[(n+1)/7]"%z".
An ONB of H2 is {f, :n€N,} with f(z)=[27]"'/?z". This follows
immediately from Exercise 1.9, in particular part (c).

ExaMPLE 4. In L,(0, 1) the set M= {e, : n € Z} with e,(x)=exp (2imnx) is
an ONS, as one can verify by a simple calculation. We show that M is an
ONB, i.e., that M is total. For this let €[0, 1]= {f€CI0, 1] : f(O)=f(1)}.
For each f€ C[0, 1] by Fejér'’s theorem there exists a sequence (f,) of
trigonometric polynomials ( f, € L(M)) such that f, uniformly tends to f.
We also have then that f,—f in the sense of L,(0, 1), i.e., M is total in
é[O, 1]. If we also prove that C[0, 1] is dense in C[0, 1], then everything
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will be proved. For f € C[0, 1] and n €N let us define

f(x) for 0<x<1——'11—

F(0)+(1 —-x)n(f(l —%) ~f(0)) for 1——'1;<x <l

Then we obviously have f, € [0, 1] and f,—f.

Ju(x) =

EXAMPLE 5. Let Fo=L{e, : AER} with e, : R>C, ,(x)=exp (iAx). On
Fo by

(). 8> = 7151:0 }lffﬂTTf(x)*g(x) dx

a scalar product is defined. For the proof of the existence of this limit it is
sufficient to treat f= e, and g =e,. For these we have

T . - _
{f,g)= lm E%:f e N dx = lim 1 =1 [e'(#—i\)T__e-t(n——A)T]
-T

T—oo T—o0 2T}L_)\
=0 for pw+A
1 T
<f,g>=71520-2—-T-f_de=1 for u=A

The properties [(1.13)(i-iv)] of scalar products are obviously satisfied. If
f=2 ae, then (ff>= 3 |af.
k=1 k=1

Therefore we have (f,f>=0 if and only if f=0, which is property
[(1.13)(v)]. By construction, M= {e, : AER} is total in Fy, 1.e.,, M is an
ONB in F,. The space F; is not a Hilbert space. For if (A,) 1s a sequence of
mutually distinct real numbers and (a,) is a sequence of complex numbers
such that a, %0 for all k and ¥|q|* < o0, then the sequence (f,) with
f.=2%-1a.e, is a Cauchy sequence that is not convergent.

The following theorem, known as the Gram-Schmidt orthogonalization
process enables us to generate orthonormal systems and (in separable
spaces) orthonormal bases.

Theorem 3.5. Let H be a pre-Hilbert space. For each finite or countably
infinite set F={f,} from H there exists a finite or countably infinite
orthonormal system M= {e,} such that L(F)= L(M). If F is linearly indepen-
dent, then we can also insure L(f,,...,f)=L(e,, ...,e,) for all n.' If we
require that in the representation e,=2"_,af; the coefficient a, is positive,
then M is uniquely determined.

"n the sequel we write L(e,, . . ., €,) in place of L({e}, ..., e,}).
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(In what follows we shall always use the Gram-Schmidt orthogonaliza-
tion process with this additional requirement.)

PrROOF. It 1s obviously enough to prove only the last part of the assertion.
Every normed element from L(f,) has the form b, f,|| ', with |b,|=1.
The additional condition a,=5,||f,]|”'>0 gives b,=1. That is, e,;=
Il fill ~',- So we obviously have L(e;)=L(f,), as well. Let us now suppose

that e, ..., e, are determined In such a way that L(e,...,e,)
=L(f,...,f,) Forevery
Z byirfurr ELlens - oy fou)) =L(f1s - - - s f141)
such that g1 L(e,, . . ., e,) we then have
0=<e,g)=b+b, e fo1) i=1...,n,
thus ;= — b, <e;, f,.1,. Consequently, e, , necessarily has the form
b -1
n+1
en+l=lb+| n+l E< n+l>e (n+l 2< n+l>e)
n+1 i=1 i=1

From the requirement,

-1

bn
A1 = - n+1 E<en n+l>e >0

l n+ll i=1

it follows that b, , , >0, therefore b, |5,,,| ' = 1. Consequently,
-1
€+ n+l 2< n+l>e ( n+l 2<ez’ n+l>e)

i=1 i=1
By construction, we have e, € L(f,...,f,.), hence L(e;,...,e,. )
cL(fy ..., ,+1) From the formula for e, , it follows that f _, €
L(e,, ..., e,.) therefore we also have L(f}, ..., f,.)CL(e, ..., €4 )

Cl

ExaMpPLE 6. In Ly(—1, 1) the set F={f, : n€N,} with f(x)=x"Is a
linearly independent system. The application of Schmidt’s process provides
an ONS M= {p, : n €N}, where p,(x)=2"_.a,x’ holds with a,, > 0; i.e.,
P, 1s a polynomial of degree n with a positive leading coefficient. These
polynomials are called the Legendre polynomials. As F is total, the
Legendre polynomials constitute an ONB in L,(—1, 1). The polynomial p,
can be given explicitly:

1/2 An
p(x) = (2”;1!)_'(2”2+ l ) dci,,(x2—— )", neN,

In order to prove this formula it is sufficient to show that the expression



38 3 Orthogonality

given for p, is a polynomial of degree n whose leading coefficient is
positive and that {p,, p,,> =§,,,. The first assertion is obvious. For j <m
we obtain by a (j+ l)-fold integration by parts (the integrated terms
vanish) that

1 1 d”
J — J 2 m
f_lx L (X) dx Cmf_ X dx'”(x 1)” dx

j+1 m—j—1
C(—1)f“f d )d — (x?=1)"dx = 0.

1dx j+1 dxm—j—-l

This implies that {p,, p,,» =0 for n#m. It remains to prove that || p, || = I.
By integration by parts we obtain that

[ [ame=0r] = o[ -y ey ax
= @n)! [ (1-%)"(1+x)" dx
-1

=(2n)!nn fl(l-x)"‘l(l+x)"+ldx
=(2”)'(n+1)(n+2)f (1=x)""2(1+x)"* 2 dx = . ..
_ n(n—1)...1 n
_(2n)!(n+1)(n+2)...2n f_1(1+x) dx

= (n!)zznl+1 [(1+ X)L, = ()’ @n+1) 7122+,

From this it follows that || p, || = 1.
We can see in an entirely analogous way that the generalized Legendre
polynomials

usa() =[0=arm] [ FEL TS (= o= nen

constitute an ONB in L,(a, b).

Theorem 3.6. Let H be a pre-Hilbert space.
(a) If {e), ..., e,} is a (finite) ONS in H, then for each f € H there exists a
gEL(e,,...,e) such that ||g— fll=4d(f, L(e,, . .., e,)); we have

g =3 (e, fde,
j=1

(b) Let {e, : « € A} be an ONS in H and let f € H. Then at most countably
many of the numbers {e,, f) are different from zero, and we have the
Bessel inequality

IFI? > 3 [Kew SO

aEA
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(c) An ONS {e, : « € A} is an ONB if and only if for all f € H the Parseval
equality

P = 2 KewfI

aE=A
holds. Then we also have

f= 3 <e,fre, forall f€H.

aEA
PROOF.
(a) Foralic,,...,c, €K we have
n 2 n n n
”f— Sce| = 1/2- 3 o)~ 3 cHef> + 3 fof?
i=1 ji=1 J=1 ji=1

= WP =3 Kep I+ 2 Jg =< OF

Therefore || f— 27_,¢;¢;|| is minimal if and only if ¢;={e,, f).
(b) For every finite set {a,, ..., a,} CA we have

2 n
+ X [Cego I,

Jj=1

If1? =lf— S (e, foe,

Jj=1

by part (a). Hence
> e, S>[ < AR
j=1

From this the assertion follows because for every € >0 only finitely
many j €N exist with the property |[{e,, f>]*>e.

(c) Let us assume the Parseval equality for all fEH. Let f € H, and let ()
be the sequence of those a for which (e, f> #0. Then we have

as n—o0. Consequently, f € L(M), i.e, {e, : « € A} is an ONB. More-
over, it follows that

2

= AP = 3 [Cego SO =0

J=1

=S Cey fre,

Jj=1

aEA

f= gl <eal’f>eaj = 2 <ea’f>ea'

Let {e, : a €A} now be an ONB, i.e, let H=L(M). For every fEH
and for every ¢ >0 there exist n€N, «y, ... , o, EAandc¢,,...,c, E
§ such that

n 2
‘f—cheaj <e.

j=1
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By parts (a) and (b) it follows from this that

0 <= 3 [Kew DI < ISP = 3 [egs /O]

€A
2
<

2
< €.

n

f= 2 ¢e,

J=1

=~ 3 e, e,

J=1

and consequently that

IFIP = 2 [Kew I

aEA

Theorem 3.7 (Expansion theorem). Let H be a pre-Hilbert space and let
M={e,: a €A} be an ONS in H.

(@) If (a,) is a sequence of pairwise different elements from A, (c,) a
sequence from K, and the series Zc,e, is convergent (i.e.,
lim,,_,,, 37_\c,e, exists), then we have (c,) € l,. If H is a Hilbert space,
then this series is convergent if and only if (c,) € L,.

(b) If g=2c,e, , then we have

an,
¢, =<e,. gy forall neN,
lgll* = X e,

and
<g,f>=2<g,ea"><ean,f> forall feEH

(¢) The set of all elements from H which can be represented by a convergent
sum Zc,e, equals L(M).

PROOF.
(a) The sequence (2',’,'=lc,,e%)mEN is a Cauchy sequence if and only if we
have
k k 2
2 _ -
2: IQJ - 2: Colol| =
n=m+1 n=m+1
m k 2
> Cr€y — > Cue.| =0 for m <k and m, k— co.
n=1 n=1

This holds true if and only if £|c, | < co.
(b) We have

2

lgl* = lim

m

c,e

lim | ¥ c.e,
n=1

= lim X |, = X e,
n=1

m—>0o0

and

m
(o 8> = Jim, <ea~’ 2 > = Jim, o, 26 = G
J=
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In the same manner, it follows for all f € H that

(g.f> = lim < glc,,ean,f> = lim 3 (g, ¢, e,/

m—o0
n=1

= 248, e, )<e,, -

(c) Each element Zc¢,e, is in L(M), by construction. The converse follows
from Theorem 3.6(c), as M is an ONB in L(M). 0

Proposition. Let H be a Hilbert space, and let M= {e, : « € A} be an ONS.
For each f € H the vector 3, 4<e,, f e, is the orthogonal projection of f
onto L(M).

PrOOF. If 2;?=1cje% 1s an arbitrary element from L(M), then by Theorem
3.6(a) we have

f— 2 {ew fe,

aEA

2

= IfIP— 3 Kew O]

aEA

<P = 2 Key DI
-

2 2

n

j= J=1
consequently
2 ——
— X Lenfre,) =inf {||f—g|?:g€L(M)} = inf {||f-g|*: g EL(M)}
aEA

Theorem 3.8. Let M, and M, be measurable subsets of R’ and R?, respec-
tively and let {e, : n €N} and { f,, : m €N} be orthonormal bases of L,(M;)
and Ly(M,), respectively. If we define g, € L,(M{XM,) by g, (x,y)=
e,(X)f,(y) for xE M, y EM,, then {g,, : (n,m)ENXN} is an orthonor-
mal basis of Ly(M; X M,).

ProoF. It is obvious that the functions g, are in L,(M, X M,) and they
form an orthonormal system. It remains to prove that { g,,, : (n, m) ENX
N} is total. Let & be an element of L,(M, X M,) such that At g, for all
n, m. For all x& M, let h(y)=h(x,y). By Fubini’s theorem we have
h, € L,(M,) for all x € M|\ N with some set N of measure zero, and we
have (Parseval’s equality)

A7 = [ WP dx = [ 3 (< P dx

rm=1
2

fh(x,y)fm(y)* dy| dx

11"M;

> L1 Hen) h()* dy| dx.

)
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Let us define k,, by

k() = [ B0 2) (0¥ = o ), x € MOAN.

Then k,, also belongs to L,(M,). Another application of Parseval’s equality
shows that

J,

= 3 [ kfx)e, (0" dx

2

dx = [lk, > = D, [Kep k[’

n=1

fM h(x, y) f.(¥)* dy

2

1

2

J [ hep)fu(p)*e,(x)* dy dx

2 e}

-3

n=1 n=11"M"M,
oo 2 co
2
=2 8% 2)* dx dy| = D [ gy O = 0.
n=11" MiXM, n=1
~ By summing up, it follows that ||A|| = 0. O

EXERCISES

3.6. If T=@_,,T, and M, are orthonormal bases in T,, then M= U, 4 M, is an
ONBin T.

3.7. Let H be an infinite dimensional Hilbert space, and let M be an ONB of H.
The cardinality of every dense subset of H is at least that of M. There exists a
dense subset of H with cardinality equal to that of M.

3.3 Existence of orthonormal bases, dimension of a
Hilbert space

Up to now we have always assumed the existence of orthonormal bases;
only in examples did we see that in certain spaces orthonormal bases exist.
The question is then whether all Hilbert spaces or pre-Hilbert spaces have
orthonormal bases. It is relatively easy to show that each separable
pre-Hilbert space has an ONB. For non-separable spaces it is a little
harder to answer this question.

Theorem 3.9. Let H be a separable pre- Hilbert space.

(a) H possesses an ONB.

(b) If M, is a finite ONS in H, then there exists an ONB in H such that
M D M,.

(c) If H is a Hilbert space and M, is an ONS in H, then there exists an
ONB M in H such that M D> M,.

(d) H is m-dimensional (m < c0) if and only if there exists an ONB contain-
ing m elements. Then each ONB in H has exactly m elements.
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(e)

H is infinite dimensional (i.e., not finite-dimensional) if and only if there
exists an ONB containing a countable infinity of elements. Then each
ONB in H is enumerably infinite.

PROOF.

(a)
(b)

(©

(d)

)

follows from (b) if we choose M, =.

Let H# {0} and let M;={e;, ..., ¢,} be an ONS. As H is separable,
there exists a countable dense subset A= {f, : n €N} in H. We define
the elements g, g,, . . ., from A recursively in the following way: let
g =/, where j, is the smallest index for which {e, ..., e, f } is
linearly independent. If g, ..., g, are defined, then let g, ,=f ,
where j, ., is the smallest index for which {e|,...,e,, 8, .., &
...} is linearly independent. We obviously have j, ., >j,. With B=
{els... €, 8 & ...} we then have L(A)C L(B), ie.,, B is total. If
we apply Gram-Schmidt’s orthogonalization method to B, we obtain
an ONS M, the first n elements of which coincide with ey, .. ., e, (as
these are already orthonormal). We have L(M)=L(B)=H, i.e., M is an
ONB in H with M, C M.

Let H be a separable Hilbert space and let M; be an ONS. Then
L(M))* is also separable. Therefore, by part (a), there exists an ONB
M, of L(M))"*. The set M= M, U M, is then an ONS, and L(M,U M,)
= L(M,) D L(M,). Consequently, by Exercise 3.5

L(M; U My) = L(M,)® L(M,) = L(M,) ®L(M,) =H,

hence M is an ONB of H such that M, C M.

Let H be m-dimensional, i.e., assume that the maximal number of
linearly independent elements equals m. As every ONS is linearly
independent, it consists of at most m elements. If M={e,,..., ¢} 1s
an ONS with less than m elements, then we have dim L(M) <dim H,
therefore L(M)7 H. Thus there exists an f € H such that {e, ...,
e, f} is linearly independent. The Schmidt orthogonalization process
provides an ONS M’'={e,, ..., e, ..} such that MC M, 1e, M is
no ONB. Hence every orthonormal basis has exactly m elements.

If H is infinite dimensional, then every ONB has at least a countable
infinity of elements, for otherwise H would be finite dimensional by
part (d). It remains to prove that each ONB M= {e, : a € A} is
countable. Let N={ f, : n €N} be a countable dense subset. For each
a €A there exists an n(a) EN such that || f,, —e,ll <3. Because

lle,— egl| =V2 for a#p, we have

S = Surll 2 1€ = €ll = Il faqw) = €all = lleg = Sfuem)ll

>V2 —-1>0 for a8

This means that the mapping ar>n(a) : A—N is injective. Conse-
quently A is countable. Conversely, if an orthonormal basis in H is
infinite, then H is not finite dimensional. ]
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Proposition. Every finite dimensional pre- Hilbert space is complete; in partic-
ular, every finite dimensional subspace of a pre-Hilbert space is a closed
subspace.

PrOOF. Let H be an m-dimensional pre-Hilbert space. Then there exists an
orthonormal basis {e,, ..., ¢,}. Let (f,) be a Cauchy sequence in H with
f.=27_,a,¢. Then we have

TAAE 2 @,

thus for each j the sequence (g,),cy s a Cauchy sequence as n—oo0.
Therefore g;,—a; as n— oo with some g;. Putting

m
f= 2 g,
j=1
we have
m 2 m
”f_anz = 2 (aj_ajn)ej = 2 'aj - ajn'z"" 0
J=1 J=1
as n— o00. Consequently, (f,) is convergent in H. ]

Proposition. A pre-Hilbert space is separable if and only if it possesses an at
most countable ONB.

PrOOF. By Theorem 3.9 each separable pre-Hilbert space possesses an at
most countable ONB. If M is an at most countable ONB in H, then the set
L,(M) of linear combinations of elements of M with rational coefficients is
dense in L(M), and thus it is also dense in H. As L,(M) is at most
countable, H is separable. 0

Theorem 3.10. Let H be a Hilbert space.

(a) H possesses an ONB.

(b) If My is an ONS, then there exists an ONB M in H such that M D M,
(c) A/l ONB of H have the same cardinality .

REMARK. Theorem 3.10(a) and (b) do not hold for (non-separable) pre-Hil-
bert spaces; cf., for example, N. Bourbaki [2], Chapter 5, §2, Exercise 2.

Proor. Part (a) follows from part (b) by choosing M, = .

(b) Let M be the set of all those ONS which contain M. IN is partially
ordered by the inclusion “C” (i.e., we have M C M for all M €I; from
M, CM,, M, C M,, it follows that M, C M;; from M,CM,, M,C M, it
follows that M, = M,). If N is a linearly ordered subset of M (i.e., for
M,, M, €N we have M; C M, or M, C M,), then N has an upper bound
MeM (ie., for every M’ €N we have M’ C M); for the upper bound
M we may take the union of all N €.
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This M is an ONS: If f,, f, € M, then there exist M;, M, €9 such
that f, € M,, f, € M,. Since M, C M, or M, C M, holds, we have f,, f, €
M, or f,, f, € M. Therefore f, 1 f,.

As M contains all NE€%, M is an upper bound of 9t. By Zorn’s
lemma this implies the existence of at least one maximal element
M. .. €M (e, for each M EM such that M_,, CM we have M_,,
= M).

This M,,,, is an ONB: If we had L(M_,, )7 H, then, as H is a Hilbert
space, there would be (cf. part (b) of the proposition preceding Theo-
rem 3.3) an f € L(M_,,)" such that || fl| =1, i.e., MU {f} would be
an ONS such that M_,, C My, U{f} and Mg, %My, U {f}; this
would contradict the maximality of M_,,. The requirement My, C M, .
is obviously satisfied.

(c) Let M;, M, be ONB of H. If |Mj|=m < oo (we write |M| for the
cardinality of M), then by the proposition preceding Theorem 3.10, the
space H is separable and by Theorem 3.9(d) we have dim H=m=
M.

Now let [M,| > |N|. For each fEM, let K(f)={gEM,:{g, O+
0}. By Theorem 3.6(b) we have |K(f)| <|N| for all f& M,. We have
U{K(f): feM}=M,, since if gEM\U {K(f) : fE€ M,;} we would
have g L M,, therefore g =0 (as M, is total); however, this is impossible
because all elements of M, have norm 1. Consequently, it follows that

IMy] < erM KO < [M]IN] < [My].

On the other hand, |M,| > |N| is true, for otherwise M; would be finite,
also. We can therefore prove that |M,| < |M,| in the same way. ]

The algebraic dimension of a vector space is the cardinality of a maximal
set of linearly independent elements (algebraic basis). In Hilbert spaces it is
useful to introduce another notion of dimension. The dimension (more
precisely, the Hilbert space dimension) of a Hilbert space H is the cardinal-
ity of an ONB of H. By Theorem 3.10(c) this dimension does not depend
on the choice of the ONB. By Theorem 3.9(d) for finite dimensional
Hilbert spaces the two definitions of dimension coincide; for infinite
dimensional spaces this is not the case, cf. Exercise 3.8.

Proposition. There exist Hilbert spaces of arbitrary (Hilbert space) dimen-
sion.

PrROOF. Let x be an arbitrary cardinal number, and let A be a set of
cardinality k. Let /,(A) be the Hilbert space /,(A; n) with p(a)=1 for all
a € A (cf. Exercise 1.10 and 2.2(b)). The dimension of L(A) equals k =|A|,
as M= {f, : a € A}, where f,(8)= 34,4, is an ONB. O
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Theorem 3.11. If H is a Hilbert space and S and T are closed subspaces of H
such that SN T+ = {0}, then we have dim S < dim T (dim = Hilbert space
dimension).

PRrROOF. Let us distinguish between two different cases.

(a) dim T=k < oo: Assume that dim S >dim T holds. If {e,,..., e} is
an ONB of Tand {f,..., fis}is an ONS in S, then the system of
homogeneous equations (k equations, £ + 1 unknowns)

k+1
ch<€m,fj>=0, m=1,...,k

Jj=1

has a non-trivial solution. Therefore there exists a non-zero element
f=3%tcf of SN T+, which contradicts the assumption.

(b) dim T >|N|. Let M; and M, be orthonormal bases of T and S,
respectively. For each e € M, let K(e)={fE M, : {e, f> #0}. We have
U .em, K(€) = M, because for f € M)\ U, ¢, K(e) we would have fi M,
thus fL T; which would contradict the assumption. Since for each
eE M, the set K(e) is at most countable, it follows that |M,|<
N [My] =M. [

EXERCISES

3.8. Let H be a Hilbert space and let A be a countable subset of H such that

L(A)=H. Then H is finite dimensional, i.e., no Hilbert space of algebraic
dimension |N| exists.
Hint: Apply the Schmidt orthogonalization process to A; for the resulting
ONB M we have L(M)=H. (It can actually be proved that no infinite
dimensional Hilbert space can have an algebraic dimension smaller than the
cardinality of the continuum; cf. N. Bourbaki [2], Chap. 5, §2, Exercise 1.)

3.9. (a) Let (H, {., .>) be a pre-Hilbert space. For any n elements f,, .. ., f, of H

the Gram determinant is defined by D(fy, ..., f)=det ({f, fi>). We
have D(f, . . ., f,) = 0; the equality sign holds if and only if the elements
fi, -+ ., f, are linearly dependent (in the case n=2 this is Schwarz’
inequality.)
Hint: Use induction on n. In going from n—1 to n use the fact that the
value of the determinant does not change if the first column is replaced
by {f» fi = P.(f1)>, where P,(g) denotes the orthogonal projection of g
onto L(fy, ..., f,)

(b) Prove the same assertion by using the fact that the matrix

K Sd)j k=1, .., . 1 the product of the matrices
(<jJ-’ el>)_j=] ,,,,, n and  (Kep fi)) =1, ., ms
I=1,..., m k=1,..., n

where {e,, ..., e,} isan ONB of L{f,..., [, }.

(c) Prove an analogous statement for semi-scalar products.
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3.10. Part (c) of the proposition preceding Example 1 of Section 3.2 does not hold
in pre-Hilbert spaces.
Hint: In 4, let f=(1/n), H=1, o, H =14 o¢N {f}*. By Exercise 3.4 we have
H,={f}*. If Mis an ONB of H, then M is a maximal ONS in /, (, without
being an ONB in /, .

3.4 Tensor products of Hilbert spaces

Let H, and H, be vector spaces over . We denote by F(H,, H,) the vector
space of formal linear combinations of the pairs (f, g) with f € H,, g € H,,
1.€.,

F(H, Hy) = { > ¢(f.8): G EK fEH, g EH,j=1,2,...,n; nEN}.

s=1

Let N be the subspace of F(H,, H,) spanned by the elements of the form

i ﬁ ajbk(f" g)—1X% ( i af kél bkgk)- (3.1)

J=1 k=1 J=1
The quotient space
H, @ H, = F(H,, Hy)/N

is called the algebraic tensor product of H, and H,.

The product H; X H, can be considered as a subset of F(H,, H,), if one
identifies (f, g) € H, X H, with 1(f, g) € F(H,, H,). The equivalence class
from H, ® H, defined by (f, g) will be denoted by f ® g; these elements are
called simple tensors. Each element of H,® H, is representable as a finite
linear combination of simple tensors. Such a linear combination of simple
tensors is equal to zero if and only if it is a finite linear combination of
elements of the form

2 2 ajbkf;' ® g — ( 2 af'f}) ® ( 2 bkgk)' (3.2)
j=1k=1 j=1 k=1
In particular, we have
(Zar)e(2ba)-2 Sansen. 03
Jj=1 k=1 j=1 k=1
If (H,, <.,.>,) and (H,, {., .>,) are Hilbert spaces over K, then
(2 otoh $ i) =3 3 e s m,
j=1 k=1 j=1 k=
defines a sesquilinear form on F(H,, H,). For arbitrary fEN and g€&
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F(H,, H,) we have s(f, g)=s(g, f)=0, as one can verify by simple calcula-
tion. Consequently, by

n n n m
< 2 cf®g, X cllf12®g,2> = S( > (S 8), 2 alf g;;))
j=1 j=1 j=1 k=1
a sesquilinear form is defined on H, ® H,.

We show that (., .> is a scalar product on H,® H,. In order to prove
this it is enough to show that {f, f> >0 holds for all f€ H,® H,, f+0.
Indeed, let f=37_,cf®g +0. If {¢} and {e;} are orthonormal bases of

J=1%]

L{fi,...,f,}and L{g,, ..., &,}, respectively, then
f= Zlcklek Qe with ¢, = Z Cj<ek’J;><e1" 8> (3.4)
k, J
and thus

LSy = kzllck,lz > 0.

Therefore (H, ® H,, ., .>) is a pre-Hilbert space. The completion of this
pre-Hilbert space (cf. Section 4.3) will be denoted by H1® H, and called
the (complete) tensor product of the Hilbert spaces H; and H,.

From (3.4) for each f=27_,c,f®g € H ®H, it follows by means of
(3.3) that

f=2f®e=2e0®g (3.5)
/ k
where {e,} and {e/} are orthonormal systems in L{f,...,f,} and
L{gy...,&,) respectively; the elements f/ and g, are contained in
L{fi,...,f,}and L{g,, ..., &,}, respectively.

ExampLE 1. Let p; and p, be measures on R, and let H;=Ly(R, p,),
H,= Ly(R, p,). By (3.1) an element X7_,¢i(f;, g;) from F(H,, H,) is in N if
and only if the function

n

(x,0) > 2 cfi(x)g(y), (x,y) ER?
j=1
vanishes almost everywhere with respect to the product measure p, X p,.
The algebraic tensor product H,® H, is thus composed of equivalence
classes of functions, square integrable on R? with respect to p, X p,. For
|, g €E H,® H, we have

frg> = [F(x2)*8(x,») doi(x) do(»).

As H,® H, obviously contains all step functions on R?, the space H, ® H,
is isomorphic to Ly(R2 p, X p,).
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Theorem 3.12. Let H, and H, be Hilbert spaces.

(@) If M, and M, are total subsets of H, and H,, respectively, then the set
(f®g:fEM, g€ M)} is total in H1®H2.

(b) If {e, : a € A} and {f; : B € B} are orthonormal bases of H, and H,,
respAectively, then {e,®f;: a €A, BEBY} is an orthonormal basis of
H,® H,.

PrOOF.

(a) Let 2;?=1fj®gje H,®H,, € >0. For each jE€{1, 2, ..., n} there exist
elements f € L(M,) and g/ € L(M,) such that || [, — f|| | g;ll <e/2n and
g — &l I1fll <e/2n. Then we have

15®8— 5 ®gl = I(5-£)®g+f ®(5-g)l <e/n
and consequently

n

3 jo5-3 jog
j=

Jj=1

< e.

Because
n

D[ ®gelM)BLM) =L{f®g: fEM,gEM,},

j=1

the assertion is proved, since H, ® H, is dense in H, ® H,.
(b) By part (a) the set {¢,®f; : «a €A, B €B} is total in H,® H,. More-
over, we have

{6y ® for 0 @ f3> = 8,084 forall a EA B EB,

ie., {¢,®f; : «a €A, B € B} is an orthonormal basis. O

EXERCISES

3.11. Two non-zero tensors f; ® g, and f, ® g, are equal to each other if and only if
there exists a ¢ € [, ¢ 0 that satisfies f,=cf}, g,=c " 'g,.

3.12. Let H, and H, be Hilbert spaces.
(a) We have dim [H, ® H,]=(dim H,)(dim H,) (Hilbert space dimensions).
(b) If H, and H, are different from {0}, then H, ® H, is separable if and only
if H, and H, are both separable.
(©) (H®H,, <{.,.>)is complete if and only if H; or H, is finite dimensional.



Linear operators
and their adjoints

4.1 Basic notions

Let H, and H, be vector spaces over K. A linear operator T from H, into
H, is, by definition, a linear mapping of a subspace D(T) of H, into H,.
The subspace D(T) is called the domain of T. The image R(T)= T(D(T))
={Tf:f€D(T)} is called the range of T. Since we only treat linear
operators here, we shall speak only about operators from H, into H,. If
H,= H,=H, then T is called an operator on H. A linear operator from H
into I is called a linear functional. The range of an operator T from H,
into H, is a subspace of H,. An operator is injective if and only if Tf=0
implies f=0. In this case the inverse T ™! of T is defined by

D(T™Y=R(T), T 'g=f for g=TfE€R(T).

T ~!is a (linear) operator from H, into H,. For an operator T from H, into
H, and for a € K the operator aT is defined by

D(aT) =D(T) and (aT) = a(Tf) for f & D(aT).
For two operators S and T from H, into H, the sum S+ T is defined by
D(S+T)=D(S)ND(T),(S+T)f=Sf+Tf for feDS+T).

If T is an operator from H, into H, and S is an operator from H, into Hj,
then the product ST is defined by

D(ST) = {f€D(T) : Tf €D(S)}, (ST)f = S(Tf) for f & D(ST).

If D is a subspace of H,, then the set of those operators from H, into H,
whose domain is D is a vector space over [K; the zero element is the
operator whose domain is D and which sends all elements of D to 0. Let S

50
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and T be operators from H, into H,. An operator T is called an extension
of S (or S is a restriction of T) if we have

D(S) cD(T) and Sf=Tf for fe&D(S).
For this we write SC T or T2 S.

ExaMPLE 1. Let M be a measurable subset of R” and let ¢t : M—C be a

measurable function on M. The maximal operator of multiplication by t on
L,(M) is defined by

D(T) = {fEL(M) : f ELM)), Tf = ¢f for f € D(T).

The set D(T) is obviously a subspace of L,(M) and T is an operator on
Lo(M).

(4.1) D(T) is dense.

PrOOF. For each nE€N let M, ={x &€ M : |1(x)| <n}. Then M,CM,,, and
Unp=iM, =M. For each fe&Ly(M) the function f,=x,,f belongs to
D(T) and we have f,—f. O

(4.2) The following statements are equivalent:
(a) R(T) is dense,
(b) #(x)# 0 almost everywhere in M,
(c) T is injective.
If one of these assumptions is satisfied, then T ' is the multiplication
operator defined by the function

£,(x) = t(x)”"  for xE€M such thar t(x)+0
l 0 for x €M such that t(x)=0.

PROOF. (b) follows from (a): Each f € L,(M), that vanishes outside the set
M,={x €M : t(x)=0}, is orthogonal to R(T). Therefore L,(M,)= {0},
1.e., M| has measure 0.

(a) follows from (b): Let M,={x€M: |t(x)|>1/n}; then M,CM,,,
and M\ U, M, has measure zero. For every ge& L,(M) the function
g, = Xm g belongs to R(T) and g,—g holds.

(c) follows from (b): If Tf=0, then ¢(x) f(x) =0 almost everywhere in M.
Therefore f(x)=0 almost everywhere, too, and thus f=0.

(b) follows from (c): If My={x€& M : t(x)=0}, then for all f &€ L(M),
vanishing outside M,, we have Tf=0; therefore f=0. From this it follows
that M, has measure zero.

If one of the above conditions is satisfied, then T is injective and #(x) #0
almost everywhere in M. Hence we have

D(T ") =R(T) = { g €L,(M): there exists an f € L,(M) such that g = f}
= {g€Ly(M): ty,gELL(M)},
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and for g € D(T ~") and f € L,(M) such that g = tf we have
T 'g=f=1ug;

consequently 7! is the multiplication operator induced by ¢,. ]

(4.3) We have D(T)= Ly(M) if and only if a C exists for which |t(x)| <C
almost everywhere in M. We have R(T)= Ly(M) if and only if a ¢ >0 exists
for which |t(x)| > ¢ almost everywhere in M.

Proor. If |#(x)| < C almost everywhere, then ¢f € L,(M) for all f € L,(M).
Therefore D(T) = L,(M). Conversely, let D(T) = L,(M). Let us assume that
no C exists for which |#(x)| < C almost everywhere. For n € N set M, = {x
EM: |t(x)|>n}, N,=M,_\ M, with My=M. Then all M, have positive
measures, and the intersection N ,;> M, has measure zero. Therefore there
exists a subsequence (n,) of N such that all N, have positive measures. We
have |t(x)|>n, —1 for xEN, . For all kEN let us choose f, € L,(M) in
such a way that f; vanish outside N, and | f,||=1/k. Since the functions
f are mutually orthogonal, we have

f= kglfk € L(M).

However, ¢f is not in Ly,(M), 1e., f & D(T), this contradicts the fact that
D(T) = L,(M). (A simpler proof of this can be found in Exercise 5.5.)

If |#(x)| > ¢ >0 almost everywhere, then T ~! exists, and for the inducing
function ¢, we have |f;(x)|<c~' almost everywhere. Therefore R(T)
=D(T H=L,(M). If R(T)=Ly(M), then by (4.2) the operator T is
injective and D(T ~')= Ly(M). For the inducing function ¢, we have
|#,(x)| < C almost everywhere, thus |#(x)| > C ~' almost everywhere. O

If ¢, s are measurable functions on M and 7, S are the multiplication
operators induced by ¢, s, then T+ S is a restriction of the multiplication
operator induced by ¢+ s, as from tf € L,(M) and sf € Ly(M) it obviously
follows that (z+ s) f € Ly(M).

ExampLE 2. If ¢ : R—C is continuous, then by

7f = [9(x)f(x) dx, f € Lo, o(®)

a linear functional is defined with D(T') = L, o(R). If ¢ € L,(R), then T can
be defined on the whole space L,(R).

The subset N(T)={fe€ D(T) : Tf=0} is called the kernel of T. For
every operator T from H,; into H, the set N(7) is a subspace of D(T)
(consequently of H,, as well).
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Theorem 4.1. Let H be a vector space over W, and let T\,..., T, T be
linear functionals such that D(T))= ... =D(T,)=D(T)=H. If we have
N(T)D N7.N(T)), then there exist a,, . . ., a, € K such that
n
T=2> aT.

i=1

PrROOF. We prove this by induction on n. Let n be equal to 1. If T, =0,
then N(T)D N(T,)= H, therefore T=0. If T,#0, then there exists an
fo € H such that T, f,= 1. For every f € H we then have f— T',(f) f, € N(T)
C N(T). Consequently, Tf= T(f)T, f, 1.e., T=T(f,)T,.

Let us now assume that the assertion is true for n—1 (n>1). Assume
that N(T)D N7, N(T). If N(T,)> N7Z!N(T;), then it follows that
N(T)D N"ZN(T). Therefore by the induction hypothesis we have
T=23""lc,T,. So in this case the assertion holds. If N(T,) 2z N7"Z/N(T),

i=1

then there exists an f, € N72 N(T;) such that 7,f,=1. Let
To =T — T(f)T,.
For all f € N7Z/N(T,) we have
T(f—T.(Nf) = T(f) - T.(IT(f) =0-0=0, i=12,...,n—1

and

T.(f= T.(N)fo) = T.(f) = TN T(fo) = T.(f) = T.(f) = 0,

Le.,

f=TANHfe € N MT) cN(T),

i=1

and thus
To(f) = T(f) = T(f) T,(f) = T(f— T,(f) fo) = 0.

Therefore we have
n—1
N(To) O (1 N(T).
i=1
By the induction hypothesis it follows from this that

n—1
T—T(f)T,=To= 2 ¢T,

i=1

i.e., T is a linear combinationof T, . . ., T, ]

Let H, and H, now be normed spaces. An operator T from H, into H, is
said to be continuous at the point f € D(T) if for every sequence (f,) from
D(T) such that f,—f we have Tf,— Tf. The operator T is continuous by
definition if T is continuous at each point of D(T). The operator T is said
to be bounded if there exists a C >0 such that ||Tf|| < CJf|| for all
f€ D(T). Any such C is called a bound of T.
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Theorem 4.2. Let T be an operator from H, into H,. Then the following
assertions are equivalent

(a) T is continuous,

(b) T is continuous at 0,

(¢) T is bounded.

PrROOF. (b) obviously follows from (a).

(c) follows from (b): Let us assume that T is not bounded. Then for every
n €N there exists an f, € D(T) such that ||Tf || >n|| f,||. From this it
follows that, in particular, f, # 0; without loss of generality we may assume
that ||f ||=1/n. Consequently we have f —0 and | Tf,| >n(1/n)=1,
which contradicts the continuity of 7 at zero.

(@) follows from (c): Assume ||Tf|| <C| f]|| for all fE€D(T). If f € D(T)
and (f,) is a sequence from D(T') such that f, —f, then we have

\Th — TA = 1 T(f, — NIl < ClIf, — fll = 0.
1.e., Tf,— Tf, which proves the continuity of 7. O

For a bounded operator T from H, into H, the norm ||T|| is defined by
IT|| =inf {C>0: ||Tf|<C||f|| forall feD(T)} (4.4)

(in Section 4.2 we shall justify the word “norm”). Since for every € >0 we
have
ITAl < (IT|+ OISl forall feD(T),

the norm || T'|| is a bound for 7, thus

ITA < ITN Al forall f €& D(T). (4.5)

ExAMPLE 1 (Continued). A function s : M—>R 1s said to be essentially
bounded from above if there exists a C €R such that s(x) <C almost
everywhere in M. Each C of this kind is called an essential upper bound of
5. The greatest lower bound of all essential upper bounds is called the
essential supremum of s, in symbols ess sup s. It is itself an essential upper
bound for s. Indeed, if C, denotes this greatest lower bound, then for every
n €N the number Cy+ (1/n) is an essential upper bound, i.e., s(x) — Cy—
(1/n) <0 holds almost everywhere. By letting n—o0 it foilows that s(x)—
C, <0 almost everywhere. Analogously, we may define the concepts of
essentially bounded from below, essential lower bound, and essential infimum.
A complex-valued function s is said to be essentially bounded, if |s| is
essentially bounded from above.

(4.6) The operator T from Example 1 is bounded if and only if t is
essentially bounded. We have || T || = ess sup |¢|.

Proor. If ¢ is essentially bounded, and C=ess sup |f|, then we have
|#(x)| < C almost everywhere. Therefore

1717 = [ 10 fF dx < € [ [f(0F dx = €211,
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i.e., T is bounded and || 7T'|| < C. If C=0, then we have ||T||=0. If C >0,
then for every € €(0, C) the set M, = {x € M : |#(x)| > C — €} has a positive
measure and for all f € L,(M), that vanish outside M,, we have

ITFI” = [ () f ()P dx > (€= 97 [ |f(0)P dx = (C =P A1

Therefore ||T|| > C — ¢, and thus ||T|| = C.

If ¢ 1s not essentially bounded, then for every n €N the set M,={x &
M : t(x) > n} has a positive measure and for every f € D(T), that vanishes
outside M,, we have

I TfIl > nll fA.
Therefore T is not bounded. n

ExampLE 2 (Continued). The functional T of Example 2 is bounded if
Y € Ly(R), since then

| Tf| < Nl 1ALl

From Theorem 4.8 (theorem of Riesz) it will follow that T is continuous if
and only if Y € Ly(R).

ExaMPLE 3. Let M, and M, be measurable subsets of R? and R™, respec-
tively. Then M, X M, is a measurable subset of R”*”, The points of R”*”

can be written in the form (x, y) with x €R"”, y € R?. Assume k € L,(M, X
M,). By Fubini’s theorem

f |k(x, y)|* dy < oo almost everywhere in M,,
M,

i.e., we have k(x, .) € L,(M,) almost everywhere in M,. Consequently, for
all f € L,(M,) we can define

(Kf)(x) = f k(x,y)f(y) dy alfnost everywhere in M,.
M,
Then we have
1/2
k@< 1] f kP ar | @7)
M,

For every g € L,(M,) the function h defined by A(x, y) = k(x, y) f(y)g(x) is
integrable on M, X M,. Therefore by Fubini’s theorem the function '

g(x)(Kf)(x) = g(x)fM k(x,»)f(y) dy = th(x,y) dy

is a measurable function on M,. If we put M, ,={xEM, : |x|<n} and
& =Xm, » then we can see that x,, Kf is measurable for every n€N.
Consequently, Kf is measurable.
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Because of (4.7) we have Kf € L,(M,) and

1/2
ISl < [fflk(xy)lzdde} 1£1-

Since the mapping f > Kf is obviously linear, we have defined a continu-
ous operator K from L,(M,) into Ly(M,) such that D(K) = Ly(M,) and

1Kl < {fM J

1/2
e ) dy e |
2
Such an operator is called a Hilbert-Schmidt operator (cf. also Section 6.2).

1

EXERCISES

4.1. (a) The reasoning of Example I can be carried out completely analogously if
M is replaced by an arbitrary o-finite measure space (X, B, p). (A measure
space (X, B, p) is said to be o-finite if X can be written as the union of
countably many subsets of finite measure.)

(b) In Example 3 replace M, and M, by two arbitrary o-finite measure spaces
(X1, By, p1) and (X, By, ).
Hint: Observe that the set X, o={xE X, : [ |k(x,»)|* du(»)> 0} is the
union of the countably many sets X, ,={x€ X, : { |k(x, »)]? du,(») >
1/n} (n €N) with finite measures, and xx, | € Ly(X,, B,, ).

4.2. Let (X|, B,, py) and (X,, B,, p,) be o-finite measure spaces. Let k : X, X X;—
C be p, X p-measurable and let k(x, .) € Ly(X;, B,, p;) almost everywhere in
X,. Then for each f € L,(X;, By, 1,) the function K f defined by

Kof (x) = fx k(x, ) f(») diy(»)

is p,-measurable and we have | Ky f(x)| < |[k(x, J|| || f]l- By
D(K) = {f€Ly(Xy, By, 1) : Kof EL(Xp, By, ) }
Kf = Kyf for f€& D(K)

an operator is defined from L,(X;, B, u;) into Ly(X,, B,, p,) (such an operator
is called a Carleman operator; cf. also Section 6.2). There are functions k of
this kind for which D(K) = {0}.

4.2 Bounded linear operators and functionals

Theorem 4.3. Let H, and H, be normed spaces. Let T be an operator from H,
into H,.
(a) We have
sup {||Tf]| : f€D(T), || fll <1} = sup {|| Tf|| : fED(T), || fI| =1}
= sup {||Tf|| : f€D(T), | fl <1}
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(where the value oo is allowed). T is bounded if and only if one of these
values is finite; if one is finite then the others are finite, also, and they are
equal to || T||.

(b) If H, is a pre-Hilbert space and M is a subspace of H, such that
R(T)C M, then T is bounded if and only if

sup {[<Tf, g : fED(T), g EM, [ fll =1 gll=1)

is finite. This number is then equal to || T||.
(c) If T is an operator on a pre- Hilbert space H and D(T) is dense, then T is
bounded if and only if

sup {|[<Tf, g>| : f, g €D(T), ISl =l gl =1}

is finite. This number is then equal to ||T ||.

PROOF.

(a) If we define || T|| to be equal to oo if T is unbounded, then we only
have to prove that the three values, which we denote by ¢, ¢,, ¢;,
respectively, are all equal to ||T'}|. As ||T|| is a bound for 7, we surely
have ||T|| > c¢,. The inequality ¢, >c, is obvious. If f=0, then || Tf|| =0
<c,. I O<||f]l < 1, then with g=|| f]|~'f we have

lgl =1 and [|Tgll = |AI7TAl > I TS)-

Consequently ¢, > c¢;. What remains is to prove that c¢; > ||T'||. This is
evident if ||T||=0. Therefore suppose ||T|| >0. For every e (0, 1)
there exists an j € D(T') such that || 7| > (1 — €)|| T} || f||- Hence f%0
and for g =[(1 + ¢)|| f||]"'f we have

l1—e¢
> .
tell <1 and |[Tgl| > 17—l
From this it follows that ¢; >(1—¢€)/(1+¢)||T|| for all e€(0, 1) and

thus ¢, > || T||.
(b) By (a) we have ||T||=sup {||Tfl| : f€ D(T), || f||=1}. On the other
hand,

I Tf|| = sup {IKTf, g>| : g €M, || gll =1}

Indeed, if Tf =0, this is obvious. If Tf+0, then || Tf|| > || Tf, g )| for all
g € M such that || g|]| =1, and there exists a sequence (g,) from M such
that ||g,||=1 and g,—||Tf||"'Tf, therefore <Tf, g,>—| Tf||. These
arguments together give the assertion.

(c) follows from (b) if we choose M= D(T). O

An operator T is said to be densely defined if D(T) is dense. An operator T,
which is densely defined on a pre-Hilbert space H, is said to be symmetric
if for all f, g€ D(T) we have {Tf, g>={f, Tg).
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Theorem 4.4. Let T be a densely defined operator on a complex pre- Hilbert
space, or a symmetric operator defined on an arbitrary pre- Hilbert space. T is

bounded if and only if

C = sup {[<f, Y| : fED(T), | f]] < 1} < co.

If T is bounded, then we have
(a) |T|| €2C, if His a complex Hilbert space,
®) IT|=C, if T is symmetric.

PROOF. Let us set |T||= oo for an unbounded 7. Then we only have to

prove inequality (a) and equality (b).

(a) For all f, g€ D(T) such that ||f]||<1 and | g|| <1, from (1.4) with
s(f, g =<f, Tg) and from (1.16) it follows that

2C > C{4IfI* +4Ilgl*}
=3C{If+ gl +IIf— gl + |1 f+igl* + || f—ig)*}
> iKf+ 8 T(f+g))—{f~ g T(f~g))— i(f +ig, T(f+ig)>
+i(f—ig, T(f—ig)>| = I<f, Tg)|.
The assertion follows from this by Theorem 4.3.

(b) By (1.7) and (1.8) with s(f, g)={/, Tg), it follows for all f, g€ D(T)
such that || f|| < 1 and || g|| < 1 that

C > 5CIAP+IelP} =3C{Ilf+&l*+11f~gl*}
>If+8 T(f+8)) —{f—g T(f—g)| = Re {f, Tg)|.

If we choose a €K so that |a|=1 and a{f, Tg) =|{f, Tg)| hold, then
it follows (with 4 = a*f) that

IKf, Tgd| = <h, Tg) = |Re {(h, Tg)| < C.

By Theorem 4.3(c) it follows from this that ||T|| < C. The inequality
C < ||T|| is evident by Theorem 4.3(c). O

Theorem 4.5. Let T be a bounded operator from a normed space Hy into a
Banach space H,. Then there exists a unique bounded extension S of T such
that D(S)=D(T). We have ||S||=|T||.

PrOOF. Uniqueness: Assume S is a continuous extension of T such that
D(S)=D(T). If f € D(S), then there exists a sequence (f,) from D(T) such
that f,— f. As S is continuous, we have Sf=1lm Sf, =lim 7, i.e,, S is (if it
exists at all) determined by T uniquely.

Existence: Assume that f € —D_(T) and (f,) is a sequence from D(T) such
that f,—f. Then (f,) is a Cauchy sequence. Since T is bounded, the
sequence (Tf,) is a Cauchy sequence, also, for we have ||Tf — Tf, | <
T || f, — fll- Therefore there exists a g € H, such that Tf,—g. This g is
independent of the choice of the sequence (f,) from D(T) with f —f.
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Indeed, if (f)) is another sequence of this kind, then the sequence
(fi» fi, fa» £, - .. ) converges to f, also. Hence the sequence
(Tf,, Tf|, Tf,, Tf, . . . ) 1s also convergent; the limit has to be equal to g.
Consequently, (7f)) tends to g, as well. Let us define Sf=g.

S is linear: 1f f}, f, € D(T) and (f, ,), (f,, ,) are sequences in D(T) such
that f, ,—f), f, ,—/f,, then for all a, b €K it follows that

S(afl + bfz) = lim T(af],n + bfz,n) = lim (an],n + bez, n) = aSf, + bSf,.
S is bounded and ||S| =|T||: For f€D(T) and (f,) from D(T) such
that f, —f we have || f,||—| f|| and

ISf]l = lim || T, || < lim | T 1,1} = [T} ILfIl-

Therefore ||| <||T||. As ||S||>]|T|| obviously holds, the assertion
follows. []

The set of those bounded operators from H, into H,, whose domain is
H,, will be denoted by B(H,, H,). By Section 4.1 the set B(H,, H,) is a
vector space.

Theorem 4.6. Let || . | be defined as in (4.4). Then (B(H,, H,), || . ||) is a
normed space. If H, is a Banach space, then (B(H,, H,), || . ||) is a Banach
space, t0o.

PRrROOF. It is clear that || . || is a semi-norm. If ||T'|| =0, then || Tf|| = 0 for all
f € H, such that || f|]| < 1; therefore Tf=0 for all f € H,, and thus T=0,
the zero element in B(H,, H,). Consequently, || . || is a norm. Assume now

that H, is a Banach space. If (7,) is a Cauchy sequence in B(H,, H,), then
for every f€ H, the sequence (7,f) is a Cauchy sequence and, conse-
quently, a convergent sequence. Let us define: Tf=lim 7, f. Then T is
linear, because for f, g € H, and a, b €K we have

T(af+ bg) = lim T, (af+ bg) = lim (aT f+ bT,g) = aTf + bTg.

As (T,) is a Cauchy sequence, (|| 7,]||) is convergent, say || T,||— C. For all
f € H, we have

I TS|l = lim | Tf|| < lim [Tl | f]l = C| ],
1.e., T € B(H,, H,). What remains is to prove that 7,— 7. For every ¢ >0
there exists an n(e) €N such that |7, — T, || <e for n, m > n(¢). Therefore,
for n > n(e€) and for all f € H, we have

T, — T)fIl = lim [[(T,~T,)fll < ellfl,

1e., |7, — T| <efor n>n(e). Hence T, T. O
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Theorem 4.7.

(a) Let H, and H, be normed spaces. If T € B(H,, H,), then N(T) is a closed
subspace of H,.

(b) Let T be a linear functional on a Hilbert space H such that D(T)= H.
Then T is continuous if and only if N(T) is closed.

PRrROOF.

(@) Let f € N(T). Then there exists a sequence ( f,) from H, such that f, —f
and Tf =0. Since T is continuous, it follows that Tf=lim Tf,=0, i.e.,
fFENT).

(b) If T is continuous, then N(T) 1s closed by part (a). Let N(T) now be
closed. If N(T)=H, then T=0; consequently T is continuous. If
N(T)+ H, then N(T)* # {0}. Therefore there exists a g € N(T)* such
that g #0. Because (g, f)> =0 for all f € N(T), we have N(T,)> N(T)
for the functional T,f=(g, f>. By Theorem 4.1 this implies that
T'=cT, with some c € K. Consequently T 1s continuous. (The proof
can also be carried out analogously to the second part of the proof of
Theorem 4.8, without using Theorem 4.1.) O

REMARK. If H, and H, are pre-Hilbert spaces, one may expect that
(B(H,, H,), || - ||) 1s a pre-Hilbert space, also, 1.e., the norm is induced by a
scalar product. This holds true if H; =K or H,= K. However, this is not
the case if dim H, > 2 and dim H, > 2; cf. Exercise 4.3.

For T € B(H,, H,) and S € B(H,, H;) the product ST is in B(H,, H,),
since we have

D(ST) = {f€H, : TfeD(S)=H,} =H,
and
ST < ISITNTA < WSWNTY Al forall f e H,

1.e., we have ST € B(H,, H;) and
ISTY| < [IS] 1T (4.8)
We write B(H) for B(H, H). For S, T,, T, € B(H) we have
S(T\+T,) = ST, + ST, (T, + T,)S = T,S + T,S.

The operator I with D(I)= H and If=f for all f € H obviously belongs to
B(H) and we have

I =1, (4.9)

and IT=TI=T for all T € B(H). The operator I is called the identity
operator on H. The set B(H) is thus an algebra with an identity element. As
the norm on B(H) satisfies relations (4.8) and (4.9), the algebra B(H) is a
normed algebra with an identity element. If H is a Banach space, then B(H)
is complete; we call B(H) a Banach algebra (with an identity element).
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Now we shall study the set of continuous linear functionals defined on a
Hilbert space H, i.e., the set B(H, K) for a Hilbert space H over K. Every
element g € H defines a linear functional T, such that D(7,)=H by the

formula
T,(f) =<&f>.

As |T,(f)l < gll Il fIl, the functional T, is bounded, and || T || <|| g||. Since
for f=g we have |T,(g)|=|| gl%, it follows that || 7.1l =1l gl|. Every continu-
ous linear functional defined on H is actually of this form.

Theorem 4.8 (F. Riesz). Let H be a Hilbert space. Every g € H induces a
continuous linear functional on H by T, (f)=<g,f >. We have | Tl =] gll-
This mapping of H onto B(H, K) is bijective and antilinear, i.e., we have
Togron=a*T,+b*T,.

ag

ProOOF. The first part has already been shown. The antilinearity follows
from

Tag+bh(f) = <ag + bh’f> = a*<ga f> + b*<ha f> = a*Tg(f) + b*Th(f)

As ||T,|| =1 gll, the mapping g—>T, is injective. What remains is to prove
that it is also surjective. Let T € B(H, K); we construct a g € H such that
T=T,.

g

If T=0, then we can choose g =0. If T+0, then the kernel N(T)={f &
H: T(f)=0} is a closed subspace of H, different from H, i.e., N(T)*
{0}. Let g€ N(T)™ such that || g||=1. Let a= T(g). For every f € H we
obviously have T(f)g— T(g)f € N(T). Therefore T(f)g— T(g)f is or-
thogonal to g, i.e.,

0=<g T(f)g— T(g)f> = T(f) — alg, ),
T(f) = T(g)eg, f)> = {a*g, f).

Consequently, we have T=T, ... (We can also prove this last part with the
aid of Theorem 4.1, cf. the proof of Theorem 4.7(b).) d

and thus

ExaMmpLE | (Continuation of Example 2 from Section 4.1). We can now
show that the continuous function ¢ : R—C induces a continuous func-
tional on L, o(R) by T(f)= fy(x)f(x) dx if and only if Y € Ly(R). If T is
continuous, then it can be extended uniquely to a continuous functional on
LH(R) (which we denote by T, as well). By Theorem 4.8 we have T=T,
with some g € L,(R). Therefore, we have for all f € L, o(R) that

0= T(f) = T,(f) = [ (4(x)—g*(x)) () dx.
For an arbitrary n € N let us define

f(x) = {E)p*(x)- g(x) for |x|<n,

for |x|>n.
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Then for all » it follows that

f_"nw(x) ~ g*(x)P dx = f(¢(x) — g*(x))f,(x) dx =0,

hence

J1(x) —g* ()P dx = 0.

From this we can infer that ¢ = g* € L,(R).

EXERCISES

4.3.

44.

4.5.

4.6.

4.7.

(a) If H is a Hilbert space, then the norm in B(H, K) is defined by a scalar
product (i.e., B(H, K) is a Hilbert space).
Hint: If 7', T, are the functionals induced by g,, g, € H, then let (T, T>,»
={82» 81

(b) If H; and H, are (pre-) Hilbert spaces, then the norm in B(H,, H,) is
induced by a scalar product if and only if dim H,;=1 or dim H,=1.
Hint: If dim H, > 2 and dim H, > 2, then let f,, f, EH,, g, g2 € H, be such
that {f, f;) =<8, &> =49, and T,f={f, f>g; for fEH,, j=1, 2. For these
two operators the parallelogram identity does not hold.

For each x, €[0, 1] there exists exactly one g € W, (0, I) such that for all
fE W, (0, 1) we have

F(x0) = fo Y g (x) f (x)+ g*(x) f'(x)} dx

(cf. Exercise 2.3(b)).
Hint: The functional Tf= f(x,) is continuous on W, ,(0, 1).

The set of Hilbert-Schmidt operators on L,(M) (cf. Section 4.1, Example 3) is
a sub-algebra of B(L,(M)). It is a Banach algebra with the Hilbert-Schmidt
norm

I = { f [k ax ey}

Hint: If the Hilbert-Schmidt operators K and H are induced by the kernels k&
and A, then L = HK is induced by the kernel

I(x,y) = th(x, 2)k(z, y) dz.

(a) Theorem 4.4 does not hold true for non-symmetric operators in real (pre-)
Hilbert spaces. There are non-vanishing operators 7 such that the
quadratic form g(f)=<{f, Tf) vanishes on D(T).

(b) Show that the constant 2C in Theorem 4.4(a) is optimal.

(c) In a complex (pre-) Hilbert space H the quantity || T'||, =sup {[Kf, Tf)|: f
€ D(T), || fll <1} is a norm on B(H). We have || T|| <2||T|j, <2||T]|.

Let T be a bounded operator from a Hilbert space H; into a Banach space H,.
Then there exists an extension S € B(H,, H,) of T such that ||S||=||T]|.
Hint: Define Sf=0 for f € D(T)".
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4.8. If H is an infinite dimensional Hilbert space, then B(H) is not separable.
Hint: Let {¢, : nE€N} be an ONS in H; for every sequence a=(a,) from
{0, 1} let T,, € B(H) be defined by 7T,f=3a,{e,, f>e,; this is an uncountable
set of operators such that || T, — Tg|| =1 for a .

4.9. Let H be a Banach space. There are no operators A, B € B(H) such that
AB— BA=1.
Hint: From AB — BA =1 it follows that (n+ 1)B"=AB"*!— B"*14 for all
n €N, therefore ||B"|| <2/(n+ 1)|| 4|} ||B| ||B"|, i.e., B"=0 for large n; this
implies that 0=B"=B""!= . =B%=]

4.3 Isomorphisms, completion

Let H; and H, be normed spaces. An operator U from H, into H, is called
an isometry, if D(U)= H, and ||Uf||,= | f||, for all f € H,. An isometry U
from H, into H, is called an isomorphism of H, onto H, if R(U)= H,. Every
isomorphism U of H, onto H, is injective and U ~! is an isomorphism of
H, onto H,.

If H; and H, are pre-Hilbert spaces and U is an isomorphism of H, onto
H,, then it follows from the polarization identity that {Uf, Ug>,={f, g>;
for all f, g € H,. (The subscripts of the norms and scalar products will be
omitted in the sequel, as it will be always clear from the context, to which
spaces the elements belong.) Two normed spaces H; and H, are said to be
isomorphic (or equivalent) if there exists an isomorphism of H, onto H,.

Theorem 4.9. Let H, and H, be isomorphic normed spaces. H, is a Banach
space (Hilbert space) if and only if H, is a Banach space (Hilbert space).

PROOF. Let H; be a Banach space and let U be an isomorphism of H, onto
H,. If (f,) is a Cauchy sequence in H,, then (U ~ ) is a Cauchy sequence
in H;; hence there exists a g € H, such that U ~lfn—>g. With f= Ug € H, we
have f,—f, 1.e., H, is complete. If H, is a Hilbert space, then H, is complete
and since {|U ~Yf|| =|| f|| for all f € H,, the parallelogram identity holds in
H,, i.e., the norm of H, is defined by a scalar product. As U ~! is also an
1somorphism, we can prove analogously the reverse direction. O

Theorem 4.10. Let H be a Hilbert space, and let A be a set, the cardinality of
which equals the (Hilbert space) dimension of H. Then H is isomorphic to
l,(A). In particular, all infinite dimensional separable Hilbert spaces are
isomorphic to l,. Hilbert spaces having the same dimension are isomorphic to
each other.

PROOF. Let {e, : « € A} be an ONB of H. For every f=3 f e € H let Uf
be the function A—C with (Uf)(a)=f,. It is easy to see that U is an
isomorphism of H onto (A). All the other assertions are obvious con-
sequences of this. O
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It is often useful to know that every normed space (pre-Hilbert space)
can be considered as a dense subspace of a Banach space (Hilbert space).
If H is a normed space (pre-Hilbert space), and A is a Banach space
(Hilbert space), then H is called a completion of H provided that H is
isomorphic to a dense subspace of A.

Theorem 4.11. For each normed space (pre-Hilbert space) H there exists a
completion H. Two arbitrary completions are isomorphic.

Proor. We construct a completion A. For this let 3 be the set of all
Cauchy sequences in H. Two Cauchy sequences (f,) and (g,) from J( are
considered equivalent (in symbols (f,)~(g,)), if || f,— &,|—0. This obvi-
ously defines an equivalence relation (since we have (f,)~(f,), from
(f)~(g,) it follows that (g,)~(f,), and (f,)~(g,) and (g,)~(4,) imply
(f)~(h,)). Let A be the set of all equivalence classes. The elements of A
will be denoted by f g, ... . We shall write in particular f [(f)) if (f)
belongs to the equivalence class f and f [f] if f is the equivalence class of
the sequences that converge to f € H (notice that f,—f and (f,)~(g,)
imply g,—f).

With a[(f,)]+ b[(g,)]=[(af, + bg,)] the set A becomes a vector space;
the zero element is 0 =[0]. We show that a norm can be introduced on A
by putting

ILCAD I = Tim £

For this, we have to notice that the sequence (|| f,||) is convergent (cf. the
proposition preceding Example 1 of Section 2.1) and the limit does not
depend on the choice of representatives, since for (f,)~(g,) we have
N AN =11 gll <If, — &,ll—0. The properties of a semi-norm obviously
hold. If ||[(f)]l| =0, then f,—0, i.e., we have {( f,,)}=6; consequently, we
have defined a norm.

If His a pre-Hilbert space, then we define a scalar product by

(D) [(8) ] = lim {f,, g,

This is obviously a semi-scalar product; since it induces the above norm, it
is a scalar product. Therefore H is a normed space or a pre-Hilbert space,
respectively.

Now let [H]=([f]€ A : f € H}. The set [H] is obviously a subspace of
A. The space H is isomorphic to [H], since by Uf=[f] an isomorphism of
H onto [H] is defined.

[H] is dense in A: Let f= [(f)]€ A. For each €>0 there exists an
n(e) €N such that || f, — f,,|| <e for n, m > n(e). Therefore for m > n(e) we
have

1F = [ fu]ll = lim [ f, = foll <€

i.e., f is a contact point of [H].
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It remains to prove that A is complete. Let ( fk) be a Cauchy sequence in
FI.A Since [H] is dense in A, for every n €N there exists a g, € H such that
IIf,—[&,]ll <1/n. Since we have

182 = &nll = li[ 8] — [ 8m]ll
<[ &] =Sl + 11 = £l + 1 = [ 8]l = O

as n, m— oo, the sequence (g,) is a Cauchy sequence. We have
e = [C8 I < e = [ &N+ I &] ~ [ (&) ]l
1 :
<+ lim llg — gl -0

as k— 00; consequently, fk—a[( gl

Now let A and A be two completions of H and let U and U be the
corresponding isomorphisms of H onto the dense subspaces U(H) and
U(H) of A and A, respectively. Then V,= UU! is an isomorphism of
U(H) onto U(H) By Theorem 4.5 V,, can be extended to an element } of

B(H, ). For every f € H there exists a sequence (f.) from U(H) such that
f —f. We have

IVAIl = lim ||V, = lim || Vo £l = lim ||| = || f],

i.e,, V' is an isometry. In order to prove that V' is an isomorphism of H onto
A we have to show that R(V) = H. Let fe A. Then there exists a sequence
(f) from U(H) such that f,—f. If we put f = UU 'n, then (f) is a

Cauchy sequence in A. Therefore there exists an f € A such that f —f.
Then we have

f=limf =lim O0U"Y, = lim Vf, = V.
Thus f € R(V), i.e., A and A are isomorphic. ]

Proposition. Let H, and H, be normed spaces (pre-Hilbert spaces) and let H,
be isomorphic to a dense subspace of H,. If A, and H, are completions of H,
and H,, respectively, then H, and F, are isomorphic.

ProOF. Let U be an 1somorphism of H; onto the dense subspace U(H,) of
H,, and let ¥ be an isomorphism of H, onto the dense subspace V(H,) of
A,. Then VU(H,) is a dense subspace of A,, hence H, is isomorphic to a
dense subspace of H,, i.e., A, is a completion of H, and, consequently, it is

isomorphic to A,. ]
Theorem 4.12. Let H be a pre-Hilbert space, and let T, ..., T, be linear
Junctionals such that D(T))=H and L(T,, ..., T,)N B(H, K)={0}. Then

M= M N(T) = {fEH: Tf=0 for j=1,...,n}
j=1
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is a dense subspace of H. In particular, the kernel of an unbounded functional
is dense.

ProOF. Without loss of generality we may assume that H is a dense
subspace of a Hilbert space (Hy, <., .>). (If A is a completion of H and U
is an isomorphism of H onto a dense subspace of A, then we replace H by
.U(H) and T, by T}U_l; the following proof shows that U(M) is dense in
U(H); consequently M 1s dense in H.)

Since M is surely a subspace, it is enough to show that M is dense in H,
ie., M+ ={0}. Let g& ML. Then for the continuous functional T,: H-
K, T,f=<{g,f> we have MCN(T,). Hence by Theorem 4.1 we have
T, € L(T,, ..., T,). By assumption T, =0; consequently g = 0. O

EXERCISES

4.10. Let H be a pre-Hilbert space with an orthonormal basis {e, : a € A}. Then
,(A) is a completion of H. (In particular, we obtain that /, is a completion of
any infinite dimensional separable pre-Hilbert space; in proving this we do
not need Theorem 4.11).

4.11. Let H be a pre-Hilbert space over K. A mapping 4 : H—K is said to be an
antilinear functional, if for all f, g € H and a, b € K we have A(af + bg) = a* Af
+ b* Ag. The functional A4 is said to be bounded, if there exists a C > 0 such
that ||Af|| < CJ|f|| for all fE H. Let H* be the set of bounded antilinear
functionals on H.

(a) An antilinear functional is continuous if and only if it is bounded.

(b) H* becomes a Banach space with the norm ||4||=sup {|4f| : fE€ H,
Il < 1), ,

(¢) To each g € H there corresponds an 4, € H* defined by 4,f=(f, g).
The mapping E : H>H™*, g A, is isometric.

(d) E(H) is a completion of H.

(¢) We have E(H)=H*.
Hint: Use Theorem 4.5 and 4.8. (This exercise provides a completion for
all pre-Hilbert spaces without reference to Theorem 4.11.)

4.12. (a) Let H, and H, be isomorphic normed spaces. Then H, is separable if and
only if H, is separable. '
(b) A normed space H is separable if and only if one (and then each) of its
completions is separable.
(c) Every infinite dimensional separable pre-Hilbert space is isomorphic to a
dense subspace of /, (cf. also Exercise 4.10).

4.13. Let H, be a normed space, H, a Banach space and H, a completion of H,.
Then B(H,, H,) and B(H,, H,) are isomorphic.

4.14. Let H, and H, be Hilbert spaces. If U is an isomorphism of H, onto H,, then
for every subset M of H, we have UML) =(UM)" .

4.15. Let G CR™ be open and let L, ((G) be as in Exercise 2.6(a). Assume that
Y1, - - . » ¥, : G>C are locally square integrable (i.e., square integrable on
each compact subset of G) and that L(y, ..., {,)N Ly(G)={0}. Then
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M={feL, (G): fa¥(x)f(x)dx=0 for j=1,...,n} is a dense sub-
space of L,(G).

4.16. Let T be a bounded operator from a pre-Hilbert space H, into a Banach
space H,. Then there exists an extension S € B(H,, H,) of T such that
ISI=0T].

Hint: Use Exercise 4.7.

4.17. Let 2,,={x€R™ : |x|=1} be the unit sphere in R” and let C(f,,) be the
space of continuous functions on §,,.
(@) By {f,g>= fof(w)g(w) do,,(w) a scalar product is defined on C(2,,)
(here do,,(w) denotes the surface element of {2,,). Let this pre-Hilbert
space be denoted by C,(2,,).
(b) Let the measure p,, (cf. Appendix A) be defined for every interval J C R™
by p,.(J)=the surface of that part of {,, which lies in J. The space
L,(R™, p,,) is a completion of C,({,); we shall denote it simply by

(c) Ly(R,,) is separable.

(d) The space of infinitely many times continuously differentiable functions
(i.e., the set of the restrictions of infinitely many times continuously
differentiable functions defined on R™) is dense in L,(2,).

4.4 Adjoint operator

Assume that H, and H, are Hilbert spaces, T is an operator from H, into
H,, and S is an operator from H, into H,. The operator § is called a formal
adjoint of T if we have

(g, Tf> ={(Sg, f> forall feD(T), gecD(S).

T is then a formal adjoint of S, also. We say that § and T are formal
adjoints of each other. The operator S, such that D(S,)= {0} is a formal
adjoint of every operator from H, into H,.

If S is a formal adjoint of 7, then for every g& D(S) the linear
functional L, with

D(L) =D(T), Lf = <, Tf>
is continuous, since for all f € D(L,) we have

Lf=<gTf>=<Sg [

1e., L, is the restriction, to D(T), of the continuous functional T, induced
by Sg.

If D(T) is dense, and the functional Lg 1S continuous, then by Theorem
4.5 this functional can be extended to H,=D(T) in a unique way, i.e.,
there exists an element s, € H, uniquely determined by g and T via

(g Tfy = Lf = <h,f)> forall feD(T).
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If S is a formal adjoint operator of T, and g & D(S), then we surely have
Sg = h,. Therefore in this case every formally adjoint operator of T is a
restriction of the adjoint operator T* to be defined below.

Let T be a densely defined operator from H, into H,, and let

D* = { g €H, : the functional fr>{g, Tf) is continuous on D(T)}
= { g €EH, : there exists an &, € H, such that (h, f> =(g, Tf)
for all f € D(T)}.

The element h, is uniquely determined: If Chy, f) =g, Tf ) = (hy, f) for all
f€ D(T), then h, — h,€ D(T)* = {0}, consequently, h, = h,.

D* is a subspace of H, and the correspondence D*—H,, g—>h, is a linear
transformation, since for g,, g, € D* and a, b € K we obviously have

h

ag1+bg2

Thus by D(T*)= D*, T*g= h, for g € D(T*) a linear operator T* from H,
into H, is defined. The operator T* is a formal adjoint of T and is an
extension of all formal adjoints of T.

= ahgl + bhgz.

Theorem 4.13. Let T be a densely defined operator from H, into H,.
(a) If T* is also densely defined, then T** is an extension of T.
(b) We have N(T*)= R(T)™*.

PROOF.

(a) As T and T* are formal adjoints of each other, T is a restriction of the
adjoint operator T** of T*.

(b) We have g€ N(T*) if and only if g& D(T*) and T*g=0 hold. Since
D(T) is dense, this is equivalent to the relation

(T}, gy = (J, T*g» = 0 forall feD(T).
This holds if and only if g € R(T)™*. 0

Theorem 4.14. Let T be a densely defined operator from H, into H,.

(a) T is bounded if and only if T* € B(H,, H,).

(b) If T is bounded, then | T| = | T*||.

(c) If T is bounded, then T** is the (by Theorem 4.5 uniquely determined)
continuous extension of T to the whole space H,. For T € B(H,, H,) we
have T**=T.

PROOF.
(a) and (b): Let T be bounded. Then for all g € H, and f € D(T) we have

[Lgfl = K& T < gl I TN 1A,

1e., L, is continuous for all g € H,. Therefore D(T*)= H,.
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By Theorem 4.3(b) we have
IT*|| = sup {KT*g, f>| : fED(T), g€ Hy, || fll=1, || gll =1}
=sup {[(g, Tf)| : fED(T), gEH, || fll=1 Il gl =1} = | T].

If T* € B(H,, H,), then T** belongs to B(H,, H,). Hence the restriction
T of T** is also bounded.

(c) By Theorem 4.13 (a) we have T ¢ T**. By part (a) we have T** €&
B(H,, H;). As T is densely defined and continuous, the assertion
follows from Theorem 4.5.

ExAMPLE 1. Let M, and M, be measurable subsets of R” and R”, respec-
tively. Let K denote the Hilbert-Schmidt operator from L,(M,) into L,(M,),
induced by k£ € Ly(M, X M,). (cf. Section 4.1, Example 3):

(KN(x) = [ k(6 )f(2) dy for | € Ly(My)

For all f € L,(M,) and g € L,(M,) the function g(x)k(x, y)f(y) is integrable
on M, X M,. Therefore by Fubini’s theorem we have

(g Kf) = fM g(X)*{fM k(x, ) f(») dy] dx

=f f(y)[f k(x,y)*g(x) dX}* dy = (Hg, [,
M, M,
where H is the Hilbert-Schmidt operator induced by the kernel A(y, x)=
k(x, y)*. If we define the adjoint kernel k* of the kernel k by
k*(y, x) = k(x,)*,

then K* is the operator induced by k*.

ExAMPLE 2. Let T be a continuous linear functional on a Hilbert space H,
1.e., a continuous operator from H into K. We want to compute 7*. There
exists a uniquely determined g € H such that

Tf = {g,f> forall f€H

Hence for all z €K and all f € H we have

2*Tf = {28, f),

1e., T*z=zg for all z€ K.

ExampLE 3. This example shows that D(7*)= {0} may be true. To prove
this, for every Kk €N let the sequence (n; ;),cn Of positive integers be
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chosen in such a way that
{m ,:1eEN}N{n,:1EN} =T for j =k,
U {n,:1€EN} =N
keN

(we leave the construction of such sequences to the reader). With these
sequences let us define the operator 7 on /, by

D(T) = 12,0,
Tf: ( z f”k,l) = ( z f"l,l’ z f"z,l’ o )
I=1 k I=1 /=1

Let us observe that here all the sums occurring are finite. Moreover, we
have Tf € [, . Therefore the operator T is well-defined.

We show that g € D(T*) implies g =0. Let g=(g,) € D(T*) and h=(h,)
= T*g. Then for all f€ D(T)=1, , we have

% EIgz‘fnk,, =g Tf) =<{T*g, f> = ;h:‘fn = % Z[h,?,i_, -

enN

(here one should notice that all sums are finite). If we choose f equal to the
unit vector e, (thus f, =1and f, =0 for n5n ), then it follows that

h, = & forall TeNkeN.

As h € l,, this i1s only possible if 2= 0. From this it follows that g=0.

Let T be an operator from H, into H,. The graph of T is the subset
G(T) = {(£, If) : feD(T)}

of H, X H,, where H; X H, can be considered as a Hilbert space in the
sense of Section 3.1: H, X Hy= H,® H,.

Theorem 4.15. A subset G of H, X H, is the graph of an operator from H,
into H, if and only if G is a subspace possessing the following property:
(0, g) € G implies g =0. Each subspace of a graph is a graph.

ProoOE. If T is an operator from H, into H,, then G(T) is obviously a
subspace, as for (f, g)€ G(T), a;, €K (i=1, 2) we have

a,(fi> &) + ay(fy 8) = a\(f), T)) + ay)(fy, TSy)
= (a,fi+ a,f,, T(a, f, + a, f,)) € G(T).

If (0, g) € G(T), then it follows that g=T0=0.

Let G now be a subspace of H, X H, having the above mentioned
property. We construct an operator 7T for which G = G(T) holds. For this,
let

D(T) = { f € H,: there exists a g € H, such that (f, g) €EG}.
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For every f € D(T) there exists exactly one g € H, such that (f, g) € G, as
(f, g) € G and (f, g,) € G imply (0, g,— g,) € G (by G being a subspace),
consequently, g, — g, = 0. Therefore we can define a mapping T from D(T)
into H, by

f =g for (f g) €G.

T is linear: If f,, f, € D(T) and a,, a, €EIK, then we have (f, Tf) € G for
i=1, 2. Hence (as G is a subspace) (a,f,+ a,f,, a,Tf, + a,Tf,) € G. By the
definition of T we have

T(a, fi+ a, f,) = a,Tf, + a,Tf,.

By construction, we also have G= G(T). The last assertion can be ob-
tained from this immediately. O

In the sequel we shall use the mappings
U: H X Hy,—>H, X H, U(f, f) = (fp, = 1)
V. Hl X H2 —>H2 X H], V(f]s fz) = (f2a fl)

U and V are obviously isomorphisms of H,® H, onto H,® H,. The inverse
operators U~ ! and V! are given by

U™': Hy X H »H X Hy, U Y (fy f)) = (—fi. f),
V=l Hy X Hy —Hy X Hy, VN ) = (fu f)-

Theorem 4.16. Let T be a densely defined operator from H, into H,. Then we
have

G(T*) = U(G(T)") = (UG(T))"
(here the symbol L1 has to be understood in the sense of H,® H,, respectively
H,® H,).
PrOOF. By the definition of T* we have
G(T*) = {(8 h) EH, X H, : (g, Tf ), =<(h, ), forall feD(T))
= {(g h) EH, X H, : (g, h), (Tf, —f)>=0 forall (f, Tf)€G(T)}
= (UG(T))" = U(G(T)").

The last equality follows simply from the definition of U (cf. Exercise

4.14). O

Theorem 4.17. Let T be a densely defined injective operator from H, into H,.
(a) We have G(T )=V G(T).
(b) If R(T) is dense, then T* is also injective, and we have T* ™ '= T ~'*,

PrOOF. Part (a) is obvious.
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(b) By Theorem 4.13(b) we have N(T*)= R(T)* = {0}, i.e., T* is injective.
As G(T Y= VG(T), it follows (cf. Exercise 4.14) that

G(T ™) =UNG(T ") =U"WG(T)")
=V IW(G(T)") = V'G(T*) =G(T*™Y). O

An operator T on a Hilbert space H is said to be Hermitian, if it is a
formal adjoint of itself, i.e., if we have

(Tf, g) =<f, Tgy forall f,ge& D(T).

An operator T on H is symmetric (cf. Section 4.2) if it is Hermitian and
densely defined. Since a densely defined operator T is Hermitian if and
only if it is a restriction of T*, we have: an operator T is symmetric if and
only if T is densely defined and T C T*. An operator T on H is said to be
self-adjoint, if T is densely defined and T= T*,

REMARK. For operators from B(H) the notions of Hermitian, symmetric,
and self-adjoint are equivalent.

Theorem 4.18. An operator T on a complex Hilbert space H is Hermitian if
and only if the quadratic form q(f)= {f, Tf > defined on D(T) is real.

Proor. By definition, 7 is Hermitian if and only if the sesquilinear form
s(f, 8)=<{f, Tg) is Hermitian on D(T). The assertion follows from this by
Theorem 1.3(a). M

A characterization of symmetric and self-adjoint operators may be
obtained immediately from Theorem 4.16; where U is defined by U(f, g)
=(g, —f)on HOH.

Proposition. Let T be a densely defined operator on the Hilbert space H.
(a) T is symmetric if and only if

G(T) c UG(T)") or UG(T) cG(T)".
(b) T is self-adjoint if and only if

G(T) = U(G(T)") or UG(T)=G(T)",

Le.,

G(T)LUG(T) and G(T)® UG(T) =HDH.

Proposition. If T and S are densely defined operators from H, into H, and
T C S, then we have S* C T*.

Theorem 4.19. Let T, and T, be densely defined operators from H, into H,
and from H, into Hs, respectively.
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(a) If T, T, is densely defined, then we have T¥T5 C (T,T,)*.
(b) If T, € B(H,, H;), then we have (T,T,)* =T} T}.

PROOF.

(a) We have to show that the operators TyTy and T,7, are formal
adjoints of each other. Let f€ D(TFT5¥) and g€ D(T,T,). Then f€
D(T%), T5f € D(T¥), g € D(T,), and T, g € D(T,). Consequently, from
the definition of the adjoint operator it follows that

(TYT3f, 8> =<T3f, T8> = {/, T, T\ 8.

(b) Because of part (a) we only have to prove that D((T,T,)*) C D(T* T%).
Let f € D((T,T))*). As T* € B(H;, H,), for all g€ D(T,T,)= D(T,), we
have :

ATLT)*, 8> = /. b1 8) = <13/, T\ g>.

By the definition of the adjoint operator it follows from this that
TFf € D(TY), i.e., f € D(TYT). M

Theorem 4.20. Let S and T be operators from H, into H,.

(@) If T is densely defined, then we have (aT)* = a*T* for all a € K such
that a +#0.

(b) If T+ S is densely defined, then (T + S)* D T* + S§*.

(c) If S € B(H,, H,) and T is densely defined, then we have (T+ S)*= T*
+ S*.

PROOF.

(a) is evident (it follows from Theorem 4.19).

(b) Let fED(T* + S*)=D(T*)N D(S*). Then for all g€ D(T+ S)=D(T)
N D(S) we have by the definition of the adjoint operator that

(T*+5*)f, g) =<T*f,g) +<{5*f, 8> ={f, Tg) +<{f, Sg»
= S (T+8)g),

ie, fED((T+ S)*) and (T+ S)*f=T*f+ S*f.
(c) Because of part (b) we only have to prove that D((7+ S)*) c D(T* +
S*)=D(T*). Let feD((T+ S)*). Then for all g€ D(T+ S)=D(T)

we have
((T+S)*—=S*]f, 8> =<{f, (T+S)g)> — </, Sg> =</, Tg).
From this it follows that f € D(T*). ]

Theorem 4.21. Let T be self-adjoint and injective. Then T~ is self-adjoint,
100.

PrOOF. R(T) is dense, since we have {0} = N(T)= N(T*)= R(T)". Thus
the assertion follows from Theorem 4.17(b). O
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EXERCISES

4.18. Let S and T be densely defined operators from H, into H,, and from H, into
H,, respectively. Assume that 7S is densely defined, S is injective and
S ~! & B(H,, H,). Then we have (TS)* = S*T*.
Hint: By Theorem 4.19(a) we only have to show that D((7S)*) c D(S*T*)
holds; for all f € D((TS)*) and g€ D(TS) =S ~'D(T) we have {f, TSg> =
(S THXTS)Y, Sg>.

4.19. Let T € B(H,, H,).
(a) We have T*T € B(H,), TT* € B(H,) and ||T*T||=| TT*||=||T|>
(b) T*T and TT* are self-adjoint.

4.5 The theorem of Banach-Steinhaus,
strong and weak convergence

We first prove the theorem of Banach-Stein/zaus, which is also known as
the uniform boundedness principle.

Theorem 4.22. Let H, and H, be Banach spaces, and let M be a subset of
B(H,, H,). If M is pointwise bounded (i.e., for each f &€ H, there exists a
C(f) 2 0 such that ||Tf|| < C(f) for all T €M), then M is bounded (i.e.,
there exists a C > 0 such that ||T|| < C for all T € M).

PROOF. /. step. It is enough to show that there exist an f, € H;, a p >0, and
a C’ > 0 such that || Tf|| < C’ for all f € K(f,, p) and for all T € M. Indeed,
if f,, p, C’ have these properties, then for all g € K(0, p) and for all T €M
we have

ITgll = 1T(fo+g=flll < IT(fo+&)ll +IThll < C"+ C(f) = C”,
since fy + g € K(f,, p). Consequently, for all g € K(0, 1) and T € M we have

ITgl < p~'C" = C,

e, | T||<Cforall TEM.

2. step. What remains is to prove the existence of f,, p, and C’ with the
above properties. We assume that no such elements exist, i.e., for each
foEH, and for each p>0 the set {||Tf||: T €M, fE€ K(fy p)} is un-
bounded. In particular, the set {||Tf]| : T €M, f € K(0, 1)} is unbounded.
Therefore there exist an f, € K(0, 1) and a T, € M such that || T, f,|| > 1.
Since T, is continuous, there exists a p,, 0<p, <2~ ! such that

K(fi 1) CK(0,1) and ||T,f|| > 1 forall fe&K(f,p).

Since {||Tf|| : TEM, f€K(f;, p)} is unbounded, there exist an f, €
K(fi, 0;) and a T, € M such that |7, f,|| >2. As T, is continuous, there
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exists a p,, 0<p, <272 such that

K(f p)) CK(fy, p)) and [ Tof| >2 forall fER(f, py).

In this way, by induction we obtain a sequence (f,) from H,, (T,)
from M, and (p,) from (0, 1) such thatK(f,., p,+ 1) CK(f,s 0,), 0,<27",
and || T,f|| >n for all f € K(f,, p,). In particular, we have

”f;l ..fm” < pno for n,m > Ry.

Since p, <277, it follows from this that (f,) is a Cauchy sequence. Thus
there exists an f&€ H, such that f,—f. Since for n>m we have f €
K(f,, p,,), it follows that f € K(f,,, p,,) for all m € N. Consequently || 7,,f||
>m is true for m € N, which contradicts || T,,.f|| < C(f). O

Let H, and H, be normed spaces. A sequence (T, from B(H;, H,) is said
to be strongly convergent to T € B(H,, H,), if for all f€H, we have
Tf=1lim T, f. For this we shall write T=s—lim T, or T, — T. The operator
T is called the strong limit of the sequence (7). It is obvious that every
sequence (T,,) in B(H,, H,) has at most one strong limit. A sequence (T)
from B(H,, H,) is said to be a strong Cauchy sequence, if for every f € H,
the sequence (T,f) is a Cauchy sequence in H, Every strongly
convergent sequence 1s a strong Cauchy sequence.

Theorem 4.23. Let H, and H, be normed spaces.

(a) If (T,) is a strongly convergent sequence in B(H,, H,) and T=s—
lim T, then ||T|| < hm inf || T,||.

(b) If the sequence (T,) from B(H,, H,) is bounded and (T,g) is a Cauchy
sequence for every g in a dense subset M of H,, then (T)) is a strong
Cauchy sequence.

(¢) If H, is a Banach space, then every strong Cauchy sequence in B(H,, H,)
is bounded.

(d) If H, and H, are Banach spaces and (T)) is a strong Cauchy sequence in
B(H,, H,), then there exists a T € B(H,, H,) such that T, 5T

PROOF. :
(@) Let C=hm inf ||T,||. Then there exists a subsequence (7, ) of (T,)
such that || T, ||—C as k— 0. Hence for all f € H, we have

ITf|| = lim |7, fl] < lim [T, || |/l = CIf],

e, ||T| <C.

(b) Let f € H;, € >0. We have to show that there exists an ny € N such that
\T.f— T,f| <e for all m, n >n, As M is dense, there exists a g€ M
such that || f—g|| <e¢/3C (with C=sup {||7,|| : nEN}). If we now
choose n; in such a way that ||T,g — 7,,g| <¢/3 for all n, m > n;, then
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we have

IT.f = TS < I TSI +IT,g — T8l + I T,.(g = f)ll
<e for n,m > n,

(c) For every f € H, the sequence (7,f) is a Cauchy sequence and thus it
is bounded. Consequently, by Theorem 4.22 there exists a C such that
| T,|| <C for all nEN.

(d) For every f € H, the sequence (7,f) is a Cauchy sequence, so it is
convergent in H,. Let us define 7 by Tf=1im T,f. Then D(T)=H,.
The operator T is linear, since for all f, g€ H, and a, b €K we have

T(af+ bg) = lim T, (af + bg) = lim(aT, f+ bT,g) = aTf + bTg.

By part (c) there exists a C > 0 such that ||7,|| <C for all nE€N.
Consequently, we have

ITf| = lim [ T,f]| < C|lfII

i.e., T € B(H,, H,). By construction, we obviously have 7, 5T O

ExampLE 1. Let the operators T, € B(/,) be defined by
T(fifphfs o) = (fn+l’fn+2’ cee )

Then for all f € [, we obviously have T,f—0, i.e., T, 0. Forall fe [, we
have || T, f|| </ f|l, consequently || 7, || < 1. Moreover, for ;= (§; ,) we have
T.e;,.,=e,;. Therefore |T,||=1. From this it follows that strong conver-

JJ
gence does not in general imply convergence in the norm of B(H,, H,).

Let H be a pre-Hilbert space. A sequence (f,) from H is said to converge
weakly to f € H if for all g € H we have {f,, g>—>{/f, g>. For this we write
f=w—limf, or f,>f The element f is called the weak limit of the
sequence ( f,). Every sequence has at most one weak limit. A sequence (f,)
from H is called a weak Cauchy sequence, if for every g € H the sequence
({f,, g>) is a Cauchy sequence in K. Every weakly convergent sequence is
a woak Cauchy sequence.

Theorem 4.24. Let H be a pre-Hilbert space.

(a) If (f,) is a weakly convergent sequence in H, and f=w —lim f,, then we
have || f|| < lim inf || f,||.

(b) If the sequence (f,) is bounded in H and ({f,, g)) is a Cauchy sequence
for all g from a dense subset M of H, then (f)) is a weak Cauchy
sequence.

(c) If H is a Hilbert space, then every weak Cauchy sequence is bounded in
H.

(d) If H is a Hilbert space and (f,) is a weak Cauchy sequence in H, then
there exists an f € H such that f, 5 f.
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The proof immediately follows from Theorem 4.23, if we notice that the
weak convergence of (f) is equivalent to the strong convergence of the
sequence (T ) of the linear functionals induced by f,. In part (d) we have
to use Riesz’ theorem (Theorem 4.8). The details are left to the reader.

Theorem 4.25. Let H be a Hilbert space. Every bounded sequence (f,) in H
contains a weakly convergent subsequence ( f,,k).

PrOOF. Let M=L{f : nEN}. Then M® M* is dense in H. For every
k €N the sequence ({f,, f,>)n,en 1S bounded. Consequently, by induction
we can find, for all jEN, a subsequence (f ),eN of (f,) such that

( - 1),eN is a subsequence of (f ),eN and (<f,, ,f>),eN is convergent.
With the diagonal sequence (f,)= ( £, ) the sequence ({f,, f>),en is then
convergent for all j €N, Since for all fE ML we have ¢ fn, f> =0 for all
| €N, the sequence ( S f>) is convergent for all f from the dense
subspace MO ML, Therefore by Theorem 4.24(b) and (d) (f,) is weakly
convergent. Ol

ExaMpLE 2. Every orthonormal sequence (f,) weakly converges to zero.
This follows from the Bessel inequality || f]|>> Z|<f,, f>|>. In particular,
the sequence of unit vectors (e =(d,,)) in [, tends to zero weakly. This
example also shows that weak convergence does not imply strong conver-
gence in general.

EXAMPLE 3. For every f=3%, fe; €, let the sequence (/™) be defined by

f(”)— =1 f €4 e Then (%) converges weakly to zero, since for all g =
Zgje El we have
2 o0 2 o0
ISP 80 = 2 f8aal <IfIP 2 lgP—>0
Jj=1 Jj=n+1
as n—o0.

ExAMPLE 4. In the pre-Hilbert space /, , the sequence (ke,) (with ¢, =(8,,))
weakly converges to 0. However, it is unbounded.

Let H, and H, be pre-Hilbert spaces. A sequence (7)) from B(H,, H,) is
said to converge to T € B(H,, H,) weakly, if for all f & H, the sequence
(T,f) in H, weakly converges to T, ie., (T,f, g>—{TJ, g> for all f € H,
and g € H,. In this case we shall write T=w —~1lim T, or 7, T ,andcall T
the weak limit of the sequence (7). A sequence (7, ) from B(H,, H,) is said
to be a weak Cauchy sequence if (T, f) is a weak Cauchy sequence in H, for
each f € H,.

Theorem 4.26. Let H, and H, be pre- Hilbert spaces.
(@) If (T,) is a weakly convergent sequence in B(H,, H,) and
T=w-—lim T,, then we have ||T|| <lim inf || T,||.
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(b) If the sequence (T,) from B(H,, H,) is bounded and ({T,f, g)) is a
Cauchy sequence for every f € M, and every g & M,, where M, and M,
are dense subsets of Hy and H,, respectively, then (T)) is a weak Cauchy
sequence.

(¢) If H, and H, are Hilbert spaces, then every weak Cauchy sequence (T,)
from B(H,, H,) is bounded.

(d) If H, and H, are Hilbert spaces, and (T,) is a weak Cauchy sequence in
B(H,, H,), then there exists a T € B(H,, Hy) such that T, > T.

PROOF.
(a) Let C=lim inf || 7,|| and let (7, ) be a subsequence such that ||7,, ||—
C. Then for all f € H; and g € H, we have

KTf, g>| = tim KT, f, g>| < Lim |7, I 11l I gll = CUSAIl N gll-

The assertion follows from this by Theorem 4.3.
(b) We have to prove that for arbitrary f € H,, gE H,, and € >0 there
exists an n, such that

(T, —T,)f, g>| <e for n,m > n,

Let C=1+(1+| f]|+] gl)sup {||T,]| : n €NJ}. Since the sets M; are
dense in H; (j =1, 2), there exist f, € M, and g, € M, such that

€ €
— < == - < == < .
If = foll < 555118 = &l < 55, Ll < HIfIF+1

If we choose ny €N in such a way that for n, m >ny we have |{(7,, —
T,)fo 80>l <€/5, then for n, m > ny it follows that

|<(Tn - Tm)f’ g>l < |<Tn(f'—f0)3 g>|
+ KT foo 8= 800 |+ (T, — T,) for 80|
+ KT o 80— 80|+ KT (fo—f)s 8]

< €.

(¢c) For every f € H; the sequence (7,f) is a weak Cauchy sequence in H,.
Since H, is a Hilbert space, the sequence (7, f) is bounded by Theorem
4.24(c). The boundedness of the sequence (]| 7,]||) follows from this via
Theorem 4.22, as H, is also a Hilbert space.

(d) For every f €& H, the sequence (7,f) 1s a weak Cauchy sequence,
therefore by Theorem 4.24(d) it is weakly convergent in H,. We define
T by Tf=w—lim T,f for all f € H,. We can prove the linearity of T, as
in the proof of Theorem 4.23(d). By part (c) there exists a C > 0 such
that || 7,,J| < C for all n € N. It follows that

KT, g>| = lim KT,.f, g>| < ClifIl | gll forall f&H,g€H,

Consequently 7T is bounded. By construction, we obviously have
T,5T. O
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Proposition.
s S w
@) 7,> T implies T,—>T; T,— T implies T, —> T.
(b) If H, and H, are Hilbert spaces, then T, S Tis equivalent to T} 5 T,

ExAMPLE 5. Let us consider the operators 7, from Example 1. The adjoint
operators T* are obviously defined by

0 [~e]
T,T( le}ej) = zlj;en +; forall le;.ej € L,.
j= j= j=

By Example 3 we have T} 0. However, we do not have T,’,"—S>O.
Therefore, strong convergence does not imply the strong convergence of
the adjoint operators.

Theorem 4.27. Let H,, H, be Hilbert spaces, and let T be an operator from

H, into H, such that D(T) = H,. Then the following assertions are equivalent:
(1) T is bounded (i.e., f,—f implies Tf — Tf),

(1) f, 5 f implies T¥, 5 Tf,

(iii) f,—f implies Tf,— TF.

PROOF. (1) implies (11): If f, 5 £, then for every g € H, (notice that 7* exists

and T* € B(H,, H,)) we have

(& Ty =<T*g f,> > <T*g, f) = (& Tf),
ie, Tf, > Tf.

(ii) implies (iii): This is obvious, as f,—f implies f, - f.

(i11) implies (i): Let us assume that T is not bounded, i.e. there exists a
sequence (f,) from H, such that | f || <1 and || Tf,|| >n% Then we have
(1/n) f,—0. Therefore from (iii) it follows that (1/»)TY, 0. By Theorem
4.24(c) the sequence ((1/n)Tf,) is thus bounded. This contradicts the fact
that

1 1
- = — > n.
I—ThHI = I T > 7 O

Theorem 4.28. Let H be a Hilbert space and let (T,) be a bounded sequence
of symmetric operators from B(H).

(@) If T, AT Jor some T € B(H), then T is also symmetric.

(b) If the sequence ({f, T .f>) is non- -decreasing for every f € H, then there

exists a T € B(H) such that T, s T. The same holds true if the sequence
({f, T.f>) is non-increasing for every f € H.

PROOF.
(a) For all f, g€ H we have

(f, Tg) =lim (f, T,g) = limT,f, g> = <TIf, &>.

Therefore, T is symmetric.
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The sequence ({f, T,f>) is non-decreasing and bounded for every

f € H, consequently it is convergent. If C=2 sup {||T,]| : n € N}, then

T, —T,l <C for all n, m €N. The Schwarz inequality applied to the
non-negative sesquilinear form s(g, f)=<g,(T,—T,)f> shows that
for all f € H we have

(T, — T)fll = (T, — T,)f, (T,— T,) f>/* = {s((T, - Tm)f,f)}l/z
{S((T,, - Tm)f, (Tn—— Tm)f)s(f,f)}l/4
(T~ T (T~ TS (T, - T}

(T, — TN NT,— T 14 S (T, = T,) £
C¥4 fIVH (T, - T,)fOV* -0 as n,m— .

AN

N

So (T,f) is a Cauchy sequence for every f € H, consequently (7)) is

strongly convergent. O
EXERCISES
4.20. Let H,, H, and H, be normed spaces, and let S,, SEB(H,, H;), T,, T €

4.21.

4.22.

4.23.

4.24.

B(H,, Hy), S, — S, T, T.
(a) If the sequence (S,) is bounded, then S, 7, 5 ST.
(b) If H, is a Banach space, then S, 7T, 2 ST.

(a) Let H be a Hilbert space. If f,,lf in H and || f|| > lim sup || f,||, then

Ja—f.
Hint: Treat || f, — f|[>
(b) Let H, and H, be Hilbert spaces, and let 7, and 7 be isometries from H,

into H, such that T, ” T. Then we have T, 5T

Let H,, H, and H; be Hilbert spaces, and assume S,, S € B(H,, H3), T,, T €
B(H,, Hy).
@ S, —>S T, —>T1mplyS T, 5 ST.
®) S, —>S T, % T do not imply S,,T,,—>ST.
Hint: Let Hl H,=Hy=1, T (Zfe)=2Zfe€n S,=T,;. Then we have
S, —>0, T, —>0, S, T,—1.
() S,—S, T, T imply S, T, > ST.

Let H, and H, be Hilbert spaces, and take A4,, 4, from B(H,, H,) and B
w 3 N
from B(H,, H,). Then 4, — A, A} — B imply B = A*, therefore that 4} — 4*.

(a) If H is a finite dimensional Hilbert space, then f,,l f is equivalent to
Ja— /.

(b) If H, and H, are Hilbert spaces, and H, is finite dimensional, then for
T,, T from B(H,, H,) the statements T, 5T and T, 5T are equivalent;
this holds true in particular for linear functionals on a Hilbert space.

(c) If H, and H, are fmlte dimensional, then for 7,, T from B(H,, H,) the
statements 7, 5T, T, 5 T, T,— T are equivalent.
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4.25. Let H be a Hilbert space.
(a) If M is a closed subspace of H and (f,) is a sequence in M such that

£, 55 f, then we have f € M (we say that M is weakly closed).

(b) If (f,) is a sequence in H such that f, > f, then there exists a subsequence
(/) of (f,) such that (lém)E’,?:,f,,k—J as m—oo.
Hint: Treat the case f, -0 first and choose the subsequence (f, ) such
that for k <j we have [{f,, f, | <j L

(c) A convex subset M of H is closed if and only if it is weakly closed.

4.26. Let H,, H, be Hilbert spaces and let H, be separable. If (7,) is a bounded
sequence from B(H,, H,), then there exists a weakly convergent subsequence

(T5,)-

4.27. Let H be a complex Hilbert space and assume that (7,,) is a sequence in B(H)
such that ({f, T,.f>) is bounded for every f € H. Then the sequence (7)) is
bounded in B(H). (For symmetric operators 7,, this holds also in real Hilbert
spaces.)

4.28. Let H; and H, be Hilbert spaces. Assume that (7)) is a bounded sequence
from B(H,, H,), T € B(H,, H,), and M, and M, are dense subsets of H, and
H,, respectively. If T, f— Tf for all f € M, (respectively, (g, T,.f>—{g, Tf)
for all f€ M, and g € M,), then it follows that 7, 5T (respectively 7, 5 7).

4.6 Orthogonal projections, isometric and unitary
operators

Let H be a Hilbert space and let M be a closed subspace of H. By Theorem
3.2 every f€ H can be uniquely represented in the form f=g+ A with
g€ Mand he M+; g is called the orthogonal projection of f onto M. If we
define the mapping P,, by D(P,,)=H and P,,f=g, then P,, is a linear
operator on H such that D(P,,)= H, since for fy=g,+ h, and f,=g,+ h,
with g€ M and i, € M+ we have af, + bf, =(ag, + bg,) + (ah, + bh,) with
ag, + bg, € M, ah, + bh, € M+, therefore P,(af, + bf,) = ag, + bg, = aPf,
+ bP,,f,. The operator P,, is called the orthogonal projection onto M.

Because || f|2= | gl2+ [|A]]%, we have [[Pyf|l =l gl <|If] for all fEH,
ie., we have ||P,| <1. If M={0}, then it is obvious that P, =0. If
M= {0}, and f € M, f#0, then P,,f= f, hence || Pl =1. As P,f= f for all
fEM, it follows that P =P, P, =P,, ie., P, is idempotent. We have
P, f €M for all f€ H and P,,f=f for all f € M, therefore R(P,)=M. As
P, f=0if and only if f € M+, we see that N(P,,)= M-. An operator P on
H is called an orthogonal projection if there exists a closed subspace M such
that P= P,,.

Theorem 4.29. For an operator P € B(H) the following statements are
equivalent.
(1) P is an orthogonal projection,
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(11) I — P is an orthogonal projection,

(iii) P is idempotent and R(P)= N(P)*,

(iv) P is idempotent and self-adjoint.

We have R(P)= N(I— P) and N(P)= R(I — P).

PROOF. (i) and (ii)) are equivalent: From the definition of orthogonal
projections it follows immediately that P is the orthogonal projection onto
M if and only if 7 — P is the orthogonal projection onto M. From this it
also follows that R(P)=M=M=11=N{I—- P), N(P)=M~* =R(I— P).

(1) and (iii) are equivalent: Using the above reasoning we only have to
show that (iii) implies (i). As R(P)= N(P)*, the range R(P) is a closed
subspace. For all g € R(P) we have Pg =g, as P is idempotent. If we write
f EH in the form f= g+ h, where g € R(P) and h € R(P)* = N(P), then
we have Pf= Pg+ Ph=g, ie., P is the orthogonal projection onto R(P).

(iv) follows from (1): P is idempotent, as (iii) follows from (i). For all
fi=g +hy, f,=g,+ h, with g, € R(P), i, € R(P)* we have

Pf,fo) =<8 8+ hy) ={8,8)> =<8 *+h,8
= <f1, Pf2>,

i.e., P is self-adjoint.

(iii) follows from (iv): We only have to prove that R(P)=N(P)*. If
f€ R(P), f= Pg, then (I — P)f=0, consequently fe N(I— P). If f&€ N(I —
P), then f— Pf=0, consequently f € R(P). Therefore we have R(P)= N(I
— P) and thus R(P) is closed. From this it follows that R(P)= R(P)*+
= N(P*)1t =N(P)" . ]

Theorem 4.30. Let M and N be closed subspaces of a Hilbert space H, and let

P,, and P, be the orthogonal projections onto M and N, respectively .

(a) P= P, P, is an orthogonal projection if and only if PP, = P\ P,, holds;
then we have P=P,, . We have ML N if and only if PP, =0 (or
PP, =0).

(b) Q= P,,+ P, is an orthogonal projection if and only if ML N, then we
have Q = Py aon-

(¢) R=P,,— P, is an orthogonal projection if and only if N C M; we then
have R= Py o \.

PROOF.

(a) If P= P, P, is an orthogonal projection, then P is self-adjoint. Conse-
quently, P,,P, = P=P*= (P, P\)*=P}Py, = P\P,. Let P, P,=
P,P,, hold. Then it follows that P?=(P,,P\)*= P, PP, Py= P.P}
= Py,Py =P and P*=(P,P\)*=(P\P,)* = PP} =P,P,=P.
Therefore P is an orthogonal projection by Theorem 4.29. Since
P=P,Py=P,P,, we have R(P)CR(P,)NR(Py)=MnNN. On the
other hand, if f € M N N, then we have Pf= P,,P,f= P,,f=f, therefore
M N N c R(P). Consequently, M N N= R(P). It is obvious that PP,
=0 if and only if g€ R(P,,)" = M* holds for all g€ R(P,)= N, i.e., if
N _L M. The other assertion follows similarly.
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(b) If OQ=Py+ Py is an orthogonal projection, then | f|>> ||Qf|*=
(O[> =XPuf, > +<Puf, ) = | PufI? + | PfI2. For f=Pg it
follows that || Pygll® > || Pygll*+ || PyPygl®. Therefore P,P,g=0 for
all g€ H, ie., PyPy,=0. It follows analogously that P,,P, =0. Conse-
quently, by part (a), ML N holds. We obviously have R(Q) c R(P,,) +
R(Py)=M®ON. Conversely, if f=g+hEMDN with geM, hEN,
then Of= Qg+ Qh= P,g+ Pyh=g+ h=f. Therefore R(Q)=M® N.
If ML N, then by part (a), we have P, Py = P\P,, =0, consequently
Q?=(Py+ Py)*= Py+ Py =P, + Py=Q. As the operators P,, and
Py, are self-adjoint, @ is also self-adjoint, consequently it is an orthogo-
nal projection.

(c) If R=P,, — P, is the orthogonal projection onto the subspace L, then,
because of the equality P,,= P, + P,, by part (b) we have L L N and
M=L® N> N. Therefore L=MO N, i.e, R is the orthogonal projec-
tion onto M © N. Conversely, if N CM and L= MO N, then by part (b)
we have P, =P, + P,, hence R=P,,—P,=P, is an orthogonal
projection. O

For two symmetric operators A, B € B(H) we write 4 < B (or B > A) if
for all f€ H we have (Af, f) <<{Bf, f> (by Theorem 4.18 {Af, f> and
(Bf, ) are real). A is said to be non-negative if A > 0.

Theorem 4.31. Let M and N be closed subspaces of the Hilbert space H, and
let Py, and P, be the orthogonal projections onto M and N, respectively .
(a) We have 0K P,, <.
(b) The following statements are equivalent:
(1) P, <Py, (i) Py P, = P,,
(1) M CN, (iv) P,Py=P,,.

PROOF.

(@) For all fEH we have (Of, > =0<||Pufl2={Pyf, f> < fI?=
If, f).

(b) () implies (ii): If P, <Py, then ||P,fI>=(Puf.f> <P\ f>=
| Ppf1? for all f € H. Therefore N(Py)C N(P,,) and thus M= R(P,,)
=N(P,)t c N(P,)>=R(P,)=N.

(ii) implies (iii): By Theorem 4.20 (a) and (b), with L =N &M we have

PyPy=(Py+ P)Py=P,=P,.

(ii1) implies (iv): As PyP,, is an orthogonal projection (namely P,,), by
. Theorem 4.30 (a) we have P, Py= PyP,,=P,,

(tv) implies (1): Because of the equality P,,P,=P,, we have, for all

f € H, that

(Puf, £ = IIPWfII* = IPyPAfII* < [PAfIP = <Ppff). O

A sequence (T,) of symmetric operators 7, € B(H) is said to be mono-
tone (non-decreasing or non-increasing, respectively) if for every f € H the
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sequence ({T,f, f>) is monotone (non-decreasing or non-increasing, re-
spectively). Theorem 4.28(b) says that any bounded non-decreasing
sequence of symmetric operators is strongly convergent. For sequences of
orthogonal projections we have

Theorem 4.32.

(@) If (P,) is a monotone sequence of orthogonal projections acting on the
Hilbert space H, then there exists an orthogonal projection P acting on H
such that P, > P.

(b) If (P,) is non-decreasing (i.e., P,<P,. ), then P is the orthogonal
projection onto U ,,nR(P,).

(c) If (P,) is non-increasing (i.e., P,>P,, ), then P is the orthogonal
projection onto N ,=nR(P,).

PRrROOF.

(a) Because of Theorem 4.28(b) there exists a self-adjoint operator P €
B(H) such that P, P. As {P%, g>=<(Pf Pg>=1lim (P,f, P,g) =
lim (P.f, g>=<(Pf,g) for all f, g€ H, the operator P is idempotent
and thus it is an orthogonal projection.

(b) If fLU,enR(P,), then P, f=0 for all n €N, consequently Pf=1lm P, f
=0. If fe U,enR(P,), then f€ R(P, ) for some ny €N. Since R(P,)
C R(P,) for all n >n,, we have P, f= P, ffor n>n, Therefore Pf= 1
ie., U,cnR(P,) CR(P). As R(P) is closed, it follows that U ,cnR(P,)
= R(P).

(c) The sequence (Q,) with Q,=1— P, is non-decreasing; Q=1Ilim Q, is
therefore the orthogonal projection onto U,=nR(Q,)=U ,enMP,).

Then P=I— Q is the orthogonal projection onto U,.aN(P,)" =

NaenNP)" =N, enR(P,). O

In the calculation of the norm of the difference of two orthogonal
projections the following theorem is often useful.

Theorem 4.33. Let P, and P, be orthogonal projections acting on the Hilbert
space H. Then we have

| Py — P,|| = max {Plza le}-
where

os = sup {||P,h|| : hER(P)™, ||h]| < 1}.

ProOOF.

(a) By the definition of the norm of an operator we have (notice that
R(Pk)-L = N(Py))

|Py — Py|| = sup {[|[(P,— P)fl| : fEH, |IfI <1}
sup {|[(P,— P,)fll : fER(P)™, IIfll <1}
sup {||P,f]| : fER(P)™, IfIl <1} = pyy.

Vv
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The inequality || P, — P,|| > p,, follows in a similar way.
(b) We have P, — P,= P,(I— P))—(I— P))P,. As (I— P,)f €R(P,)*, for
all f € H 1t follows that

12,1 = P) fll < piall(I= P SIl.
Moreover, since (I — P,)P, f € R(P))*, we have
' ”(1'"P1)P2f||2 = {(I=P)P,f,(I-P)P,f) =P, (I-P)P,f, P, f)

< NP1 =P)P, f |1 PLfIl < poull(I = PP S| || P, S,
consequently

(1= P) P, fll < pyll P, f].

This implies for all f € H

1Py — Pz)f”2 = |P\(I-P)f —(I- Pl)szllz

”PI(I_ Pz)fnz + ||(I_ PI)P2f|l2
pill(I— PS> + p22]||P2f||2

max {p%,, o3, }(II(Z = PSP + | P, fII")
= max {9122’ P%l}”fnz,

A

N

therefore
[P, — P,|| < max {p,, py}- H

Let H, and H, be Hilbert spaces. An operator U from H, into H, such
that D(U) = H, is called an isometry if |Uf|| = ||f|| for all f € H,. If U is an
isometry and R(U) = H,, then U is an isomorphism of H, onto H,. In this
case U is called a unitary operator. An operator U from H, into H, such
that D(U) = H, 1s called a partial isometry if there exists a closed subspace
M of H, such that

IUfIl = [Ifll for fEM, Uf=0 for fEM™"

We have R(U)= UM; this shows immediately that R(U) is closed (if
Uf,—g € H,, then (P,,f,) is a Cauchy sequence in M; therefore we have
Py f,—f € M, and thus Uf,— Uf= g € R(U)). The closed subspaces M and
R(U) are called the initial and final domains of U, respectively.

Theorem 4.34. Let H, and H, be Hilbert spaces and let U be an operator
Jrom H, into H, such that D(U) = H,.
(@) The following assertions are equivalent:
(1) U is a partial isometry with initial domain M and final domain N,
(i) R(U)=N and (Uf, Ug)=<{Pyf, g) for all f,gE€EH,,
(i) U*U= P,, and UU*= P,
(iv) U* is a partial isometry with initial domain N and final domain M.
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(b) The following assertions are equivalent:
(1) U is unitary,
(i) R(U)=H, and {Uf, Ug) =</, g) for allf g EH,,
(i) U*U=1, and UU*=1,,, ie., U*= U,
(iv) U* is unitary.

PROOF.

(a) The equivalence of (i) and (ii) follows by (1.8) in the real case and by
(1.4) in the complex case.
(i) implies (iv): We have N(U*)= R(U)* = N+ and (because (i) implies
(ii)) || U* Uf|| = || P,f | = || Uf|| for all f € H,, therefore || U*A||= ||| for
all h€ R(U)= N. Hence the operator U* is a partial isometry with
initial domain N. If we interchange the roles of U and U* in this
reasoning, then it follows that the final domain of U* is equal to the
initial domain of U** = U, and, consequently, it is equal to M.
(iv) implies (1) for the same reason.
(1) implies (11): As (1) implies (i1), it follows that U*U=P,,. As (1)
implies (iv), it follows similarly that UU* = P,,.
(iii) implies (ii): We have R(U)D R(UU*)= R(P,)= N. Since || U*f|?
= (UU*f, f> = |Pof||>, we have N(U*)=N* and thus R(U)
C N(U*)* = N. Summing up, it follows that R(U)= N. Moreover, we
have (Uf, Ug) =<{U*Uf, g) =<{P,,f, g for all f, gEH.

(b) This is a special case of part (a). O

Theorem 4.35. If P and Q are orthogonal projections on the Hilbert space H

such that ||P— Q|| <, then we have

(a) dim R(P)=dim R(Q), dim R(/ — P)=dim R(I— Q),

(b) P and Q are unitarily equivalent, i.e., there exists a unitary operator U in
H such that Q= UPU ' and P= U ~'QU.

PROOF.

(a) We have R(P) N R(Q)* = {0}, because for f € R(P)N R(Q)*, f#0 we
would have [(P— Q)f|| =I|Pf||=||fl, consequently |[P— Q]| > 1
would hold. By Theorem 3.11 it follows from this that dim R(P) <
dim R(Q). The opposite inequality follows by symmetry. Hence
dim R(P)=dim R(Q). Replacing P and Q by I — P and I — Q, respec-
tively, we obtain that dim R(/ — P)=dim R(I — Q).

(b) By part (a) of Theorem 4.10 there exist unitary operators V' and W
from R(P) onto R(Q) and from R(/— P) onto R(I— Q), respectively.
Then the operator U= VP + W(I — P) is a unitary operator on H such
that U '=V~10+ W™ '(I — Q). We have

UPU ™' = (VP+ W(I— P)P(V™'Q+ W NI-Q))
= VPV~'Q = @,

since for g€ R(Q) we have VPV 'g=g. From this P=U"'QU
follows immediately. 0O
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EXERCISES

4.29. (a) Let H, and H, be Hilbert spaces. If there exists a surjective mapping
T € B(H,, H,), then dim H, < dim H,.
Hint: See Exercise 3.7.
(b) Give another proof for Theorem 4.35(a).
Hint: From [|P~ Q] <1 it follows that R(PQ)=R(P) and R(QP)

= R(Q).

4.30. (a) If (U,,) is a sequence of isometric operators and Um—s-> U, then U is
isometric.
(b) The strong limit of a sequence of unitary operators is not necessarily
unitary.
Hint: Consider the unitary operators U,, on /, defined by

Um(fn)nEN = (fmafls f2’f3s v ’fm—-l’fm+l! fm+2’ .. ) for (f;l)nEN € 12'
We have U, 5 U, where

U(f;l)nEN = (O’fl’fZ’fZa .. ) for (fn)nEN € 12°

4.31. Let M and N be closed subspaces of the Hilbert space H such that dim M <
dim N. Then we have M+ N N=={0}.
Hint: If P, denotes the orthogonal projection onto N, then we have M+ N N
=NB P M.

4.52. Let H be a Hilbert space.

(a) If M and N are closed subspaces of H, then M+ N is not necessarily
closed.

(b) If M is a closed subspace and P is an orthogonal projection, then PM is
not necessarily closed.

Hint: Choose, for example, H=1/,, for M the subspace of the elements

(%1, X1, X3, 2%, X3, 3X3, ... ), for N the subspace of the elements (0, y,, 0,

¥2 0,3, ...), and for P the projection onto N+.



Closed linear operators

5.1 Closed and closable operators,
the closed graph theorem

In what follows H, H; and H, will always be Hilbert spaces. As long as no
adjoint operators (in particular no symmetric or self-adjoint operators) are
treated, we could also consider Banach spaces; the proofs may be some-
what harder, in this case. An operator T from H, into H, is said to be
closed if its graph G(T) (cf. Section 4.4) in H, X H, is closed. An operator
T is said to be closable if G(T) is a graph. From the proof of Theorem 4.15
we know that there exists then a uniquely determined operator T such that
G(T)=G(T); T is closed and is called the closure of T.

Let T be a closed operator. A subspace D of D(T) is called a core of T
provided that for $S=T|, we have T=S. One should notice that by
Theorem 4.15 the operator S is surely closable, since we have _C@C G(T).
If T is a closable operator, then D(T) is obviously a core of T.

Proposition.

(@) T is closed if and only if the following holds: If (f,) is a sequence in D(T)
that is convergent in H; and the sequence (Tf)) is convergent in H,, then
we have lim f, € D(T') and T(lim f,)=1lim Tf,.

(b) T is closable if and only if the following holds: If (f,) is a sequence in
D(T) such that f,—0, and the sequence (Tf,) in H, is convergent, then we
have lim Tf, = 0.

88



5.1 Closed and closable operators, the closed graph theorem 89

(¢c) If T is closable, then
D(T) & { f € Hy: there exists a sequence (f,) from D(T) such that
f,— f and for which (T¥,) is also convergent },

Tf = lim Tf, for f€D(T).

(d) If T is closed, then N(T) is closed.
(e) If T is injective, then T is closed if and only if T~ 'is closed.

Parts (a), (b) and (c) are reformulations of the definitions. Part (d) follows
immediately from Part (a). Part (e) follows from the equality G(T ~!) =
VG(T).

Theorem 5.1. Let T be an operator from H, into H,. On D(T) by

f&dr = <f 8> + <TF Ted, 1l = (ISP + 1 T}

a scalar product and the corresponding norm (T-norm or graph norm) are
defined. T is closed if and only if (D(T), {., .>y) is a Hilbert space.

ProOF. The properties of a semi-scalar product are obviously satisfied.
Because of the inequality {f, f> > {f, f> the semi-scalar product {., .>,
is positive, thus it is a scalar product.

If T is closed and (f,) is a T-Cauchy sequence in D(7T) (1.e.,, a Cauchy
sequence with respect to the T-norm), then (f,) and (7f,) are Cauchy
sequences in H; and H,, respectively; therefore there exist f& H, and
g € H, such that f,—f, Tf,—g. By part (a) of the above proposition we
have f€ D(T), Tf=g. We also have

1= fllr = {1 = AP+ 1T~ 2P} > >

as n— 0, 1.&, f, is convergent in (D(T), {., .>p).

Suppose now that (D(T), <., .>7) is complete. If (f,) is a sequence in
D(T) and f,—»f€H, Tf,—>g€H, then (f) and (Tf,) are Cauchy
sequences. Consequently, (f,) is a T-Cauchy sequence, i.e., there exists an
Jo€ D(T) such that || f, — fol| r—0. It follows from this that || f, — f,|| =0,
| Tf, — Tf,|| -0, therefore f=fy& D(T) and Tf= Tf,=g. O

Theorem 5.2. Every bounded operator is closable. A bounded operator T is
closed if and only if D(T) is closed. If T is bounded, then we have
D(T)=D(T); the closure T is the bounded extension of T onto D(T),
constructed in Theorem 4.5.

PROOF.

1. Let (f,) be a sequence in D(T) such that f,—0 and 7f,->g. Then we
have | Tf,|| < || T|| ||f,]|—0. Therefore g =0.



90 5 Closed linear operators

2. For all f€D(T) we have

1< e < (LT3 2110

Therefore (f,) 1s a Cauchy sequence (converging to f € D(T)) if and
only if (f,) is a T-Cauchy sequence (7-converging to f). Consequently,
(D(T), || . |) is complete if and only if (D(T), || . || ;) is complete. From
this the assertion follows via Theorems 2.4 and 5.1.

3. The equality D(T)=D(T) immediately follows from part (c) of the
above proposition. Part (c) also says that T is the extension occurring in
Theorem 4.5. ]

Proposition. Let T be closable and injective. The operator T ~ ! is closable if
and only if T is injective. We then have T~'=T~'. If T~ is continuous,
then we have R(T)=R(T).

Proor. If T.is injective, then T ~! is a closed extension of T\ If T=!is
closable, then V_g(_f) =VG(T)=G(T ") is a graph, i.e., T is injective, and
we have T~'=T""', If T~!is continuous, then by Theorem 5.2 we have
A(T)=D(T™H=D(T~)=D(T~")=R(T). O

Theorem 5.3. Let T be a densely defined operator from H, into H,.

(a) T* is closed. )

(b) T is closable if and only if T* is densely defined; we then have T = T**,
(c) If T is closable, then (T)* = T*,

PROOF.

(a) By Theorem 4.16 we have G(T*)=(UG(T))*. Therefore G(T*) is
closed.

(b) Since

G(T)=G(T)** = (U'G(T*)"
= {(f, 8) EH, X H, : {f, T*h> — (g, k) =0 forall hED(T*)},

we have (0, g) € G(T) if and only if g& D(T*)*. Therefore
(0, g) € G(T) implies g=0 if and only if D(T*)=H,. Consequently,
G(T) is a graph if and only if T* is densely defined. If
D(T*) is dense, then we have G(T**) = U "YG(TH")=
U'U(G(T)*++)=G(T)= G(T). L

(c) If T is closable, then we have G(T*)= U(G(T)")=U(G(T)"*)=
U(G(T))* = G((T)*). Therefore T* = (T)*. O]

ExaMPLE 1. The operator T from Section 4.4, Example 3 is not closable, as
D(T*)= {0}.
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Theorem 5.4.

(@) An operator T from H, into H, is closable if and only if there exists a
closed extension of T.

(b) Every symmetric operator T on the Hilbert space H is closable; T is also
symmetric.

PROOF.

(a) If T is closable, then we have T C T. Therefore T is a closed extension
of T. If § is a closed extension of 7, then we have G(T)C G(S)
= G(S), hence G(T)C G(S), and thus G(T) is a graph (cf. Theorem
4.15).

(b) By part (a) the operator T is closable, since T C 7* and T* is closed.
For all f, g € D(T) there exist sequences (f,) and (g,) from D(T) such
that f,—f, g,—g, Tf,—» Tf and Tg,—Tg. As T is symmetric, we have

(Tf, gy = lim (T, g,> = lim {,, Tg,> = {f, Tg).
Since D(T) is dense, the operator 7 is symmetric. ]
ExaMpLE 2. Let us consider on L,(M) the maximal operator 7' of multi-

plication by a measurable function ¢t : M—C (cf. Section 4.1, Example 1I).
This is the operator defined by

D(T) = {fEL(M) : if EL,(M)} and Tf = ¢f for f € D(T).

(5.1) T* is the maximal multiplication operator induced by the function t*
(where t*(x) = t(x)*), in particular, we have D(T*)= D(T).

ProoOF. It is obvious that D(7) is also the domain of the maximal
multiplication operator induced by ¢*. Since for all f, g€ D(T) we have

(8, T = [ 2(x)*(0)f (x) dx = [ (#(x)g(x))*/ () dx = <°8. 1,

the maximal operators of multiplication by ¢ and ¢* are formal adjoints of
each other. What remains is to prove that for g € D(T*) we have t*g €
L,(M). Let g€ D(T*). Then for all f € D(T) we have

(T8, = (g, T = [ () ux)f(x) dx,

thus
f (T*g(x) — g(x)t(x)*)*f(x) dx = 0 forall feD(T). (5.2)

Let us define, for all n €N, the subsets M, of M by M,={xEM : |((x)| <
n}. Then we obviously have M= U ;7 M, For every f € Ly(M), xpf
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belongs to D(T), consequently we have

fM( T*g(x) — g(x)1(x)*)*xy (x)f(x) dx = 0 forall f € Ly(M).

Since xy (T*g —1*g) € Ly(M), it follows that T*g(x)=r*(x)g(x) almost
everywhere in M,. Since this holds true for all n €N, we have T*g=t*g,
therefore t*g € L,(M). ' O

(5.3) T is closed.

PROOF. T is the adjoint of the maximal multiplication operator induced by
t*, hence T is closed by Theorem 5.3(a). O

(5.4) The following assertions are equivalent:

(a) T is self-adjoint,

(b) T is symmetric,

(¢) ¢ is real-valued (i.e., t(x) is real almost everywhere in M).

PROOF. (b) obviously follows from (a).

(b) implies (c): If ¢ is not real, then at least one of the sets M, ={x &
M : Im #(x) >0} or M= {x€E€ M : Im t(x) <0} has positive measure. If M,
is of positive measure, then for all f&€ D(T), different from zero and
vanishing outside M,;, we have

Im (f, Tf) = fM | F(x)]? Im #(x) dx > O.

By Theorem 4.18 the operator T is therefore not symmetric. We can argue
similarly if M, has positive measure.
(c) implies (a): Since t=t*, we have T'=T* by (5.1). O

(5.5) If M is an open subset of R™ and t is locally bounded on M (i.e., t is
essentially bounded on any compact subset of M), then Cs°(M) and L, o(M)
are cores of T.

Proor. We obviously have Cg°(M) C L, (M) C D(T). We prove the asser-
tion for C§°(M); the other assertion follows from this. We have to prove
that for each f€ D(T) and for each € >0 there exists an f, € Cs°(M) such
that || f—fl|+||Tf. — Tf|| <e. If (M,) is a sequence of open bounded
subsets of M such that M, C M, ., and M= U M,, then for all n €N let us
define

g.(x) = f(x) on M,,  g,(x) =0 on M\M,.

We obviously have g, € L, (M), g,—f, and Tg,—Tf. Therefore there
exists an ny€N such that ||g, —f||+|/Tg, — Tf|| <€¢/2. On the other
hand, there exists a sequence f,, € Cg°(M, ) C Cg°(M) such that f,—g, .
Then we also have that Tf,—Tg, . So there exists an m, €N such that
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| fory = 8l + 11 Tfo, — T |l <€ /2. The assertion follows from this by taking
f; =fm0' D

Let T and S be operators from H, into H, and from H, into H,,
respectively. The operator S is said to be T-bounded if D(T)C D(S) and
there exists a C > 0 such that ||Sf|| < C|| f]| ; for all f € D(T), i.e., if S, as

an operator from (D(T), <., .>;) Into H, is bounded. Then for all f &€
D(T) we have

ISl < CALAI+ A

If S is T-bounded, then the infinum of all numbers b >0 for which an
a > 0 exists such that

ISl < all fll + bIITS| forall f&D(T),

is called the T-bound of S. One should notice that if ¢ is the 7-bound of S,
then in general there exists no a > 0 such that for all f€ D(T) we have
ISl <all fll + ¢|| Tf|| (cf. Exercise 5.4).

Proposition. If T is an arbitrary operator from H, into H, and S € B(H,, H,),
then S is T-bounded with T-bound 0.

Theorem 5.5. Let T and S be operators from Hy into H,, and let S be
T-bounded with T-bound less than 1. Then T+ S is closed (closable) if and
only if T is closed (closable); we have D(T + S)= D(T).

PrROOF. As the T-bound of S is less than 1, there exista b<1 and an a >0
such that ||Sf|| <al|f]| + b||Tf|| for all f& D(T). Consequently, for all
feD=D(T)=D(T+ S) we have
~a| fll + A=) TfI| < | TF] — ISl < I(T+ S)HAIl
< |\ Tf) + ISFI < allfIl + (1 + B TS

From this it follows with a properly chosen C > 0 that
ITfN < CULA+ T+ SHAD (5.6)

I(T+ S)Hf < CULAN+ITTAID (5.7)
for all f € D. Hence there exists a K > 0 such that

Ifllz <Klfllz+s and [[fllzes < K[ fll7-

From this it follows that (D, {., .>7, ) is complete if and only if (D,
{.,.>p) 1s. Let T be closable. If (f,) is a sequence from D(T + S)=D(T)
such that f,—0 and for which ((T'+ S)f,) is convergent in H,, then by (5.6)
the sequence (7Tf,) is a Cauchy sequence. Hence Tf,—0, because T is
closable. Because of (5.7) from this it follows that (T'+ S)f,—0,so T+ S is
also closable. One can show in an analogous way that T is closable
provided that 7+ S is closable. By part (c) of the proposition preceding
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Theorem 5.1 we have f € D(T + S) if and only if there exists a sequence
(f,) from D(T+ S)= D(T) for which f,—f and ((T + S)f,) is convergent.
Since because of (5.6) and (5.7) (T + S)f,) is convergent if and only if
(Tf,) is convergent, we have D(T + S)=D(T). n

Theorem 5.6 (Banach; closed graph theorem). Let H, and H, be Hilbert
spaces and let T be an operator from H, into H,. Then the following
Statements are equivalent:

(a) T is closed and D(T) is closed,

(b) T is bounded and D(T) is closed,

(¢) T is bounded and closed.

PrROOF. (a) implies (b): We have to show that T is bounded. Without loss
of generality we may assume that D(T)=D(T)= H, (otherwise we could
consider T as an operator from the Hilbert space D(T) into H,). Conse-
quently, T™ is defined. For all g € D(T*) such that || g|| <1 we have

KT*g, 5| =|<8 Tf>| < |Tf|| forall fe€H,.

For the linear functionals {Z, : g€ D(T*), || g|l <1} on H,, where Lf=
(T*g, >, we therefore have

|L(NH] < TS| forall f&H;

consequently they are pointwise bounded. By Theorem 4.22 there exists a
C > 0 such that

|T*g|| = ||L,|]| < C forall g& D(T*) suchthat | g|| < I.

Therefore T* is bounded and ||7*||<C. As T is closed (consequently
closable), D(T™*) is dense and, by Theorem 5.2, closed. We therefore have
D(T*)=H,, i.e., T* € B(H,, H)). Since T is closed, this implies that T=T
= T** € B(H,, H,).

The assertions “(b) implies (¢)” and “(c) implies (a)” are contained in
Theorem 5.2. M

Theorem 5.7. Let H, and H, be Hilbert spaces and let T be an operator from
Hy into H, such that D(T)= H, and D(T*) is dense in H,. Then T belongs to
B(H,, H,). In particular, every symmetric operator T on the Hilbert space H
such that D(T) = H is bounded (Hellinger-Toeplitz).

ProOOF. By Theorem 5.3 the operator T is closable. Because D(T)= H |, we
have D(T)=D(T), i.e., T=T. Therefore T is closed and D(T)= H,. Then
T 1s bounded by Theorem 5.6. '

Theorem 5.8. Let H, and H, be Hilbert spaces and let T be an injective
operator from H, into H, such that R(T)= H,. The operator T is closed if
and only if T~ € B(H,, H,).
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Proor. By Part (e) of the proposition preceding Theorem 5.1 the operator
T is closed if and only if 7' is closed. The assertion follows immediately
from this and from Theorem 5.6. O

Theorem 5.9. Let H,, H, and H, be Hilbert spaces, let T be a closed operator
from H, into H,, and let S be a closable operator from H, into H; such that
D(S)D D(T). Then S is T-bounded.

ProOOF. On account of Theorem 5.6 it is enough to show that the operator
Sy from (D(T), <., .>7) into Hs, defined by D(S;)=D(T) and S, f= Sf for
feD(T), is closed. As D(Sy)=D(T), it is enough to show that S, is
closable. Let (f,) be a sequence in D(T) for which || f,|| ;—0 and (S, f,) is
also convergent. Since || f,||—0 implies || f,|| -0 and since S is closable,
we obtain from this that S, f, = Sf,—0, thus S, is closable. O

EXERCISES

5.1. (@) Every Carleman operator (cf. Exercise 4.2) is closable.
(b) Any Carleman operator, defined on the whole of L,(M), is bounded.

5.2. (a) Any densely defined operator T on the Hilbert space H such that
Re {f, Tf> > 0 for all f € D(T) is closable.

Hint: If (0, g)€ G(T), then Re {f, Tf+2g> >0 for all f€ D(T) and
z € K. One infers from this that {f, g> =0 for all f € D(T).

(b) The numerical range of an operator T on H is defined by W(T)=
{{L If) . fED(T), || f]|=1}. The set W(T) is convex (cf. for example,
P. R. Halmos [14], Problem 166). If D(T) is dense and W(T)# K, then T
is closable.

5.3. (a) Let H be a Hilbert space, and let T be a densely defined operator from H
into C”. The operator T is bounded if and only if it is closable (this holds
true for linear functionals in particular).

(b) In the Hilbert space /, let the functional T be defined by D(T)=1, ,,
Tf=23nf, for f € D(T). Then T is not closable.

5.4. Let T and S be on L,(R) the maximal operators of multiplication by #(x) = x?
and s(x) = x?+ x, respectively. The operator S is T-bounded with T-bound 1.
However, there exists no a > 0 such that || Sf|| < || 7f|| + a|| f]| for all f € D(T).

5.5. Prove the results of (4.3) with the aid of the closed graph theorem,
(4.1), (4.2), (4.6), and (5.3).

5.6. Let H,, H, and H; be Hilbert spaces, let S € B(H,, H,), and let T be a closed
operator from H, into H; such that R(S)C D(T). Then we have TS &€
B(H,, H5).

Hint: Show that TS is closed, and D(TS)= H,.

5.7. Assume that H,, H, and H; are Hilbert spaces, T is a closable operator from
H, into H,, and S is a T-bounded operator from H, into H,. If the sequence

(f,) from D(T) is such that f, -0 and 7f, -0, then we also have Sf, —0.
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5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5 Closed linear operators

Let H be a Hilbert space. An operator P on H is an orthogonal projection if
and only if P is symmetric, D(P)= H, and P*= P.
Hint: Use Theorem 5.7 (Hellinger-Toeplitz).

Let H be a vector space, and let {.,.>, and <{.,.)>, be scalar products on H
such that (H, (., .>)) and (H, {., .),) are complete. If there exists a C such
that || . ||, <CJ} . ||, then there also exists a C’ such that || . ||, <C’|| . ||;-

Let the vector space H be endowed with two scalar products, consequently
with two norms || . ||; and || . ||,- These norms are said to be coordinated if we
have: (k;,) from ||x,]|;—>0 and ||x,— x|,—0 it follows that x=0, or (k,))
from |[x,]l,—0 and || x,, — x||;—0 it follows that x =0.

(a) The assumptions (k,;) and (k,,) are equivalent.

(b) If the norms || .||, and | .|, are coordinated, and (H, | .|[;) and.
(H, || . |l) are complete, then there exist ¢, ¢c; >0 such that || .||, <
all -l <ell - .

Hint: The identity map from (H, || . ||;) into (H, || . ||2) is closed.

(a) Let H, and H, be Hilbert spaces. Assume that H, is finite dimensional.
Every operator T from H, into H, is continuous.
Hint: If {e,, ..., e,} is an ONB of D(T), then Tf=3 e, f)>Te for all
fE€D(T).

() If (., .>; and (., .), are scalar products on a finite dimensional vector
space H, then there exist constants ¢, ¢; > 0 such that || . ||, <c¢y] . [l <
¢ll - Il (I - |I; denotes the norm defined by (., .>)).

Let T be an operator from H, into H,, and let S be a continuously invertible
operator from H, into H;. If S and T are closed (closable), then ST is also
closed (closable).

If S is T-bounded with 7-bound b, then for any € >0 there exists an g > 0
such that ||Sf]|> < @?|| f||* + (b* + €)|| Tf|]? for all f € D(T). If we have ||Sf]|> <
a®|| f|? + b*|| Tf||?, then we also have || Sf|| <a| f]| + b|| Tl

5.2 The fundamentals of spectral theory

In what follows an operator T from H, into H, will be said to be bijective if
T is injective and R(T) = H,.

Theorem 5.10. Let S and T be bijective operators from H, into H,. If
D(S)c D(T), then

T '-§S'=T"Y(s-1S"

If D(S)=D(T), then

T-'-8s'=T" (S-S '=85"Y(s—-T)T".

PrOOF. It is enough to prove the first assertion. We shall prove that
T '=8S" 14+ 7 Y(S§~T)S ! Since T 'Tf=f for all fE€D(T) and



5.2 The fundamentals of spectral theory 97

SS ~'g =g for all g € H,, it follows that
S'+17 (S-S =718 '+ T (S-S !
=T NT+S-TS '=T7'ss'=T"1. O
Now we show that a closed bijective operator remains bijective even

after the addition of a “not too big” operator.

Theorem 5.11. Assume that H, and H, are Hilbert spaces, T is a closed
bijective operator from H, into H,, S is an operator from H, into H, such that
D(S)D D(T), and ||ST ~'|| < 1. Then T+ S is also bijective, and we have

(T+8) ' = io(—l)”T”‘(ST")" = io(—l)"(T_‘S)"T"'; (5.8)

the series are convergent in the norm of B(H,, H,).
PRrOOF. For all f € D(T) we have
ISl = IIST ~'Tf|| < ST~ | TSI,

i.e., S is T-bounded with T-bound less than 1. By Theorem 5.5 the
operator T+ S is closed, too. Moreover, T+ S is injective, because

1T+ S > NTAI = IS > A= ISTIDITA > 0

for all f€ D(T+ S)=D(T), f#0.
The two occuring series are obviously identical term by term. Let us
define

P
— nr—1 —I\n
A, = 20(—1)T (ST Y, peN.
Then for g >p we have

2 (=p'TTi(sTh”

n=p+1

14g = Al =

1 lq—p—l
<\ T7hH st X st
n=0

o
<|TYISTNert 2 ST < CIST Y|P,
n=0
where C=||T ™| Z%_o| ST ~'||". From this it follows that (4,) is a Cauchy
sequence in B(H,, H,), consequently there exists an 4 € B(H,, H,) such
that 4,— A4 as p— 0.
We have (T+ S)A =1I:

(T+S)4, = é (-D(T+S)T (ST HY' =TI+ (-D(ST VW' > 1,
n=0
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as p—oo. Therefore for all g € H, we have

A,g—> Ag and (T+S)4,g—>g as p— .

As (T+ S)is closed, Ag € D(T+ S) and (T + S)Ag=g,1.e.,(T+ S)A=1.
In particular, R(T+ S)=H,, hence T+ S is bijective and we have 4 =
(T+ 8" L O

Corollary. The statements of Theorem 5.11 hold in particular if S is bounded
and ||S|| < ||T Y| ~" (then we have ||ST Y| < ||S|| |IT " I< D).

Corollary. Let H, and H, be Hilbert spaces and let T and T, (n € N) be
linear operators from H, into H, such that D(T)cC D(T,) for all n€N.
Assume that T is closed, bijective, and |(T— T,)T ~'||—-0 as n— 0. Then
there exists an ny€ N such that T, is bijective for n >ny and | T,”'— T~}

—0 as n—>oo. (The assumptions on T, hold in particular if the operators
T— T, are bounded and ||T — T,|| -0 as n—0.)

PrOOF. With S, =T, — T we have ||S,T ~'|| >0 as n— 0. Therefore there
exists an n, €N such that ||S, T ~'||<1/2 for n > n, Hence by Theorem
5.11 the operator T, = T+ S, is bijective for n > n;, and we have

n

IT, ' =T < 2 ANTHS, T )" <7~ "WIS,T7Y X 2" >0
m=1 m=1
asn—o0. - O

In what follows let H be a Hilbert space over I§ and let T be an operator
on H. The number z EK is called an eigenvalue of T if there exists an
f€D(T), f#0 such that Tf= zf, i.e., if the operator z— T =zI— T is not
injective, N(z — T) # {0}. The subspace N(z — T') is called the eigenspace of
z, the dimension of N(z—T) is called the multiplicity of the eigenvalue.
The element f is called an eigenelement or eigenvector of T belonging to the
eigenvalue z. If z is not an eigenvalue (i.e., (z — T) is injective), then the
operator

R(z,T)=(z—T)"'
is well-defined. The set
p(T) = {z€K : z— T isinjective, and R(z, T)EB(H)} (5.9)

is called the resolvent set of T. If T is not closed, then z— T and R(z, T)
are not closed, consequently p(T)= <. This is why in most of the following
cases we shall assume the closedness of T. For a closed operator T on
H we have by the closed graph theorem that

o(T) = {zEK:z—T Iis bijective}. (5.10)
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The function
R(.,T):p(T)>B(H),z R(z, T)

is called the resolvent of T. For any z € p(T) the operator R(z, T) is called
the resolvent of T at the point z. The set

o(T) = K\p(T) = Co(T) (5.11)

is called the spectrum of 7. The set ¢,(T) of all the eigenvalues of T is
obviously contained in (7). The set ¢,(T) is called the point-spectrum of
T.

Theorem 5.12. Let T be a densely defined operator on H. Then o(T*)=
o(T)* and p(T*)=p(T)* (here for any subset M of the complex numbers
M*={z*:.zE M)}).

Proor. Because of (5.11) it is enough to prove that po(T)=p(T*)*. To
prove this it is enough to show that p(T) C p(T*)*, since because of the
equality 7**= T we also have p(T*) C po(T)*, and thus po(T*)* C po(T).

Let z € p(T). Then z — T is densely defined and bijective. By Theorem
4.17(b) the operator z* — T* =(z — T)* is therefore injective, also, and we
have (z*— T*) " '=((z— T)"")* € B(H). Hence z* — T* is bijective, i.e.,
z* € p(T*), and thus z € p(T*)*. O

Theorem 5.13. Let S and T be closed operators on H.
(a) For all z, 2 €p(T) we have the first resolvent identity

R(z, T)—R(z', T) = (z/—z)R(z, T)R(z', T)

= (2= z)R(z', T)R(z, T);

in particular, R(z, T) and R(z', T) commute.
(b) If D(S) c D(T), then for all z € p(S)N p(T) we have

R(z, T) — R(z,S) = R(z, T)(T— S)R(z, S).

(©) If D(S)=D(T), then for all z €p(S)Np(T) we have the second re-
solvent identity

R(z, T) = R(z,S) = R(z, T(T—S)R(z, S)

= R(z, S)(T— S)R(z, T).

Proor. The first resolvent identity follows from Theorem 5.10 if in there
we replace T by z— T and S by z— T. The second resolvent identity
follows similarly if 7' and S are replaced by z — T and z — S, respectively.

O

Theorem 5.14. If T is a closed operator on the Hilbert space H, then p(T) is
open, consequently o(T) is closed. More precisely, if z, € p(T), then z € p(T)
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for all z €K such that |z — zo| < ||R(zq, T)|| "', and for these z we have
R(z,T) = 3 (20— 2)"R(z0, T)""".
n=0

If T € B(H), then we have {z €K : |z| >||T||} Cp(T); the spectrum o(T) is
compact. Furthermore,

R(z, T)y= 2 z7"7'T" for |z| > ||T|; (5.12)
n=0 '

this series is called the von Neumann series.
PrROOF. Let z,€p(T), and let |z — z,5| <||R(zo, T)||~". If in Theorem 5.11
we replace T by z,— T and S by (z — z,)/, then it follows that z — T'=z,—

T+ (z — z,) is bijective, consequently z € p(T). Moreover, by Theorem 5.11
we have

R(z, T) = ((zo— T)+(z —Zo)yl = go(zo—z)"R(zo, T)"*.

Now let T € B(H) and let |z| > || T||. If in Theorem 5.11 we replace T by z/
and S by T, then it follows that z — T is bijective, therefore z €p(T), and

o0
(z—T) "= > ="
n=0

Hence o(T)C{z€K : |z| <||T||}. As o(T) is closed, the compactness of
a(T) follows from this. 0

Theorem 5.15. Let T be a closed operator on the Hilbert space H. The
resolvent R(., T) : p(T)—B(H) is a continuous function (i.e., for any z,€
o(T) and any sequence (z,) from p(T) such that z,—z, we have ||R(z,, T)—
R(zy, T)||—0). If o(T) is non-empty, then for every z € p(T) we have

IR(z, T)|| > d(z, o(T))™".
For every sequence (z,) from p(T) such that z,—z,, z,E€ o(T) we therefore

have ||R(z,, T)||— 0.

PROOF. Let z,, z €p(T) such that |z — z,| <||R(zy, T)||”'. Then by Theo-
rem 5.14 we have

|R(z, T) — R(Zo, T)| < 2 2o — z|”||R(zo, T)||n+1-
n=1

As the right side is small when z is close to z,, the continuity at z, follows
from this for any z, € p(T). If z €p(T), then by Theorem 5.14 the point z’
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also belongs to o(T) for all z’ € K such that |z’ — z| < ||R(z, T)||~'. Conse-
quently, |z’ —z| > |R(z, T)|| ! for all 22 € 6(T), and thus

IR(z, T)|| ™" < inf {|z'—z| : 2 €6(T)} = d(z, o(T)). 0

Let G be an open subset of C, and let X be a Banach space. A function
F: G— X s said to be holomorphic if for every z, € G there exist an r >0
and a sequence (f,) from X such that

F(z) = 2 (z—2zy)%, for |z—zy| <r;
n=0

where the convergence has to be understood in the sense of the norm of X.
As in function theory, one can prove that the quantity

ro = tim sup ||f,,||‘/"]_l (5.13)

n—>o0

is the radius of convergence of the above series and that the series is
uniformly convergent on each disc around z, of radius less than r,, while it
is divergent for all z such that |z —zy| >r, (cf., for example, K. Jor-
gens [19], §4.4). Every holomorphic function is continuous (cf. the proof of
Theorem 5.15).

Theorem 5.16. Let T be a closed operator on the complex Hilbert space H,
and let f, g € H. Then the functions

R(., T): po(T)—>B(H), z->R(z, T)
R(., T)f: p(T)—>H, z->R(z, T)f
(8 R(.,T)f>:p(T)>C, z—{g R(z, T)f)

are holomorphic.

PrOOF. Let z,€p(T), and let r=||R(zy, T)||”!. Then for all z€C such
that |z — z,| <r we have

o0

R(z,T) = go(zo—z)"R(zo, T)nH

in the sense of the norm convergence in B( H),
o0
R(z, T)f = 2 (20— 2)"R(z0, T)""'f,
n=0
in the sense of the norm convergence in H, and

(& Rz, )f) = 2 (2= 2)'(& Rlzo. T)""'f).
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According to the above definition, these three functions are therefore
holomorphic. ]

Theorem 5.17. Assume that H is a Hilbert space and T € B(H), r(T)=

lim sup || T"||'/".

(a) We have (T) < || T™||"/™ for all m €N, and thus r(T)=1im || T"||"/".

(b) We have r(T)< ||T|| and o(T)C {z €K : |z| <r(T)}. For all z €K such
that |z|>r(T) the operator R(z, T) is given by the Neumann series
(5.12).

(¢) If His complex, then o(T) is non-empty and there exists a z € o(T) such
that |z| = r(T), i.e., we have r(T)=sup {|z| : z € o(T))}.

(d) The statement in part (c) holds for any self-adjoint T in a real Hilbert
space, as well.

r(T) is called the spectral radius of 7.
REMARK. Theorem 5.17(c) does not hold for real Hilbert spaces, as the

example of the operator defined by the matrix ((1 | (1)) on R? shows.

PROOF.

(a) Let meN. Every n€N can be uniquely represented in the form
n=mp,+gq, with p,,q, €EN and ¢, <m. If we denote C=
max {1, ||T|, | T3, ..., ||T™ "}, then it follows that

T < ([ TP T*|| < C|T™|™
and thus

r(T) < lim sup CY/"|| ™|/ m=Q/mm)g, = | |1/ m,
n—o0
For every n €N we therefore have r(T) < ||T"||'/", and thus r(T) <
lim inf || T/, i.e., lim || T"||"/" exists and r(T)=lim || T")|"/".

(b) The radius of convergence of the series S°_,u"*'T", u €K is obvi-
ously equal to #(T)~ ', because of (5.13). Therefore for all z €K such
that |z| >r(T) the operator A(z) =3X%_,z "~ 'T" € B(H) is defined; the
series is absolutely convergent in the norm of B(H) (i.e., for every ¢ >0
there exists an n, € N such that 27_,|z 7"~ | T"|| <e for ny <k <m).
One can verify easily that

0 0
(z—=T)A(z) = A(2)(z—T) = D, z7"T" — 7l =
n=0 n=0
ie, A(z2)=(z—T)"! and z €p(T). The Neumann series is therefore
convergent for all z €K such that |z| >r(T) and it represents the
operator (z— T)~ .

(c) Let us assume that o(7)= . Then p(T) = C, and by Theorem 5.16 the
function Fj, : z>{f, R(z, T)g) is an entire function for all f, g€ H.
Because of the inequality [[(z — T)f|| = (lz|| =l TIDIifIl we have
|R(z, || <(||z]| = TI)"" for |z| >||T||, and thus F(2)-0 as |z]—»
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. Consequently, Fj, is bounded, and by Liouville’s theorem it is
constant. Since Fj(z)—0 as |z|—o0, we have F, =0 for all f,gE€EH,
therefore R(z, T)=0. This is a contradiction. It remains to be proved
that r(T)=sup{|z] : z€a(T)}=ry As o(T) is closed and we already
know the inequality r, <r(T), it remains to show that r(T) <r, For
arbitrary f, g€ H the function z—{f, R(z, T)g) is holomorphic in
{z€C : |z|>r,} and can be uniquely expanded in a Laurent series
there. By (5.12) this Laurent series has the form

(fiR(z, T)g) = Z_Oz‘"‘“‘<f, T"g).

Let s>r, Then the sequence (s~ !(f, T™g>) is bounded for all
f, g € H. By applications of the Banach-Steinhaus theorem (Theorem
4.22), first to the functionals induced by s ™"~ 'T"™g and then to the
operators s "~ !T"™ we obtain a C > 0 such that

s~ Y4 T"|| < C forall me&N.

This implies that lim||7™||'/™ <s. Since this holds for all s >ry, it
follows that r(T') <r,.

(d) If T is self-adjoint, then by Theorem 4.4(b) there exists a sequence (f,)
from H such that || f,||=1 and {f,, Tf,>—=||T|| or {f,, Tf,>—>—|IT|.
In the first case it follows that

1T = TP = U TP = 20 T S T + 1 TH I
<|ITI? =21 TIIKfs T +IITI*—>0 as n— co.

Analogously, in the second case it follows that
TN+ T)fl -0 as n— .

Consequently, ||T|| € o(T) in the first case, and —||T||€o(T) in the
second case. ]

ExaMPLE 1. Let M be a measurable subset of R™ let t: M—>C be
measurable, and let T be the maximal operator of multiplication on L,(M)
by ¢.

(5.14) We have o,(T)={z€C : t~!(z2) has positive measure}, here t~'(z)
denotes the set {x € M : t(x)=z}. (See also Exercise 5.23.)

PrOOF. This can be obtained immediately from the results of (4.2) if we
notice that z — T is the multiplication operator generated by z — ¢. O

(5.15) We have z € o(T) if and only if for every € >0 the set
T ({weC:|w—z|<e})={xEM: |i(x)—z| <€} is of positive measure.
In particular, if M is open and t is continuous, then o(T) is the closure of the
range of t.
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PrOOF. Let T={z€C : {x €M : |t(x)— z| <€} have positive measure for
every € > 0}.

We show that p(T)=CZ. We have z€p(T) if and only if z—T is
bijective, thus if and only if z — 7T is injective and R(z — T)= L,(M). By
(4.3) this holds if and only if there exists a ¢ >0 such that |z —#(x)| >¢
almost everywhere on M, i.e., if and only if 1" '({weC : |w—1z|<c}) has
measure zero. Consequently, z €p(7) if and only if z & X. O

The corresponding results hold if we consider the real Hilbert space
L, r(M) and a real function .

ExaMmpLE 2. If U is a unitary operator on H, then o(U)C{z€&€C : |z|=1}.

Proor. By Theorem 5.14 we have {z€C : |z|>1}Cp(U). Since U is
bijective and U ~! is unitary, we have 0 € p(U), and thus by Theorem 5.14
{z€C :|z|<1} Cp(U). The assertion follows. O

EXERCISES

5.14. Let H, and H, be Banach spaces. An operator 7 from H, into H, has a
continuous inverse (not necessarily defined on the whole space H,) if and
only if

y = inf {||Tx| : x€D(T), ||x]| > 1} > 0.
We have then that |77 '|j=y "

5.15. Let (a,) be a sequence from C. On /, by
D(T) = {/=(f)EL: (a.f,) EL},
Tf = (a.f,) for f=(f)€XT)
a closed operator is defined. T is self-adjoint if and only if the sequence (a,)
is real. We have 0,(T)={a, : n€EN}, o(T)=0,(T). Determine R(z, T) for
z&o,(T).

5.16. if S and T are from B(H), then r(ST)=r(TS).

5.17. Assume that H, and H, are Hilbert spaces, and T is a bijective operator from
H, onto H,.
(a) If S is an operator from H, into H, such that D(S)> IXT), ST '€
B(H,), (ST ") < 1, and T+ S is closed, then T+ S is also bijective.
(b) If S € B(H,, H,) and r(T ~'S) < 1, then T+ S is bijective.
In both cases we have

(T+8)" = 3 ()T NST Y = S (=)AT- ISy T,
n=0 n=0

where the series converge in the norm of B(H,, H,).

Hint: After showing the convergence of the series, denote the sum by A4, and
prove that (T+ S)A4 = A(T+ S)= 1. Compare with the proof of Theorem
5.11, as well.



5.2 The fundamentals of spectral theory 105

5.18.

5.19.

5.20.

5.21.

5.22.

5.23.

5.24.

Let H, and H, be Hilbert spaces, let 4, 4, € B(H,, H,), and let A4, be bijective
forall nEN. If 4,—A and ||4,7 || <C for all nEN, then 4 is also bijective
and we have 4,7 ' >4,
Hint: Use Theorem 5.11.

Assume that H, and H, are Hilbert spaces; T,(n €N) and T are closed
bijective operators from H, onto H,; the sequence (|| 7, '||) is bounded, and
for some core D of T the following holds: For every x € D there exists an
n(x) € N such that x € D(T,) for n > n(x) and also 7,,x— Tx for n— co. Then
T 'S

Hint: From Theorem 5.10 it follows that 7, 'g— 7T ~!g for all g€ T(D);
T(D) is dense in H,; since (|| 7,”"||) is bounded, it follows that T, 'g—>T"'g
for all g € H,.

Prove that in Exercise 5.19 no assumptions can be removed.

(a) If T, T, are bijective and T, 5 T, then we do not necessarily have
T ST
Hint: Consider, on /,, the operators T=1I and T, f=(f,...,f .
(1/7)f, 1> (1/0)f, 42 . .. ); (the sequence || T, || is not bounded).

(b) If T is bijective and 7, 5 T, then T, is not necessarily bijective for large
n.

Hint: Consider the operators T=1 and T,f=(f,...,f,,0,0,...) on
L.

(c) If the T, are bijective, (||7,,"||) is bounded and 7,5 T, then T is not
necessarily bijective.
Hint: Consider the operators T,.f=(...,f-n_2ufon—tv,Joo f-1, f1, f=2

f2’ e f—mfmfn+l’ j;1+2a s ) on lz(z)

Assume that H is a Hilbert space over I, £2 is an open subset of K, and

R : -5B(H) satisfies the properties (i) R(z,)— R(zy)=(z,— z))R(z)R(z,)

for z,, z, € £, (ii) N(R(z))= {0} for all z € 2. Then we have

(@) R(z))R(z,) = R(zy)R(z)) for all z|, z, € £,

(b) With K(z)= R(z)"(z € ) we have K(z,)—z,= K(z,) — z, for all z|, z,
€ 2; i.e., we can define 7=z — K(2).

(c) T is closed; we have 2 Cp(T) and R(z)=(z—T) ' for z € L.

Assume that H, and H, are isomorphic Hilbert spaces, M is a dense subspace
of H,, and M= H,. Then B(H,, M)s= B(H,, H,). (From this it follows that
B(H,, A) is in general not a completion of B(H,, H) if A is a completion of
the pre-Hilbert space H.)

Hint: Let U be an isomorphism from H, onto H,. Assume that there exists a
sequence (U,) from B(H,, M) such that U,— U. Then R(U,)= H, for large n.

Let T be the operator of multiplication by a measurable function ¢ on L,(M)
(cf. Example 1). Every eigenvalue of T has infinite multiplicity.

Let T EB(H), let Np={f€ H: T"f—0as n—»o0}, and let By={f€ H : the
sequence (7"f) is bounded}.
(a) If (T)< 1, then Np=H.
(b) If B,=H, then (T)< 1.
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5.25.

5.26.

5.27.

5.28.

5.29.

5.30.

5 Closed linear operators

Hint: Use Theorem 4.22.
(c) From Nr= H it does not follow in general that »(T) < 1.
Hint: Consider the operator Tf(x)= xf(x) on L,(0, 1).

If T € B(H), A€ K such that |A|=||T||, and u € H is such that Tu=Au, then
T*u=A*u.
Hint: Show that || T*u —A*u||> < 0!

Let A € B(H,, H,) and B € B(H,, H,).

(@) For A0 we have A€ p(A4B) if and only if A €p(BA4). In this case we
have A — BA) ™ != —;:(I+ BA—A4AB)'4).

(b) Assertion (a) does not hold for A =0.
Hint: Let 4 be an isometric operator such that R(4)#H,, and let
B=A*

(c) Assertion (a) holds for A=0, as well, provided that at least one of the

operators is bijective.
Hint: AB=A(BA)A™".

Let T be an operator on H with non-empty resolvent set, and let Ay € p(T).
We have A € o(T) if and only if A —Ag)~ '€ 6(R(Ay, T)); for all AEp(T) we
have RQ, T) = RQg, T)(I = (g = NRMo, T)7' =T — Qg — MRy,
T))™'R(Ag, T). In particular, 6(R(Ag, T)) = {(A—Ag) ™! : AE o(T)).

Hint: Use the first resolvent identity.

An operator T € B(H) is said to be nilpotent if there exists an n €N such that

T"=0. The operator T is said to be quasi-nilpotent if || T"||'/"—0, i.e.,

r(T)=0.

(a) Every nilpotent operator is quasi-nilpotent.

(b) If T is a quasi-nilpotent operator on a complex Hilbert space, then we
have o(T) = {0}.

(©) If k(x,y) is continuous on 0<y<x<1, then the Volterra integral
operator K defined on L,(0,1) by D(K)=1Ly0,1) and (Kf)(x)=
f ok(x, y)f (¥) dy is quasi-nilpotent.
Hint: Put k(x, y)=0 for x <y and M =max {|k(x,y)|: 0<y <x<1};
then |k™(x, y)| <(M"/(n—1)!)|x —p|"~! for the kernel k™ of K", con-
sequently [|[K"|| <(M"/(n—1!).

Let H be a complex Hilbert space, let T &€ B(H), and let p(1)=3"_.a ;1 be a

polynomial with p(T)=3"_oa,; T/ =0 (T°=1).

(@) If p(2)%0, then zEp(T) and R(z, T)=[p(2)] 'q(z, T) with q(z, T)=
S0z Sk @ T

(b) If p is a polynomial of minimal degree, then o(7) is the set of zeros of p.

Let T be a closed operator on the Hilbert space H. Then the function
z> R(z, T) is holomorphic on p(T) as a function with values in B(H, D(T)),
where D(T) is equipped with the T-norm.

Hint: Use the inequality [|[R(zp, T)I"* Yllgm, oy < 1R(Zos Tllacw, oy X
[R(zo, T))|" and Theorem 5.14.
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5.3 Symmetric and self-adjoint operators

Theorem 5.18, Let T be a Hermitian operator on the pre-Hilbert space H.
Every eigenvalue of T is real; eigenvectors belonging to different eigenvalues
are orthogonal. If H is complex, then for any z € C\R the operator z — T is
continuously invertible, and we have ||R(z, T)|| < | Im z| ™! (this holds true in
particular for symmetric and self-adjoint operators).

PROOF. Let z be an eigenvalue of T and let f € N(z — T), f#0. Then
¥ fIP=LTf, > ={f, Tf> =z|| f|% thus z=z* i.e,, z ER. If z,, z, are two
distinct eigenvalues and f,, f, are corresponding eigenelements of 7', then,

as the z; are real, we have (z,— z)){f, o> =<Tf}, f,> — {f, Tf,» =0.
Therefore {f}, f,> =0. With z=x+ iy (x, y ER) we have for all f € D(T)
that

Iz = TI? = I(x = T)f + inf|?

= l(x = DfI* + [yPIAP > | Im 2P| £

For z€C\R it follows from this that (z— T) is injective and that for
g=(z—T)f€D(R(z, T)) we have

IR(z, T)gll = Ifll < |Imz|7Y(z=T)f]| = | Imz|~ '} g,
therefore

|R(z, T)|| < |Imz|™". ]

Now we prove a simple criterion for the self-adjointness of a symmetric
operator.

Theorem 5.19. Let T be a symmetric operator on the Hilbert space H. If
H=N(s—T)+ R(s—T) for some sE€R, then T is self-adjoint and H=
N(s — T)D R(s — T). Special case: If R(s—T)=H, then T is self-adjoint
and N(s— T)={0}.

Proor. From T=T** and T c T* it follows that N(s— T)c N(z — T)
=R(s— T*)* CR(s— T)*, thus that N(s— T) L R(s—T) and H= N(s —
T)® R(s — T). Therefore we have

N(s—T) =R(s—T)"
and
R(s—T) =N(s—=T)" DN(s—T)" DR(s— T*).

We show that D(T*)c D(T). This together with the inclusion T c T*
implies T'=T*. Let f&€ D(T*), g=(s— T*)f. Because of the inclusion
R(s—T*)CR(s—T) there exists an f,&€ D(T)C D(T*) such that (s—
™y =(s—T)f,=g=(s—T*)f. We therefore have f— f,& N(s— T%)
=R(s—T) =N(s— T)c D(T) and thus f € D(T). O
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A symmetric operator T on a Hilbert space is said to be essentially
self-adjoint provided that T is self-adjoint.

Theorem 5.20. A symmetric operator T on a Hilbert space is essentially
self-adjoint if and only if T* is symmetric. We then have T = T*.

ProOF. If T is essentially self-adjoint, then T*=(T)*=T = T**, conse-
quently 7* is self-adjoint (therefore symmetric) and we have T'= T*. If T*
is symmetric, then since T is symmetric by Theorem 5.4(b) and (T)*=T*
holds, we have T c(T)* = T* C T** =T, hence T= (T)* O

Theorem 5.21. Let T be a symmeitric operator on a complex Hilbert space H.
The operator T is self-adjoint (essentially self-adjoint) if and only if R(z, —
T)=H (R(z, — T)=H) for some z, with Imz_ >0 and some z_ with
Im z_ <O (this then holds for all z_ with Imz,_ >0 and z _ with Im z_ <
0).

Proor. Let R(z,. — T)=H for some z_ such that Im z, >0 and some z _
such that Im z_ < 0. As T is symmetric, the operators z, — T are injective,
therefore bijective, and by Theorem 5.18 we have ||(z,—T)7 || <
| Im z_.|~'. By Theorem 5.11 the operator z — T is also bijective for all z
such that [z—z_|<|Imz,| or |z—z_|<|Imz_|. Since ||[(z—T)7"|| <
| Im z|‘l for all z such that Im z5=0, we can iterate this procedure and
obtain that (z— T') is bijective for all z € C\R, in particular for z=*
(cf. also Exercise 5.33).

As T is symmetric, we have T C T*. To prove that T'= T*, it is enough
to prove that D(T*)C D(T). To this end, let f€ D(T*) and let f,=
(i— T)"'(i — T*)f. Then we have f,€ D(T) C D(T*), Tfy= T*f,, and (i —
T f—f)=—=T*f—(—T*)fo=(— T)fy—(i— T)fy,=0. Therefore

f=foEN(i—T*) =R(—i- )" =H* = {0},

thus f= f, € D(T).
If R(z, —~T)=H, then R(z,— T)=H by the proposition following

Thecrem 5.2. As T is also symmetric by Theorem 5.4(b), the self-adjoint-
ness of T follows from the part already proved.

Let T now be self-adjoint and let z € C\R. Then R(z, T) is closed and
bounded, therefore D(R(z, T))= R(z—T) is closed. Consequently, it is
enough to show that R(z — T)* = {0}. To this end, let # L R(z— T). Then
by Theorem 4.13(b) we have he N((z— T)*)=N(z*—T). Since T is
self-adjoint, 7 has no non-real eigenvalue, thus 2 =0.

If T is essentially self-adjoint, i.e., T is self-adjoint, then by the proposi-
tion following Theorem 5.2 we have

R(z.—T)=R(z,—T) =H. O

Theorem 5.22. If T is a symmetric operator on the complex Hilbert space H
and for some nEN, n > 2 we have R(i — T")=H or R(—i— T")= H (respec-
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tively R(i—T")=H or R(—i—T")=H), then T is essentially self-adjoint
(respectively self-adjoint).

PROOF.
(@) Let A(i— T")=R(T" —i)=H. There are numbers y, €C such that
Imy, >0, Imy_<0and y] =i. We then have

(T"=i) = (T—y T+ Ty + - - + Ty 4+y170),
hence R(T—vy.)DR(T"—i)=H. Therefore T is essentially self-
adjoint.

(b) If R(T" + i) = H, then we choose y, €C so that y,. = —i.
The proof of self-adjointness is similar. n
Theorem 5.23.

(a) The symmetric operator T on the complex Hilbert space H is self-adjoint
if and only if o(T) CR.

(b) If T is self-adjoint on the (real or complex) Hilbert space H, then
s €0,(T) if and only if R(s — T)5 H. For z & 0,(T) we have R(z, T)* =
R(z*, T).

PROOF.

(a) By Theorems 5.18 and 5.21 the operator T is self-adjoint if and only if
z— T is surjective and continuously invertible for all z € C\R, i.e., if
and only if C\R c p(T), or, equivalently, o(T) C R.

(b) Assume that T is self-adjoint and z € 0,(T). As 0,(T) C R, we also have
z* @ o,(T). Therefore R(z— T)* =N(z*— T*)= N(z*— T)= {0}, ie,
R(z— T)=H. Now let R(z — T)=H. Since R(z — T)=H for all z€C\
R, we also have R(z* — T)= H, and thus N(z — T)= N(z — T*)= R(z*
~T)*={0}, ie, z&0,(T). If z&0,(T), then z—T*=z—T is
densely defined, injective and R(z— T)= H. Therefore R(z, T)*=
(G=-T)YW=(@(z-—T))"'=(E*—T)"' = R(z*, T) by Theorem
4.17(b). 0

Now we obtain an especially simple characterization of the spectrum (or
the resolvent set) of a self-adjoint operator.

Theorem 5.24. If T is self-adjoint, then the following statements are equiv-
alent:
1) z€p(T),
(ii) there exists a ¢ >0 such that ||(z— T)f|| Zc| f| for all f€D(T) (i.e.,
(z— T) is injective and ||R(z, T)|| <c™"),
@ii1) R(z—T)=H.
(This theorem is in general false for symmetric operators.)

Proor. If z €p(T), then (z — T) is injective and R(z, T) is continuous. If
(z—T) is injective and R(z, T) is continuous, then z & ¢,(T) and thus by
Theorem 5.23(b) the set D(R(z, T))=R(z— T) is dense in H; as R(z, T') is
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closed, we have R(z — T)=D(R(z, T))=H. If R(z, T)=H and z €R, then
N(z — T)= N(z* — T*)=R(z — T)* = {0}; therefore z — T is bijective, i.e.,
z€p(T). If Im z+0, then z € p(T) by Theorem 5.23(a). ]

For the proof of any further criteria for self-adjointness we need some
auxiliary results. In complex Hilbert spaces the theorem of Rellich-Kato
(Theorem 5.28) can be proved directly somewhat more rapidly (cf. Exer-
cise 5.35). Here we obtain it (also for real Hilbert spaces) as a special case

of more general results. The auxiliary results gathered here will be used at
other places, as well.

Theorem 5.25. Assume that H, and H, are Hilbert spaces, A and B are
operators from H, into H, such that

D(A) c D(B) and ||Bf|| < C||Af|| for f & D(A)

with some C > 0. For every k €K let P, denote the orthogonal projection
(from H,) onto R(A + kB). Then ||P,— Py||—0 as k—0.

PRrOOF. For |k| <(1/2C) and for all f € D(A) we have
IBfll < ClIAf|| < C{II(A+«B)f||+|x] |BfI} < C[I(4+«B)f|| +3l5Bfll,

therefore
I Bf|| < 2C||(A+ xB)f]|l.
For h € R(P,)* =R(A)" = R(4)* we thus have
| Pchl| = sup {|<h, g>| : gER(A+«B), || gll <1}
= sup {|[<h, (4 +kB)f>|: fED(A), ||[(4+kB)f|| < 1)
sup {|<h, kBf )| : f€ D(A), [[(A+ «B)f[| <1}

< || |4 sup (|| Bf|| : f €D(A), [[(4 + kB)f|| < 1}
< 2Cx] ||Al.

We can prove in a completely analogous way that for all A€ R(P)* =
R(A +kB)*

1Poh]| < Clx] |A]|.
Via Theorem 4.33 we obtain that ||P,— Py|| <2C|k|. This proves the
theorem. 0

Theorem 5.26. Assume that H, and H, are Hilbert spaces, T and S are
operators from H, into H,; T is closed, and S is T-bounded. Furthermore,
denote by 2 the set

Q= {z€K : T+ zS is closed }

and for every z € 8 let Q, denote the orthogonal projection from H, X H, onto
G(T + zS). Then 82 is open and the function z\— Q, is continuous on §2 (with
respect to the norm topology of B(H, X H,)).
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Proor. If z,€ £2, then T+ z,S is closed and D(T + z,S)=D(T). The
operator S is therefore (T + z,5)-bounded by Theorem 5.9. Hence T + zS
is closed for z sufficiently near z,. Thus £ is open. Let us define the
operators A and B from H, into H; X H, by

D(A)=D(T), Af=(f, (T+zS)f),
D(B)=D(T),  Bf=(0, §f).

Then the assumptions of Theorem 5.25 are obviously satisfied and the
equalities R(A)= G(T + z,5) and R(A + kB)= G(T +(z,+ «)S) imply the
continuity of z+> (0, at the point z,. O

With this we can now obtain a general theorem on the perturbation of a
closed operator and its adjoint.

Theorem 5.27. Assume that H, and H, are Hilbert spaces, T and S are
operators from Hy into H,. Let T be densely defined, let S be T-bounded, let
S* be T*-bounded, and let

Q= {z€K : T+:zS and T*+ z*S* are closed },
2, = the connected component of §2 that contains zero.

Then (T+ zS)* = T* + z*S* for all z € §,

Proor. Let Q, be the orthogonal projection (in H; X H,) onto G(T + zS)
and let Q] be the orthogonal projection onto U “1G(T* + z*S*), where U
is defined as in Section 4.4. By Theorem 5.26 the operators @, and Q;
depend continuously on z for z € £ and Qy+ Q= I x4, = I (as we have
G(T)D U 'G(T*)=H, X H,). For every z€WK we have T*+z*S*C
(T + zS8)*, 1.e,,

U™'G(T*+ z*S*) c U™'G(T+28)* =G(T+ zS)".

By Theorem 4.30(a) we therefore have Q,Q; = Q/Q,=0,1.e,I1—- Q,— Q; .
is an orthogonal projection for any z € 2. Consequently, ||[I— Q, — Q||
assumes only the values O and 1. Since, on the other hand, ||/— Q, — O/||
depends continuously on z € £, it follows that |1 — Q,— Q/||=|1— Qy—
Q=0 for all z €€ 2, therefore G(T*+ z*S*)= UG(T+ zS)" = G(T +
zS)*), and thus T* + z*S* = (T + zS)* for all z € §2,. ]

If the relative bounds of S with respect to T and of S* with respect to
T* are less than 1, then it follows that (T + S)*=T*+S* (Hess-
Kato [42]), since in this case {z €K : |z| <1} C £, by Theorem 5.5. If we
specialize this result for self-adjoint operators 7" and symmetric operators
S, then we obtain the following important result.

Theorem 5.28 (Rellich-Kato). If T is self-adjoint (essentially self-adjoint) on
the Hilbert space ™, the operator S is symmetric and T-bounded with
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T-bound less than 1, then T + S is self-adjoint (essentially self-adjoint with
T+ S=T+S and D(T + S)= D(T)).

PRrOOF.

(a) If T is self-adjoint (T = T*), then because of the inclusion S C S* the
operator S* is T*-bounded with T*-bound less than 1. In Theorem
5.27 we therefore have {z€K : |z|<1}C £, and thus (T+ S)*=
T*+S*=T+S.

(b) Let T now be essentially self-adjoint, i.e., let T be self-adjoint. First we
show that S is T-bounded with T-bound less than 1 (more precisely,
equal to the T-bound of S). To this end, let f € D(T). Then there exists
a sequence (f,) from D(T) such that [, —f, Tf —Tf. From the T-
boundedness of § it follows that (Sf,) is a Cauchy sequence, therefore
feD(S), Sf,— Sf and

ISfIl = lim [|S£,|| < lim (al|f,|| + I TF,||) = all fI| + bI|Tf}.

By part (a) the operator T+ S is therefore self-adjoint. From the
inclusion T+ S c T+ S and from the closedness of T+ S it follows
that T+ SCc T+ S. By Theorem 5.5 and by the equality D(T+S)
= D(T) it follows that D(T + S) =D(T + S), and therefore
T+ S=T+S. m

Theorem 5.29 (Wiist [58]). Let T be a self-adjoint operator on the Hilbert
space H, let S be symmetric and T-bounded, and let

Q= {z€K : T+:zS and T+:z*S are closed },
§2, = the connected component of §2 containing zero.

For every z €RN 82, the operator T + zS is self-adjoint. Special case: If
T+ S is closed for all t €[0, 1], then T+ S is self-adjoint.

PrOOF. We have (T+zS)*=T+:5*=T+zS for every z€RN £, by
Theorem 5.27. L]

Theorem 5.30 (Wist [57]). Let T be essentially self-adjoint on the complex
Hilbert space H, let S be symmetric with D(T) C D(S) and let ||Sf|| <al| f]|
+ || Tf|| for all f € D(T) with some a>0. Then T+ S is essentially self-
adjoint.

PrROOF. Let A = T+ S. We show that R(p — A)* = {0} for p€{i, —i}. For
this, let (z,) be a sequence from (0, 1) such that z,—1. By Theorem 5.28 the
operator A, =T + ¢, S is essentially self-adjoint for any n» €N, and we have

(4= A4)fll = (A= )ISFI < all fll + I TSIl — &,]| 51
<alfll + T+ 6,8l = allfIl + 4.1 (5.16)
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Now let hER(u— A)*-. As A, is essentially self-adjoint, there exists an
f, € D(A,) = D(A) such that

1
I(n—A,)f, —hll < —, n€N.

Therefore
h=1m(p—A4,)f,. (5.17)

Because of the inequality [|(p—A4,) || <1 we have ||f,|| <||(p—4,)f,]-
Consequently,

lim sup || f,[| < [I4].
By (5.17) it follows from this that
lim sup [|4,f,]| < 2||A]|
and thus because of (5.16)
lim sup [|(4, — 4) || < lim sup [all £, +[|4,/]l] < clAl,

with c=a+2. As D(T) is dense, for every € >0 there exists an A € D(T)
such that ||h— h | <e. Because of the relation A € R(p— A)*, it follows
that

2] = lim <k, (p—4,)f,> = lim <hy (A= 4,) £,

=lim [<h—h, (A= A4,)f)>+<h, (A= A4,)f,)]

< ||lh — k|| lim sup [|(4 — A,) f,|| + lim sup||(4 — A,)k]| |/,
< cllhlje + lim sup (1—2,)|[Sk|l [| /Il = c[|Alle.

Since this holds true for all € >0, we have h=0. O

EXERCISES

5.31. Let T be a symmetric operator on the Hilbert space H.
(a) If His complex, then T is essentially self-adjoint if and only if 0,(7*) CR.
() If H=N(s—T)+ R(s—T) for some sER, then T is essentially self-
adjoint and we have N(s— T)=N(s—T) and R(s— T)=R(s— T)
(¢) If s— T is continuously invertible and R(s — T')= H for some s €R, then
T is essentially self-adjoint.

5.32. Let H be a real Hilbert space, and let T be an operator on H.
(a) The space Hg=H X H, with the addition (f;, g,)+(hg)=(fi+ /. 81+
g), multiplication by a scalar (a+ ib)(f, g) = (af — bg, ag + bf) and scalar
product {(f\, 1), (f2, 82)> =<Sv, o) +i{f1, 820 — i 81, fo) + {81, 82, Is a
complex Hilbert space, the complexification of H.
(b) By setting D(T¢)={(f, ) € He : f, g € (T)} and Te(fy, f2)=(Tf,, Tf,) a
linear operator T¢ is defined on Hs. We have:
(1) T¢ is bounded (respectively belongs to B(Hg)) if and only if T is
bounded (respectively belongs to B(H)). We have || T¢|| = | T|-
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(i) D(T¢) is dense if and only if D(T) is dense.

(iii) T¢ is symmetric if and only if T is symmetric.

(iv) T¢ is (essentially) self-adjoint if and only if T is (essentially) self-
adjoint.

T¢ is called the complexification of T.

5.33. Let T be a closed symmetric operator on the complex Hilbert space H, and

let P, denote the orthogonal projection onto R(z — T) for z € C\R.

(a) The mapping z+> P, is continuous on C\R with respect to the norm
convergence in B(H).

(b) If R(zo— T)=H for some zy € C such that Im zy >0 (respectively Im z,,
<0), then R(z— T)=H for all z&C such that Im z >0 (respectively
Im z <0).
Hint: Use Theorem 5.25.

5.34, Let T be (essentially) self-adjoint on the Hilbert space H, and let S be
symmetric such that D(T) cD(S) and Re {(Tf, Sf> > — (a|| fII* +
I TS| I|SfI) for all f&€ D(T) with some b < 1. Then T+ ¢S is (essentially)
self-adjoint for all ¢ > 0.
Hint: For >0 we have || ]|+ |/l < Cy(I(T+ 3)fl| + Il £ < Co(1 TF1| +

11D

5.35. (a) Let T be a self-adjoint operator on a complex Hilbert space, and let S be
T-bounded with T-bound <1. If ¢>0 is large enough, then [|Sf|| <
bl(xic— T)f|| for all f&€ D(T) with some b < 1. Using this, prove the
theorem of Rellich-Kato (Theorem 5.28) for complex Hilbert spaces.

(b) Using part (a) and Exercise 5.32, prove the theorem of Rellich-Kato for
real Hilbert spaces.

5.4 Self-adjoint extensions of symmetric operators

If S is a symmetric operator, then S C S*. For every symmetric extension
T of S we have (cf. the proposition preceding Theorem 4.19) SCc T c T*C
S*, It seems plausible that there exists a sufficiently “large” extension T of
S that is self-adjoint. For this we would have

S cT=T*cS* (5.18)

In this section we begin with some simple investigations concerning the
problem of the existence of a self-adjoint extension of a symmetric opera-
tor (cf. also Sections 5.5 and 8.1 to 8.3).

Theorem 5.31.

(a) If T, c T, are self-adjoint operators, then T, = T,.

(b) If S is a symmetric operator and T, and T, are self-adjoint extensions of
S such that D(T)) C D(T,), then T, =T,.

(c) If S is essentially self-adjoint, then S is the only self-adjoint extension of
S.



5.4 Self-adjoint extensions of symmetric operators 115

PROOF.
(a) It follows that T\, C T, =Ty C Ty =T, thus T, = T,.
(b) Forall f € D(T,) c D(T,) and for all g€ D(S) c D(T,) c D(T,) we have

(Tof, 8> =<{f Thg) =</, Sg) ={f, T1g> =<T\/, 8.

Since D(S) is dense, it follows that T, f=T, f for all f &€ D(T)), i.e.,
T, c T,. From part (a) it follows that T, = T,.

(c) If T is a self-adjoint extension of S, then we have S C T, since T is
closed. The equality S = T now follows from part (a). ]

The following theorem ensures the existence of self-adjoint extensions for
two large classes of symmetric operators. A symmetric operator S on the
Hilbert space H is said to be bounded from below if there exists a yER
such that {f, Sf> > v|| f||* for all f € D(S). Every y of this kind is called a
lower bound of S. The least upper bound of all lower bounds is also a lower
bound. If 0 is a lower bound of S, then S is said to be non-negative. The
concepts bounded from above, upper bound, and non-positive are defined
similarly. If an operator is bounded from either below or above, then it is
said to be semi-bounded. Besides the semi-bounded operators, the following
simple theorem also treats the continuously invertible symmetric operators,
1.e., those symmetric operators S, for which || Sf|| > y||f|| with some y >0
(cf. Exercise 5.14).

Theorem 5.32. Let S be a symmetric operator on the (real or complex)
Hilbert space H, and assume that {f, Sf) >v|| f|* with some y €R (respec-
tively || Sfll > v||f|| with some y>0) for all f € D(S). Then for each x €
(— 00, v) (respectively k € (— y, Y)) there exists a self-adjoint extension T, of

S such that {f, T.f)> >«| f||* (respectively [[T.f| > || ||fll) for all fE
D(T,). We have N(x — T.)= N(k — S*)=R(x— T,)"*.

PROOF. The operator S is closable and S obviously satisfies the same
assumptions, also. Therefore we can assume without loss of generality that
S 1is closed. In the first case we have for all k €(— o0, y) and f € D(S),
f#0 that

I(S =) fll > [K(S =)L LA
> CSEF AT = wlfll > (v=ol Sl

In the second case we have for all k €(— v, y) and f € D(S) that
I(S =) Il = ISFI = |l 1Al = (v = [«DI AUl

Consequently, in both cases S —« is continuously invertible. The range
R(S — k)= D((S — k)™ ") is therefore closed. From this it follows that

R(S—k) + N(S*—«) =R(S— k) + R(S —x)* =H, (5.19)
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Because of the equality N(S* — k)N D(S) = N(S — k) = {0}, the sum D(S)
+ N(S* — k) is a direct sum. Hence we can define

D(T,) =D(S) + N(S* — k),
T(fi+f,) = Sfi + fy for f, €D(S), f, € N(S* — ).

We obviously have N(x —T, )= N(x —S*). The operator T, is symmetric,
because D(T,) is dense (since D(7,)D D(S)) and for all f,, g, € D(S),
I 8, € N(S* — k)= R(S — k)~ we have (observe that (T, — k)f, = (T, — k)g,
=0)
i+ fo (T, =) (g1+8)) =i+ (S—1)g)
= {fi, (S—x)g> = A(S—w)f1, 81)
=(S—K)f1, 8 + &
= T, = )i+ 1), 81 + 820
By Theorem 5.19 the operator T, is self-adjoint, since because of (5.19) we
have H= R(S — k) + N(S* — k) = R(T, — k) + N(T, — «). Besides, for all f;
€ D(S), f, € N(S* — k) we have

o+ fo T+ 1)) = oo SO + (S i) + k[ f2) + A1
> YIAIP + k[ 1D + S D+ UAIP] >kl + fol?

in the first case, and

“Tx(fl +f2)||2 = (Sf; + «f Sfi + wfy)
= ||Sf1||2 + kS, S*f) + k(S*fp, f1> + "2||f2”2
> YA+ [ So o>+ o 11D +IAIP] 2 €1+ £l

in the second case. ]

In order to sharpen the results of Theorem 5.32, we first prove an
extension theorem for bounded Hermitian operators.

Theorem 5.33. If A is a bounded Hermitian operator on the Hilbert space H,
then there exists a self-adjoint extension B € B(H) of A such that ||B| =
A|l. If R(A) is dense, then every self-adjoint extension of A is injective.

ProOF. If ||4]|=0, then B=0 is the required extension. Therefore let
|4]| #0. Without loss of generality we may assume that ||4||=1. Since
along with A4 its closure 4 is also Hermitian and ||4||=|{4||, we may also
assume that 4 is closed, i.e., D(A4) is closed. Let P be the orthogonal
projection onto D(A). Then we have

A=A+ A, with 4, = PA, A,= (I-P)A.
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We consider A, as an operator from H into the Hilbert space D(A4) with
D(A,)= D(A) and A4, as an operator from H into the Hilbert space_ D(A)*
with D(A4,)= D(A4). F1rst we show: There exist extensions A, and 4, of A,

and A2, respectively, such that D(Al) D(Az) H, F?(A l)CD(A) R(A,)
C D(4)* and

14, fII? + | Ao fI? < || fI? forall feEH.
We define the operator A , by
= (4P)*.

Then we have [|4,||=[|[AP|| < ||A|| and R(A,) C N(AP)* c D(4). More-
over, for all f€ H and g € D(A) we have

(fy A gy = (APf, g> = (Pf, Ag) = {f, 4,8).

Therefore A,g=A,g, and thus 4, C A,. Because of the relation |4, f]| <
14 1A < AT A= 1L £]] the equality

[ s g] = <f’ g> - <‘Zlf’ ‘Zlg>
defines a semiscalar product on H. The set

N={feH:[f f]=0}

is a closed subspace of H. (If f,gEN, a€lK, then af EN and [f+ g,
f+gl=2Re[f, gl <2{lf flg gl}'/*=0, therefore f+gEN. If (f)) is a
sequence from N such that f, —f € H, then [f, f1={f, f) —</flf, A~lf> =
lim,  {{f,f,>—<A4,f, A, f,> =0, therefore f € N). Let Hy=N~ and let
P, be the orthogonal projection onto H,. By construction, we have [ f, f]#

0 for all non-zero f € H,, i.e., [.,.] is a scalar product on H, For every
f € H we have

[Pofs Pof] =[f—(I—Py)f,f— (1= Py)f]
=[£f]=2Re [f, (1= P)f] +[(I=P)f, (1= P f] =[ £, f]-
For f € D(4)N N we have
142 fIP = (1= P)AS|* = | AfI* — | PAS)?
= [AfI> = 14 S < IFIP = 14 f1> =[f. f] = 0.
Therefore A, f= A,g for f— g € D(4)N N. Consequently, the equalities

D(l‘i\z) = PoD(A),
Ayg = A,f for g= P,f €D(4,)
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define a linear operator from H, into D(A4)*, and for all g=P,f € D(/fz)
we have

1,811 = |42 S = (I~ P)AS, Af) = {Af, Af> = <A\ [, A\ f)
SCAS) =LA ALY =[ff] =[Pof Pof] =] 8 8]

From this it follows that A, can be extended to an operator C from H, into
D(A)* such that D(C)= H, and

ICfII? <[ f.f] forall f€H,

(cf. also Exercise 4.16). Let us now define A, by

~

A, = CP,

Then for all feH
142 £ = ICPoSfI* < [Pof, Pof] =[ . f],
consequently
1A+ AP < (1P
Since for all f € D(4) we have
Ayf = CPyf = APy f = A, ,
the operator A, is an extension of A,. Therefore 4 = A . +ff2 is an exten-

sion of A=A, + A, and [|A|| < 1. Since for all f € D(4) and all g€ H we
have

(A, g) = (f, (A, + Ay)g) =S, A, 8) + {f, A,8)
= (f,A,g) = {f, (AP)*g) = (Af, 8>,

the operator A* is also an extension of 4. Hence
B =1(A+A4%)
is a self-adjoint extension of 4 such that ||B||=1.

Now let R(A4) be dense and let B be a self-adjoint extension of A. Then
R(B) is also dense, consequently N(B)= N(B*)= R(B)* = {0}. ]

Theorem 5.34. Let S be a symmetric operator on the (real or complex)

Hilbert space H.

@) If ||Sfll =2yl fll Jor all f&€ D(S) with some y >0, then there exists a
self-adjoint extension T of S such that || Tf|| > v|| f| for all f € D(T).

(b) If S is bounded from below, then there exists a self-adjoint extension T of
S with the same lower bound (cf. also Theorem 5.38, Friedrichs’ exten-
sion).

PROOF.
(a) The operator 4 =S ~! is Hermitian ({4Sf, Sg> ={/f, Sg> ={(Sf, g)> =
(Sf, ASg> for all Sf, Sg € D(4)=R(S)) and bounded, ||4||<y~'; 4 is
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injective and R(A)= D(S) is dense. Therefore by Theorem 5.33 there
exists an injective self-adjoint extension B of A4 such that || B| =||4] <
y~!. Then T= B ! is a self-adjoint extension of S and | Tf|| > v f||
for all fE€ D(T).

(b) Without loss of generality we may assume that y =0. As in the proof of

Theorem 5.32, we can show that 7 + S is continuously invertible. Let us
define A4 by

A=U-S)(I+S5)"

Then A is Hermitian, because for all f=(I+ S)f,, g=( + S)g, € D(A4)
= R(I+ S) we have

Af, g) =I—=8)fo (1 +5)go)
= {fo» 80> — {Sfo &o> *+ {Jo» S80> — {Sfo» S8o»>
= {Jo 80> — {fo» S80) + <SSy 8> — {Sfo» g0,
= (I +8)fo, (1—S)go» = {f, Ag).

It follows from the definition of 4 that
I—A4=U+S)I+8) ' —(I-8)I+S) '=25(+8)"",
I+A4=21I+5)".
Consequently, I + A4 is injective and
S=U-A)I+4)"".
A is bounded with norm ||A4|] < 1, since for all f € D(4) we have

AP = IAf)? = I —A)f, I+ A) f
= (I-A)I+A)T+A)f, I+ A)f
={(S(I+A)f,(I+4)f> > 0.

Therefore by Theorem 5.33 there exists a self-adjoint extension B of 4
such that ||B||=||4|. By the same theorem I+ B is injective, since
R(I+ A)= D(S) i1s dense. The operator

T=({I-B)(I+B)"'

is therefore an extension of S. For all f=(I+ B)f,, g=({+ B)g,E
D(T)=R(I+ B) we have

(Tf, g)= <(1_ B)fo, (1+ B)80> = <(1+ B)an (1_ B)80> = {f, Tg),
f, T =T+ B) fo, (1= B) fo> = 1L flP = 11 Bfll* > 0,

i.e., T is symmetric and bounded from below with lower bound 0. We
have I+ T=2(I+B) 'and I- T=2B(I+ B)™ !, hence B=(I—T)(I
+ T)~!. From this it follows that R(I+ T)=D(B)=H, thus T is
self-adjoint (cf. Theorem 5.19). ]
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EXERCISE

5.36. Let 4 be symmetric and semi-bounded.
(a) If A has only one semi-bounded self-adjoint extension, then 4 is essen-
tially self-adjoint.
(b) If the lower bound of A is positive and 4 has only one positive extension,
then A is essentially self-adjoint.

5.5 Operators defined by sesquilinear forms
(Fiedrichs’ extension)

In what follows H will always be a Hilbert space. A sesquilinear form s on
H is said to be bounded if there exists a C >0 such that |s(f, g)| <
C|lfll Il g|l for all f, g € H. The smallest such C is called the norm of s. It
will be denoted by ||s||. If T € B(H), then the equality ¢(f, g)=<Tf, g>
defines a bounded sesquilinear form on H. We obviously have ||¢||= | T||.
Conversely, every bounded sesquilinear form induces an operator on B(H).

Theorem 5.35. If t is a bounded sesquilinear form on H, then there exists
exactly one T € B(H) such that t(f, g)=<{Tf, g> for all f,gEH. We then
have || T} =1].

PrOOF. For every f& H the function g—¢(f, g) is a continuous linear
functional on H, since we have |#(f, g)| <||¢|| || fI| || gll- Therefore for each
f € H there exists exactly one f € H such that tf, g)=< f g The mapping
f> fis obviously linear. Let us define T by the equality Tf = fforall f € H.
By Theorem 4.3(b) the operator T is bounded with norm

IT|I = sup {KTf, g)| : f, g €H, [ fll =1l gl =1}
=sup {|(f, &) :f.g€H |flI=lgl=1} = |l

If T, and T, are from B(H) and (T, f, g>=f, g)=<T,f g» for all
f, & € H, then it follows that T, = T}, i.e., T is uniquely determined. ]

For unbounded sesquilinear forms the situation is much more com-
plicated. We consider only a special case.

Theorem 5.36. Let (H, {.,.)) be a Hilbert space and let H, be a dense
subspace of H. Assume that a scalar product {. , .), is defined on H, in such a
way that (Hy, {.,.>,) is a Hilbert space and with some x>0 we have
k|| fII> < || f]13 for all f € H,. Then there exists exactly one self-adjoint opera-
tor T on H such that

D(T) CH, and {Tf, g> = {f, g» for fED(T), g € H.. (5.20)
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T is bounded from below with lower bound k. The operator T can be defined
by the equalities

D(T) = {f € H, : there exists an f €H such that {f, g,
={f, g) for all g€ H,}, (5.21)
If =/
D(T) is dense in H, with respect to the norm |.||,.

PrOOF. Existence: The element f in (5.21) is uniquely determined, since H,
is dense. Since the mapping fl—>f is also linear, (5.21) defines a linear
operator. We can also consider 7 as an operator from H,=(H,, {., .)))
into H. This operator will be denoted by T,. If J denotes the operator from
H into H, defined by

D(J) =H, cH, Jf=f for feD(J),
then by (5.21) we obviously have
T, =J*

J is closed, since for any sequence (f,) from D(J)= H, such that f,—f [in
H] and f,—h [in H,] we have f,—h [in H] because of the inequality
IE <k Y13 ie., f= h € D(J). Therefore T,=J* is densely defined. Thus
D(T)= D(T,) is also dense in H, (with respect to ||.||,) and, consequently,
in H (with respect to ||.}|), as well. By (5.21) we have for all f, g € D(T) that

(Tf, gy = {figo =[<& S ]* =[{Tg. /O ]* =</, Tg),

i.e., T is symmetric. The self-adjointness of 7 will follow from Theorem
5.19 if we prove that R(T)= H. For this let f & H be arbitrary. Then
g—<{f, g> is a continuous linear functional on H,, since we have

IKE ol < LA el <~ 21100 D gl

Consequently, there exists an f € H, such that

(f,g) =<figy forall g€H,

By (5.21) this means, however, that f€D(T) and f=Tf The semi-
boundedness follows from the inequality

(T f> = P > 6l 115, f € D(T).

T obviously satisfies (5.20), as well.

Uniqueness: Every operator S that satisfies (5.20) is obviously a restriction
of the operator T defined by (5.21). Since T is self-adjoint, it follows that
S c T c S*. If S is self-adjoint, then we necessarily have S=T. ]

In what follows let D be a dense subspace of H and let s be a
semi-bounded sesquilinear form on D, more precisely, let the inequality
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s(f, /)= v|| f]I* be satisfied by some y €R for all f € D. Then the equality
{f, 80, = —y), g>+s(f, g defines a scalar product on D such that
| flly = || fl| for all f&€ D. Moreover, we assume that || . ||, is compatible
with || . || in the following sense: If (f)) is a || . || ,-Cauchy sequence from D
and || f,||—0, then we also have || f,||,—0 (cf. Exercise 5.37; in the theory
of sesquilinear forms such a sesquilinear form s is said to be closable). Let
H; now be a | .|,-completion of D (for example the one that was
constructed in Section 4.3). It follows from the compatibility assumption
that H, may be considered as a subspace of H if the embedding of H, into
H is defined as follows: Let (f,) be a || . ||,-Cauchy sequence in D. Then
(f,) is a Cauchy sequence in H. Let the element lim f, from H correspond
to the element [(f,)] of H,. On the basis of the compatibility assumption,
this correspondence is injective and the embedding is continuous with
norm < 1. The spaces H and H, are related the same way as H and H, were
in Theorem 5.36 (with k =1). Let

5(f,8)=<fig),—(1—y)f,g> for f g€EH.

Therefore 5(f, g) = s(f, g) for f, g € D. The sesquilinear form s is called the
closure of s.

Theorem 5.37. Assume that H is a Hilbert space, D is a dense subspace of H
and s is a semi-bounded symmetric sesquilinear form on D with lower bound
y. Let || . ||, be compatible with || . ||. There exists exactly one semi-bounded
self-adjoint operator T with lower bound vy such that

D(T) CH, and {Tf, g> = s(f, g) forall f € DND(T), g € D.(5.22)
We have
D(T) = { fEH, : there exists an f € H such that

s(f, &)=</, g for all g €D}, (5.23)
Tf = f for fe€D(T). '

Proor. If we replace (H,, <., .>,) by (H,, {., .>,) in Theorem 5.36, then we
obtain exactly one self-adjoint operator T}, such that D(7T,) C H, and

(Tof g) = <fg), forall feD(T,) g€ H,.

T, is semi-bounded with lower bound 1. The operator T= Ty— (1)
obviously possesses the required properties. The uniqueness follows from
the uniqueness of T,. Formula (5.22) implies (5.23), since D is dense (in H,
and in H). O

If S 1s a semi-bounded symmetric operator with lower bound v, then the
equality

s(f.8) = {Sf, &>, f g€ D(S)
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defines a semi-bounded sesquilinear form s on D(S) with lower bound y.
In this case

{f, &8s T<Sf,g> +(1=v)<f, &> and ||fI7 = {Sff> + (A= IAP

for f, g€ D(S). The norm || .||, is compatible with || . |: Let (f,) be a
Il . ||;-Cauchy sequence from D(S) such that f,—0. Then for all n, m €N
we have

LIS = s fuds = Ko S = Junds + {Fos Juu )l
S NSy = Salls + 1S+ T =) 1l

The sequence (|| f,||,) is bounded, || f, — f,.||, is small for large n and m and
for any fixed n we have [|[(S+ 1 —v)f,|| || f.||—=0 as m— co. Consequently it
follows that || f,||,—0 as n— co. This fact makes the following construction
of a self-adjoint extension (Friedrichs’ extension) of a semi-bounded sym-
metric operator possible, where the lower (upper) bound remains un-
changed.

Theorem 5.38. Let S be a semi-bounded symmetric operator with lower bound
v. Then there exists a semi-bounded self-adjoint extension of S with lower
bound v. If we define s(f, g) = {Sf, g)> for f, g € D(S), and H, as above, then
we have: The operator T defined by

D(T) =D(S*)NH, and Tf= S*f for fe&D(T)

is a self-adjoint extension of S with lower bound y. The operator T is the only
self-adjoint extension of S having the property D(T) C H,.

ProoOF. By Theorem 5.37 there exists exactly one self-adjoint operator T
with D(T)C H, and

(Tf,g) =-s(f,8) =<Sf. g> for fED(S)NDT), ge€D(S).
v is a lower bound for T. By (5.23) we have
D(T) = {fEHs : There exists an f € H with §(J, g)
=(f,g> forall geD(S)) (5.24)
Tf = f for fe&D(T)

We can replace 5(f, g) by {f, Sg> in (5.24): If we choose a sequence (f,)
from D(S) such that || f, — f||,—0, then we obtain

5(f, 8) = lims(f,, g) = lim {f,, Sg) = </, Sg).

Consequently, it follows that D(T)= D(S*)N H, and T'= S*| Ty Because
of the inclusions S C S* and D(S)CH, it follows from this that T is an
extension of S. Let 4 be an arbitrary self-adjoint extension of S such that
D(A) c H,. Then A C S* and D(T)= D(S*)N H, imply that 4 C T, conse-
quently 4 =T. O
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Our arguments so far enable us to study the operator product 4*A4, as
well. If 4 € B(H,, H,), then we already know from Exercise 4.19 that 4* A4
1s self-adjoint.

Theorem 5.39. Let (H,, {., .>,) and (H,, {., .>,) be Hilbert spaces and let A
be a densely defined closed operator from H, into H,. Then A*A is a
self-adjoint operator on H, with lower bound 0 (A*A is non-negative).
D(A*A) is a core of A. We have N(A*A)= N(A).

PROOF. As A is closed, D(A) is a Hilbert space with the scalar product

{f, 8)4=<Af, Ag),+ <[, &>y, and || f[| , > || f]|, for all f € D(A). Therefore
by Theorem 5.36 there exists a self-adjoint operator T with lower bound 1
for which

D(T) = { f€D(A) : there exists an f €H, such that

{f,8>.4=<f gy forall geD(4)},
Tf=f for feD(T).

On account of the equality {f, g>, =<Af, Ag)>,+ {f, g)>,, this definition
says that f € D(T) if and only if Af € D(4*) (i.e., f € D(A4*A)) and Tf=f
=A*Af+ f. Hence it follows that T=A*4A + 1, A*A=T~—1, ie., A*A4 is
self-adjoint and non-negative. From Theorem 5.36 it follows that D(A4 *A)
is dense in D(A) with respect to || . ||,, i.e., D(4*4) is a core of A. If
S € N(4), then Af=0€ D(A*) and A*Af=0. Therefore N(4) C N(A*A). If
fEN(A*A), then ||Af||>=<A*Af, f> =0. Therefore N(4*A)C N(A), and
thus N(A*A4)= N(A). 0

Theorem 5.40. Let A, and A, be densely defined closed operators from H into
H, and from H into H,, respectively. Then A¥A,=A¥A, if and only if
D(A,)=D(A,) and || A, f|| = |4, f|| for all f € D(4,)= D(4,).

PrOOF. Assume that D(A4,)= D(A,) and ||4,f|| =||4,f]| for all f € D(A4,).
It follows from (1.4) in the complex case and from (1.8) in the real case
that

(A f,A,8) = (A, f, A,g> forall f, g€ D(A,) =D(A,).

Then the construction of Theorem 5.39 provides the same operator for
A=A, and 4= A,, consequently 4¥4, = A¥ A,. If this equality holds, then
for all fEe D(A¥A,)=D(A*A,) we have

HAlf”2 = <ATA|f’f> = <A;‘A2f,f> = ”A2f||2

(here we have used the inclusions D(4FA4,) C D(A,) and D(A4% A,) C D(A,)).
By Theorem 5.39 the subspace D(4¥A4,)= D(A%A,) is a core of A, and A4,.
As the A,-norm and the A4,-norm coincide on D(4}A,)=D(A}A4,), it
follows finally that D(A4,)=D(A4,) and |4, f||=||A,f]| for all f&€ D(4,)
= D(A4,). L
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EXERCISE

5.37. Let H=L,(0, ). Then D= C'[0, 1] (the space of continuously differentiable
functions on [0, 1]) is a dense subspace of H. The equality s(f, g)={f, g> +
f(3)*g'(3) defines a sesquilinear form on D such that || f||; > || f||. The norm
Il - Il is not compatible with || . ||.

5.6 Normal operators

A densely defined operator T on a Hilbert space H is said to be normal if
D(T) =D(T*) and ||Tf|| = ||T*f|| forall fe& D(T).

Every self-adjoint operator is obviously normal.

ExaMPLE 1. Let M C R™ be measurable and let 1 : M—C be a measurable
function. The maximal multiplication operator T induced by ¢ (cf. Section
4.1, Example 1 and Section 5.1, Example 2) is normal. By (5.1) we have
D(T)=D(T*) and for f € D(T) we obviously have

ITF7 = [ () S0P dx = [ 1) ()P dx = TP

ExaMmpLE 2. According to Section 4.6 an isomorphism U of a Hilbert space
H onto itself is called a unitary operator on H. We have D(U)=D(U*)=H
and ||Uf||=||U*f||=||f]| for all f€ H, 1.e., every unitary operator on a
Hilbert space H is normal.

Proposition.
(1) Every normal operator T is closed and maximal normal (i.e., for every
normal operator N the inclusion T C N implies T= N).
(2) Let T be densely defined and closed. Then the following assertions are
equivalent:
() T is normal,
(1)) T* is normal,
(iii)) T*T=TT*.
(3) If T is normal, then z + T is also normal for every z € K.

PrOOF.

(1) The T-norm and the T*-norm coincide on D(T). Since T* is closed,
that T is closed follows from Theorem 5.1. If N is normal and T C N,
then D(T)C D(N)=D(N*)C D(T*)= D(T). Therefore D(T)= D(N),
and thus 7= N.

(2) The equivalences (i)<>(iii) and (ii)<>(iii) immediately follow from The-
orem 5.40 with 4, =T, A, = T* and from Proposition (1).
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(3) We have D((z + T)*)= D(z* + T*)= D(T*)= D(T)=D(z + T) and for
all fe D(T)
Iz + T)fI? = |2l fI> + 2 Re <zf, Tf ) + || TS|
= |2*P|| fII> + 2 Re z*f, T*f) + || T*f||?
= ||(z* + T*)f|% O

Theorem 5.41. Let T be a normal operator.

(a) For every z €K we have N(z ~ T)= N(z* — T*).

(b) If z,, z, are distinct eigenvalues of T and f|, f, are corresponding eigen-
vectors, then f, 1 f,.

ProOOF.
(a) The statement is evident, as z — 7 is normal.
(b) By part (a) we have

(z) = 2)\f1s fo> =2t fp, fo0 — {fv» 22020
| =LT*f, /) = <{fi T,y = 0.
Consequently {f, f,> =0. .

Theorem 5.42. Let T be normal and injective. Then we have:
(1) R(T) is dense,

(1) T* is injective,

(i) T~ is normal,

(iv) R(T)=R(T*).

Proof. R(T) is dense because of the equalities R(T)* = N(T*)= N(T)=
{0}. Consequently, T* is injective, and we have (7%)"'=(T ~")*. There-
fore it follows that

(T~ T~ =(T9) 7T~ = (TT") 7" = (T*T)""
=TT '= T (T H*
i.e., T~ !is normal. It also follows that

R(T) =D(T~") =D((T~")*) =D((T*) ') =R(T*).

Corollary. If T is a normal operator, then R(z, T)=(z— T)~" is normal for
all z & 0,(T). This holds in particular for a self-adjoint T.
Theorem 5.43. If T is normal, then
p(T) = {z€WK : (z—T) is continuously invertible }
= {z€K : R(z—T)=H},
0,(T) = {z€K : R(z— T)#Hj.

(Compare with Theorems 5.23 and 5.24 for self-adjoint operators.)
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Proor. If z €p(T), then (z — T) "' € B(H) (in particular, z — T is continu-
ously invertible). If z — T is continuously invertible, then (as T is closed)

R(z=T) =D((z=T)"") =D((z=T)")=R(z—T),

and

R(z—T)* =N(z*—-T*) =N(z—T) = {0}.
Consequently R(z — T)=H. If R(z— T)=H, then

N(z—T) =N(z*—T*) =R(z—T)" = {0},
ie., z— T is injective. As T is closed and R(z— T)=H, it follows that
(z=T) '€ B(H), ie., z€p(T).

If z€0,(T), then R(z— T)* =N(z*— T*)= N(z — T)# {0}. Therefore

R(z—T)#H. If R(z— T)#H, then N(z— T)=R(z— T)* #{0}. There-
fore z € a,(T). Cl

Theorem 5.44. If T € B(H) is normal, then the spectral radius r(T) equals
17]|.
ProOF. By Theorem 4.46 we have for all T € B(H)
IT*T|| = sup {|KT*Tf, f> : fEH, || fl| <1}
=sup {|Tf|I* : FEH, | Al <1} = | T|

In particular, ||T?||=||T||* for a self-adjoint 7. We obtain by induction
that for a self-adjoint T

|T%|| = || T forall n€N.

Let T now be normal. Since r(T) < ||T| always holds, we only have to
prove that »(T)> ||T||. Because of the equality r(T)=r(7*) and the
self-adjointness of TT* we have

. n ” 1/2"
(TY = ((T)(T*) = lim {77 |(T*)")1}"
> lm (| T¥(T*") = lim (|(TT*)")'/*

= || TT*| = ||T|[> O

EXERCISES

5.38. If T €B(H), then there exist uniquely determined self-adjoint operators
T,, T, € B(H) such that T=T,+iT,. We have T\=3(T+ T*), T,=(1/2i)
(T — T*). T, is called the real part of T and T, is called the imaginary part of
T. The operator T is normal if and only if 7; and T, commute, i.e., if and
only if T\T, = T,T),.

5.39. Let T be an operator on the Hilbert space H and let M be a closed subspace
of H. The subspace M is said to be invariant under T if T(M N D(T)) C M. If
M and M+ are invariant under T and D(T)=[MnN D(T)]1+[M+ n D(T)),
then M is called a reducing subspace of T.
(a) If Mis a reducing subspace, then M+ is a reducing subspace, also.
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(b) If T € B(H), then M is a reducing subspace of T if and only if M is
invariant under 7 and T*.

(c) M is a reducing subspace of T if and only if TP O PT for the orthogonal
projection P onto M.

(d) If T is densely defined, D(T)= D(T*), and M is a reducing subspace of T,
then M is a reducing subspace of 7*.

Let T be a normal operator on H.

(a) If M is a reducing subspace of T, then M is also a reducing subspace of
T*.

(b) We have R(T)= R(T*). The restriction of T onto N(T)* N D(T) is an
injective normal operator on N(T)>.
Hint: Theorem 5.42.

Let T be a bounded normal operator on H.

(@) If AEa(T), then there is a sequence (f,) from H such that || f,||=1 and
(A= T)f,—0.

(b) In complex case we have || T||=sup {|[{f Tf>|: fED(T), || fll=1}.

If T,, and T are bounded normal operators such that 7, 2 T, then we also
have T} 5T
Hint: T* 5 T* and || T*f]|—|| T*f)) for all f.

Assume that H= @ ,-yH,, P, is the orthogonal projection onto H,, and 7, is
an operator on H,. The orthogonal sum T= @, T, of the operators T, is
defined by

D(T) = {fEH: BIEDT,), S IT,Af <o),

neN

Tf= > T,P.f for feD(T).
neN

(a) If all 7, are self-adjoint (normal, closed), then T is also self-adjoint
(normal, closed).

(b) If D, is a core of T,(nEN), then L{D, : n€N} is a core of T.

(c) If each T, is bounded and sup {||7,]| : nEN} < oo, then T is also
bounded and ||T|j=sup {||T,|| : nEN]}.

(d) If all 7, are non-negative, then T is also non-negative. The Friedrichs
extension of 7 is the orthogonal sum of the Friedrichs extensions of 7,,.

(a) Let 4 be a bounded self-adjoint operator and P an orthogonal projection
in a Hilbert space H. Then PAP is self-adjoint. (See also exercise 6.13 for
unbounded A4.)

(b) A corresponding result for normal operators does not hold in general.
Counterexample is

0 0 1 0 0 0
H=C*:N=|1 0 o],P={0 1 ol
0 1 0 0 0 1

N is unitary with Ne, = e,, Ne, = e¢; and Ne, = e,; P is the projection onto
L(e,, €3). For dim H=2 such an example cannot exist.

(c) If N is normal and P is an orthogonal projection with PN C NP, then
PNP is also normal.



Special classes of linear operators

6.1 Finite rank and compact operators

Let H, and H, be Hilbert spaces. An operator 7 from H, into H, is said to
be of finite rank (of rank m) if R(T) is finite-dimensional (m-dimensional).

Theorem 6.1. Let T be an operator from H, into H, such that D(T)= H,. The
operator T is a bounded operator of rank m if and only if there are linearly
independent elements f,, . . ., f, from H, and linearly independent elements
81> - - - s B Jrom H, such that

Tf = Zl {fs S8 forall feEH,. (6.1)
J—":
Then
T*g = Z, (g 8>f; forall geH, (6.2)
J:

and ||T|| < Z7_,|1 £l | gll- The operator T is of rank m if and only if T* is of
rank m. There is no loss of generality in assuming that either { f,, . .., f,} or
(g .-.,8,) is an orthonormal system.'

Proor. If T has the form (6.1), then R(T)c L(g,, ..., g,) For every
Jo€{1, ..., m} there exists an b, €L(f, ..., f,) such that A, #0, and
h; L J; for j#jo. Since {f,, h; > #0 and Th, ={f, , h; >g;, it follows that all
g; are contained in R(T). This implies R(T)=L(gy, - - - , &,); hence R(T)

'From Theorem 7.6 it follows that both {fir---»fnyand { gy, ..., &,} may be chosen to be
orthonormal if suitable scalar factors are added, ie., If = 27, 15K S, /g

129
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is m-dimensional. Because of the inequality

1Tl < 2 KGO gl < 1A -21 LA 11 gl
j=

Jj=1

T is bounded and || T|| <Z7_,[| fIl Il &lI-
Assume that 7" is bounded, dim R(T)=m, { g, ..., g,} is an ONB of
R(T), andfj= T*g forj=1,..., m. Then for all f € H; we have

7/ = 348 g = 2 Uy

Jj=1

It remains to show that the elements f;, . .., f,, are linearly independent.
Let us assume that this does not hold. There is no loss of generality in
assuming that f; =27 ,a;f. Then

= 3 g = 2 D (@atg) S
J= J=

It would follow from this that R(T) is at most (m — 1)-dimensional, which
contradicts the assumption. If 7" has the form (6.1), then for all f € H,,
gEH,

(& Tf) = 21<fj,f><g,gj> = <Zl<gj,g>f,—,f>.
/-

Hence (6.2) holds for T*. If T is of rank m, then (6.2) implies that 7* is of
rank m, too. The opposite direction follows the same way. Our construc-

tion shows that { g, ..., g,} can be chosen to be an ONS. If the same
reasoning is applied to T*, then we obtain that { f;, ..., f,} can be chosen
to be an ONS. 0
ExampLe 1. If { f;,...,f,} and {g,, ..., g,} are orthonormal systems in

H, and H,, respectively, and u,, . .., u, €K, then
m
Tf= 2 py<fj’f>gp fEHl
j=1

defines an operator T € B(H,, H,) of rank m with ||T||=max {|n|:j=

1,...,m}. We only have to prove the last statement. For all fe H
m
ITAP = 2 1wl HF < [fIPmax ([P rj=1 ..., m}.
j=1
Therefore ||T||<max {|w|:j=1,...,m}. If jo,€(l,..., m} is chosen
such that |y, |=max {|w|:j=1,...,m}, then |Tf || =|uw|; thus ||T| >
| 4,

Let H, and H, be Hilbert spaces. An operator 7 from H, into H, is said
to be compact if every bounded sequence (f,) from D(7) contains a
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subsequence (f, ) for which (7J, ) is convergent (i.e., T maps bounded sets
onto relatively compact sets; cf. Exercise 6.1).

Theorem 6.2. Every compact operator is bounded. If T is compact, then T is
also compact.

PrROOF. Assume that T is not bounded. Then there exists a sequence (f))
from D(T) with the properties ||f,||<1 and ||Tf,|>n for all nEN.
Therefore, no subsequence (f, ) has the property that (T, ) is convergent;
thus T is not compact. Let T be compact. If (f,) is a bounded sequence
from D(T)=D(T), then there exists a sequence (g, ) from D(T) such that
g, —f,]| <n~'. Since T is compact, there_exists a subsequence (g, ) of
(8,), for which (Tg, ) is convergent. Then (7f, ) is also convergent because

of the inequality || Y—’f,,k - Tg, | <n Y T. O

On the basis of Theorem 6.2, together with Exercise 4.7, there is no loss
of generality in assuming that compact operators from H, into H, always
belong to B(H,, H,).

Theorem 6.3. Let H, and H, be Hilbert spaces. An operator T € B(H,, H,) is
compact if and only if Tf,—0 for every weak null-sequence (f,) from H,.

PrOOF. Let T be compact. It is sufficient to prove that every weak
null-sequence (f,) from H, has a subsequence (f, ) such that Tf, —0. Let
(f,) be a weak null-sequence from H,. As T is compact, there exists a
subsequence (f, ) such that (7, ) is convergent; say g =lim Tf, . As f, 50,
by Theorem 4.27 (ii)) and Theorem 6.2 it follows that Tf,,k ¥,0, and thus
g=lim Tf, =w—lim Tf, =0.

Let T now send every weak null-sequence from H, to a null-sequence.
Consider a bounded sequence (f,) from H,. By Theorem 4.25 there exists a
weakly convergent subsequence (f,,k) of (f,); say f, > f. Then f, —f 50
and T(f, —f)—0, by assumption. Therefore (Tf,) is convergent. Conse-
quently, T is compact. ]

Proposition. Let H be an infinite dimensional Hilbert space. If T € B(H) is
compact, then 0 € o(T).

Proor. If (e,) is an arbitrary orthornormal sequence in H, then Te,—0.
Consequently, T is not continuously invertible. 0

Theorem 6.4. Let H,, H, and H; be Hilbert spaces.

(@) If SE€B(H,, Hy) and T € B(H,, H,), and one of these operators is
compact, then ST is compact.

(b) If T\, T, € B(H,, H,) are compact and a, b €K, then aT,+ bT, is com-
pact.

(¢) T € B(H,, H,) is compact if and only if T*T is compact.

(d) T € B(H,, H,) is compact if and only if T* is compact.
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(e) If (T,) is a sequence of compact operators from B(H,, H,) and ||T,— T ||
—0 for some T € B(H,, H,), then T is compact.

PRrOOF.

(a) First let S be compact. If (f,) is a weak null-sequence in H,, then by
Theorem 4.27 (ii) the sequence (T¥,) is also a weak null-sequence. As S
is compact, then STf,—0; hence ST is compact. Now let 7 be
compact. Then Tf, -0 for every weak null-sequence (f,) from H,. Since
S 1s continuous, we also have STf, —0. Therefore ST is compact in this
case, also.

(b) If £, %0in H,, then T, f,—0 and T, f,—0. Hence (aT, + bT,)f,—0.

(c) If T is compact, then the operator T* T is also compact by part (a). Let
T*T be compact. If (f,) is a weak null-sequence in H,, then T*Tf, —0,
therefore

ITF 1 = {Tf,, Tf,> = {T*TY,, f,> - 0.

Consequently, T i1s compact.

(d) If T is compact, then (T*)*T* = TT* is also compact by part(a). Hence
T* is also compact by part(c).

(e) Let (f,) be a weak null-sequence from H,. The sequence (f,) is then
bounded, say || f,|| <C for all n €N. We show that Tf,—0, ie., for
every € >0 there exists an ny €N such that || 77 || <e for n >n, Let
€ >0 be given. Since |7, — T'||—>0, there exists an myE N such that

IT,, — Tl < 4eC™".
Since 7, is compact, there exists an n, € N for which
I T, foll <3€ forall n > ny,

It follows from this that for all n > n,

1Tl < (T = T ) fll + 11 T Sl < e O]

We denote by B (H,, H,) the set of compact operators from B(H,, H,)
(the index oo will be justified in Section 7.1). If H=H,=H,, then we
briefly write B (H).

Proposition. It follows from Theorem 6.4 that B, (H) is a closed two-sided
ideal of B(H).

Every rank 1 bounded operator from H, into H, is compact (because T
has the form Tf={g, f>h with g€ H,, hEH,; for every weak null-
sequence (f,) we therefore have Tf =g, f,>h—0). By Theorem 6.4(b)
then every finite rank operator 1s also compact, and by Theorem 6.4(e) so
is every operator that is the limit, with respect to the norm of B(H,, H,), of
a sequence of finite rank operators. Actually, these are all the compact
operators.
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Theorem 6.5. An operator T € B(H,, H,) is compact if and only if there
exists a sequence (T,) of finite rank operators from B(H,, H,) for which
| T, — T||—0. For every compact operator T the subspaces N(T)* and R(T)
are separable.

PROOF. One direction has already been proved. Let T' now be compact.
First we show that N(T)* is separable. Let {e, : « € A} be an ONB of
N(T)*. As T is compact, Te, —0 for every sequence (a,) from A such that
a, 7 a,, for ns=m. It follows from this that for every ¢ >0 there exist only
finitely many « € A such that || Te || > €. Consequently, the set A is at most
countable, i.e., N(T)* is separable.

Let {e, : nEN} be an ONB of N(T)* (if N(T)* is finite dimensional,
then the following reasoning is simpler), and let P, be the orthogonal
projection onto L(e;, ..., e,). Then Pm—s> P, the orthogonal projection
onto N(T)*. The operators T,, = TP,, are of rank at most m (T,,f=2"_ <
e,, f)Te,); thus they are compact. For every m there exists an f, € H such
that ||f =1 and [(T—T)fI>IT~=T,l/2. As {(P— P,)fm 8> =<
£, (P— P,)g>—0, it follows that (P — P, )f, - 0. Therefore (T — T, )f, =
T(P—-P,)f,—0, since T is compact. Hence || T~ T, || <2|(T— T,)f,||—
0,1e.,T,->7.1If {g, : nEN} is a countable dense subset of N( T)*, then
{Tg, : n€ N} is dense in R(T). Therefore R(T) is also separable. N

Now we want to study the spectrum of a compact operator. For this we
need the following theorem.

Theorem 6.6. Assume that H is a Hilbert space, T € B (H), A\€K, A+#0.
Then R(A— T) is closed.

PrOOF. Let g€ R(A— T'). Then there exists a sequence (f)) from H such
that g, =(A—T)f,—g. If f, is the orthogonal projection of f onto
NQA - T)*, then g, =\ — T)f,. If the sequence (f,) is not bounded, then
we can assume that || f,||—>co (since this holds for some subsequence of
(f,)). For h,=|f,||”"f, we then have ||k ||=1 and \— T)h,—0. As T is
compact, there exists a subsequence (h,) of (h,), for which (7h,) is
convergent. Then the sequence A, =A7 (|| f, |]"gn + Th, ) tends to an
element 4 € H. Because of the relations h, € N(}\ T)L and th,ll=1 we
have h€ NAA— T)* and [|A]| = 1. On the other hand, A — T)A=1lim,_,__ (A
— T)h, =0; thus A€ N(A— T). This is a contradiction.

The sequence (f,) is therefore bounded. Since T is compact, there exists
a subsequence (f,) of (f,) for which (7f ) is convergent. Then the
sequence f, =A~ l(g,, + Tf, ) also tends to an “element f € H, and we have

g=klim A=T)f, =(A-T)f €RA-T). ]
Theorem 6.7. Let H be a Hilbert space over K, and let T € B_,(H). We have

o(T) N (K\{0}) = 0,(T) N (K\ {0}). If H is infinite dimensional, then o(T)=
a,(T)U {0}. The operator T has at most countably many eigenvalues that can
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cluster only at 0. Every non-zero eigenvalue has finite multiplicity. The
number N0 is an eigenvalue of T if and only if A\* is an eigenvalue of T*.

PrOOF. 0 € o(T) by the proposition following Theorem 6.2, if H is infinite
dimensional. To prove o(T)N (K\{0})=0,N(K\{0}), it is sufficient to
show that if A0 is not an eigenvalue of T, then A & o(T). For this, let us
assume that A#0, N(A—T)=0. Since RA—T) is closed, A—T is a
bijective mapping from H onto the Hilbert space R(A — T'). In what follows
we show that R(A— T)=H. From this we can infer that A€p(T), i.e.,
A& o(T).

Let us now assume that R(A — T') % H. Define H,, and H, for n>1 by
the equalities Hy=H and H,=R((A— T)"). Then for n €N the subspace
H,., is a closed subspace, strictly smaller than H, (the subspace H,., is
closed, because (A\— T') ' is continuous and H, is closed; from H, =H, .,
it would follow that H=(A— T)""™H, =(A—T)""H, ., = H,). If for every
n €N we choose an element f, € H, _;© H, such that || f,|| =1, then (f,) is
an orthonormal sequence. Since T is compact, Tf,—0. On the other hand,

for all nEeN

Tf, = M, —(A=T)f,.

Here (A— T)f, belongs to H,; consequently it is orthogonal to f,. There-
fore,

ITAN > AL = (Al

This contradicts the fact that 7f,—0. Hence R(A — T) = H.

Now we show that the multiplicity of every non-zero eigenvalue A is
finite. If we had dim N(A — T') = oo, then there would exist an orthonormal
sequence (f,) from N(A— T). Since T is compact, we would then have
Tf,—0, which contradicts the equalities || Tf,|| = |A| || £,}| = A

In the next step we show that the eigenvalues can cluster only at 0. It
also follows from this that there are at most countably many eigenvalues.
Let us assume that there exists a sequence (A,) of pairwise different
eigenvalues of T such that A,—A+0. Then there exists a sequence (f,)
from H such that || f,||=1and (A, — T)f,=0. We know from linear algebra
that the family { f, : n €N} is linearly independent. Let H,=L(f, .. ., f,)
(Hy={0)), g, €H,©OH,_, such that |g,[|=1 for n€N. Then g,—0;
hence Tg,—0. On the other hand, for all n€EN

Tgn = }\ngn - (}\n - T)gn’

where (A, — T)g, € H,_,, since it follows from the equality g,=2"_,a,f
that

n n—1

A~ T)g, = 2 a,(\—T)fi = 2 a,(\,—N)fEH, 1.

j—_—l j=1
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Because of the relation g, L H,_, we therefore have | Tg,|l > |A,|, which
contradicts the fact that Tg,—0.

The last assertion follows from the equalities o(7*) = o(T)* and a(T*) N
(K\N{0}) = 0,(T*) N (K\{0}) (the last equality holds, as T* is also com-
pact). ]

Theorem 6.8. Let H be a Hilbert space and let T & B (H). If A\+0 is an
eigenvalue of T (hence A* is an eigenvalue of T*) then NA—T) and
NA* — T*)= R\ — T)* have the same dimension.

ProOF. We have dim NA— T)<dim NQA*— T*) or dim NA* — T*) <
dim N(A— T). We treat the first case. There exists then an isometric
mapping V of NA—T) into NA*— T*)=R(M\ — T)L. Let P denote the
orthogonal projection onto N(A — T'). The operator P is of finite rank,
hence compact. For the compact operator T,= T+ VP we then have
NA— T))={0}, i.e,, A is not an eigenvalue for T,. By Theorem 6.7, A\* is
then not an eigenvalue for T}, ie, {0}=NQA*—TH)=RA\-T)*=
(RA— T)® R(V))*. Consequently, R(V)=RA\ — T)*, and thus
dim NA - T)=dim R(V)=dim R(A — T)* =dim NQA\* — T*). The other
case can be treated similarly. ]

EXERCISES

6.1. Let H be a Hilbert space. A subset A of H is said to be compact provided that
every sequence (f,) from A has a subsequence that is convergent in A. The
subset A is said to be relatively compact if A is compact.

(a) Ais compact if and only if every open cover of A contains a finite cover of
A.

(b) An operator T from H, into H, is compact if and only if the set
TA={Tf: f€ A} is relatively compact for every bounded subset A of
D(T).

(c) A subset A of /, is relatively compact if and only if it is bounded and for
every € > 0 there exists an ny €N such that for all f=(f,)& A we have
Zran Sl <e.

(d) Let A be a set of continuous functions defined on R™, having the following
properties: A is bounded in the sense of L,(R™), A is equicontinyous on
every compact subset of R™, and for every € >0 there exists an » > 0 such
that f[x[>,|f(x)|2 dx <e for all f€ A. Then A is a relatively compact
subset of L,(R™).

6.2. (a) Let (¢,) be a null-sequence from C. The equalities D(T) = /, and Tf = (z,f,)
for all f=(f,) € /; define a compact operator T € B(/,).
(b) Let ¢ : [0, 1]X[0, 1] C be continuous. The equalities D(T)=L,(0, 1) and
Tf(x)= {t(x, y)f(¥) dy for all f&Ly0, 1) define a compact operator
T € B(L,(0, 1)).

6.3. If T is a compact operator on the Hilbert space H, then the set T{f€ H : || f||
< 1} is compact.
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6.4. A sesquilinear form s(. , .) defined on a Hilbert space is said to be compact if
A %0and g, — 0 imply s(f,, g,)—0.
(a) Every compact sesquilinear form is bounded.
(b) A sesquilinear form is compact if and only if the operator induced by it
(ct. Theorem 5.35) is compact.

6.5. (a) Let T be a compact operator on H. For every A€K, A0 we have the
Fredholm alternative: Either the equations (A — T)f=g and A\*— THh=k
are uniquely solvable for all g, k€ H or the homogeneous equations
(A—T)f=0 and (A* — T*)h =0 have nontrivial solutions.

(b) The spaces of solutions of the two homogeneous equations have the same
dimension, and (A — T')f= g is solvable if and only if g is orthogonal to
every solution 4 of the equation (A\* — T*)h =0.

6.6. Let H be a separable Hilbert space.
(a) If (P,) is an increasing sequence of finite rank projections on H such that

P, 5 I, then P, TP,— T for every compact operator T on H.
(b) B, (H) is a separable subspace of B(H) (cf. Exercise 4.8).

6.6 Let A,, A€ B(H,, H;) and B € B(H,, H,). If A,~> A and B is compact, then
A, B— AB.

6.2 Hilbert-Schmidt operators and Carleman
operators

We begin by studying one of the most important classes of compact
operators, the class of Hilbert-Schmidt operators. Let H; and H, be Hilbert
spaces. An operator T € B(H,, H,) is called a Hilbert-Schmidt operator if
there exists an orthonormal basis {e, : « € A} of H, such that

2 |1 Te, ).

aEA

Theorem 6.9. An operator T € B(H,, H,) is a Hilbert-Schmidt operator if
and only if T* is a Hilbert-Schmidt operator. Then

1T < ( 2 lITfmllz)l/2 = ( )) IIT"“?/}IIZ)V2 < 0 (6.3)

aEA BeEB
for arbitrary orthonormal bases { f, : a € A} of H, and {es : BEB} of H,.

The common value of the square roots in (6.3) is called the Hilbert-
Schmidt norm of T and is denoted by |||T|||. We have ||T| <||T||=
|| T*|||, because of (6.3). The set of Hilbert-Schmidt operators is denoted
by B,(H,, H,) or B,(H) (for the justification of the index 2, cf. Section 7.1).
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It is not hard to show that B,(H,, H,), equipped with the Hilbert—Schmidt
norm, is a Hilbert space (cf. Exercise 6.11).

Proor. Let T € B(H,, H,) be a Hilbert-Schmidt operator and let {e, :
a €A} be an ONB of H, such that 2| Te,|> < c0. If {€; : B E B} is an
arbitrary ONB of H,, then

2T elP = 3 3T KT*ep e = 3 X [Kep Tedf

peB BEB aEA «EA BEB

= 2 Il Te«xHZ’

aEA

i.e., T* is a Hilbert-Schmidt operator. One can prove the converse in the
same way and obtain the equality sign in (6.3) at the same time. If
{€z : B € B} is an ONB of H,, then for all f € H,

I Tf|? = §1<e;3, I < IfIPS | T* eyl
B

Consequently || 7'||> < 2 4| T* ¢, |>. Hence, (6.3) is completely proved.  [7]

Theorem 6.10. An operator S from H, into H, is the restriction of a
Hilbert-Schmidt operator T if and only if S is closable and D(S) contains an
orthonormal basis {e, : yE T} such that ¥ r|[§ey||2< co. Every Hilbert-
Schmidt operator is compact. :

Proor. Let T € B(H,, H,) be a Hilbert-Schmidt operator and let S C 7.
Then § is bounded, hence D(S)=D(S). Consequently, D(S) is a Hilbert
space, so it contains an ONB {e, : y €I'}. Since {e, : y € I'} is contained
in an ONB of H,, it follows by Theorem 6.9 that || Se,||* = 3|| Te, ||> < 0.

Let S now have the given property. We show that S is compact (the
compactness of an arbitrary Hilbert-Schmidt operator follows from this).
Let (f,) be in D(S) and assume that £ 250, € >0. The subset {e, : e, f
#0 for some nEN} of {e : yET} is at most countable; we denote it
simply by {e;, e5, ... }. We have

fo=2Ke,f0g and J||Sel? < oo.
J J

Because of the inequality

2

_ 5 _ )2 _ 1/
3 KerlISel < { S SSe| = 141{ Siser)
J J J J

the series X <e; f,,)S_ej is convergent. Since S is closed, it follows that

S1, = S<euf,>Se,
J
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It follows from this that for all ¥ €N and n €N,

1A < 2 Ke £]IIS e
J

_ _ 1/2
< 3 KeJolISel+ | S Keufo 3 ||Se,-||2}

j<N J>N J>N

— _ 1/2
< 3 KedliSel + 141 3 15s1)

Jj<N i>N
Because of the inequality 2j|[§ej||2< co and the boundedness of (|| f,l])
there exists an Ny, € N such that

N 1/2
Hf,,ll{ > llSesz} < 3e forall n€&N.
J>Ng

Since f, %0, there exists an ny, €N such that

> |<ej,f,,>|||§ej|| < 3e forall n > n,
J <Ny
It follows from this that || Sf,|| <e for n > ny, hence that Sf,—0, i.e., that §
is compact.
Since the compact operator S is continuous, we have D(S)=D(S). We
define an extension T of S by the equalities D(T) = H, and

T(f+g) = Sf for fED(S),geD(S)".
T is a Hilbert-Schmidt operator, since T € B(H,, H,) with ||T|/ =]/ S|
(cf. Exercise 4.7) and if { gz : B € B} is an ONB of D(S)™, then {e, : yE
I'tu{gg: B EB} is an ONB of H, such that

2 Te, | + Z 1| Tegll® = Z 1S eI < . -
Y B Y
Corollary. Let T € B(H,, H,), S € B(H,, H;), and let one of these operators
be a Hilbert-Schmidt operator. Then ST is a Hilbert-Schmidt-operator.
B(H,) is therefore a two-sided ideal of B(H).

Proor. Let T be a Hilbert-Schmidt operator and let {e, : « € A} be an
ONB of H,. Then

2 18Te,|> < ISI? 2 (| Te,lI? < oo.

aEA aEA
If S is a Hilbert-Schmidt operator, then 7*S* is a Hilbert-Schmidt
operator using Theorem 6.9 and what we have just proved. Hence ST =
(T*S*)* is also a Hilbert-Schmidt operator. O

Now we return to our earlier definition of a Hilbert-Schmidt operator
(cf. Section 4.1, Example 3).
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Theorem 6.11. Let M; and M, be measurable subsets of R” and RY,

respectively®. The operator T € B(L,(M,), Ly(M,)) is a Hilbert-Schmidt oper-
ator if and only if there exists a kernel K € Ly(M, X M,) such that

Tf(x) = fM K(x,y)f(y) dy almost everywhere in My, f € L(M;).  (6.4)

The adjoint operator T* is then induced by the adjoint kernel K*(x,y)=
K(y, x)*.

PrROOF. If T is of this form, then T € B(L,(M,), L,(M,)), by Section 4.1,
Example 3. If {e, : n€EN} and {f, : mEN} are orthonormal bases of
L,(M;) and Ly(M,), respectively, then { g,,. : (n, m) €N X N} is an ONB of
L,(M, X M,), where g, .(x, y)=f (x)e,(»)* (cf. Theorem 3.8). Hence

2

STelf = 3 KTen fu>P = 3 | [ [ K(x,9)*e,(»)* dyf(x) dx
n, m MY M,

n n,m

= S KK, g 3P = [KJ? < oo,
n, m

1.e., T 1s a Hilbert-Schmidt operator.

Let T now be a Hilbert-Schmidt operator, and let e, f, and g, be
defined as above. Let us define c,,, by

Cam = {fo» Te,> for (n,m)EN XN.
Then

2 ewnl* = 2 [ TedP = 2| Te,l* = || TP < oo;
n,m n,m n

so there exists a K € L,(M, X M,) such that
(&ums KD = ¢, forall (n,m)eNXN.

If T, denotes the operator induced by K in the sense of (6.4), then with
h(x, y)=g(x)f*(y) we have for all f € L,(M,), g € L,(M,) that

(& Tof> = fM g(x)*fM K(x,y)f(y) dy dx
=<(h KD = an ComSPs Gum ) = an o T <8 fud<en [

= (S o 8 e 1Te,) = <2, TH.

Hence T = T,. O

2 M, and M, can be replaced by arbitrary measure spaces in most cases. Sometimes we have
to assume that the M; are o-finite.
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Theorem 6.12. Let T be an operator from a Hilbert space H into L,(M).
Then the following assertions are equivalent:

(1) T is the restriction of a Hilbert-Schmidt operator,

(i) there exists a function k : M—H such that ||k(-)|| € Ly(M) and

Tf(x) = <k(x), f> almost everywhere in M, f € D(T),
(iii) there exists a function k € Ly(M) such that
|Tf(x)| < || flix(x) almost everywhere in M, f € D(T)

(of course, the sets of exceptional points in (ii) and (iit) depend on f and on the
choice of the representative of Tf.)

PROOF. (i) implies (ii): Let T C S and let S € By(H, L,(M)). We show (i1)
for the operator S. Since S is compact, N(S)* is separable (Theorem 6.5).
Let {e, €5, . .. } be an ONS of N(S)*. Then

3 [ 1Se,(x)P dx = 3|56, < oo;

consequently, by B. Levi’s theorem, X ,|Se,(x)|* < oo almost everywhere in
M and [,,2,|Se, (x)* dx < co. Hence we can define the function k : M—H
by the formula

k(x) = { 5;4 (Se,(x))*e, if % |Se,(x)|* < oo,

0 otherwise.

With this function £ we have for all f € H that
Ck(x), f> = 2 <e, f)Se,(x) = Sf(x)

almost everywhere in M. Because of the equality || k(x)|> =X ,| Se,(x)[?, the
function ||k(-)|| belongs to L,(M).

(i) /mplies (iii) by taking k(x) = ||k(x)||.

(ui) implies (i): It follows from (iii) that

1T < A7 f e dx

for all f € D(T). So T is bounded. T also satisfies (iii). This can be seen in
the following way. For every f € D(T)=D(T) there exists a sequence (f,)
from D(T) such that f,—f; therefore also 7f,— Tf. By Theorem 2.1 there
exists a subsequence (f,) such that Tf, (x)— Tf(x) almost everywhere.
Hence

TSl = lim |Tf, ()] < lim |1 f, lIe(x) = {L/l]k(x)-
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almost everywhere. This holds also for the operator S € B(H, Ly(M))
defined by

S(f+g)=Tf for feD(T),geDT)".

We show that S is a Hilbert-Schmidt operator and |||.S|||* < [, |x(x)|? dx. It
is obviously sufficient to show that

Sel|? < | |k(x)[? dx for every finite ONS {e,, ..., e
gt J M 1 n

in H. Let Se(-) be an arbitrary (however, in what follows fixed) representa-
tive of Se;. Let us define 4 : L(e, . . ., €,)—Ly(M) by the equality

(4(Z 4¢))x) = T aSe(x),

Then A =S|, .. .,in the sense of Ly(M). Since the set L.(e, . . ., e,) of
linear combinations of e, ..., e, with rational coefficients is countable,
there exists a subset N of M of measure 0 for which

lAf(x)| < |Ifllx(x) forall x € M\N,feEL(e,...,e,).

If f=27_,a¢E€L(e, ..., e,), and we choose ratignal sequences (@;)xen
so that a; —a; as k— oo, then with f, =27_, a,¢; it follows that

[Af()| = lim 4ROl < fim L flle(x) = L fl(x)

for all x € M\ N. Consequently,
|Af(x)] < ||fllx(x) forall xEMN, fEL(e,...,e,).

For every x € M\ N the mapping f> Af(x) is a continuous linear functional
on L(e,, ..., e,) whose norm is not greater than x(x). Hence there exists a
k(x)€ L(e,, . .., e,) CH such that ||k(x)|| <x(x) and

Af(x) = {k(x), f) for xEM\N,fEL(e,...,e,).
It follows that

S el = [ S [Ck(x), edPdx = [k dx < [ [k(x)] dx.
A fMElK (x). P dx = [ K(IP dx < [ Is()P dx.

A linear operator 7 from a Hilbert space H into L,(M) is called a
Carleman operator if there exists a function k : M—H such that for all
fen(r)

Tf(x) = {(k(x),f> almost everywhere in M. (6.5)

By Theorem 6.12 every Hilbert-Schmidt operator from H into L,(M) is a
Carleman operator.

A function k : M—H is said to be measurable if the function
k(), >« M-I, x> {k(x), f)> is measurable for every fEH. If T is a
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Carleman operator and k is an inducing function of T (in the sense of
(6.5)), then the function <{k(‘), f)> is measurable for all f&€ D(T). This
obviously also holds for all f € D(T). If P denotes the orthogonal projec-
tion onto D(T), then {Pk(-), f>=<{k(-), Pf) is therefore measurable for
every f € H, i.e., Pk(-) is measurable, and for all f € D(T)

Tf(x) = {(Pk(x), f> almost everywhere in M.

Consequently, there is no loss of generality in assuming that k is measur-
able.
If £ : M—H is measurable, then the equalities

D(T)={fEH: k() f> EL(M)},

T,.f(x)=Ck(x), f> almost everywhere in M, f € D(T}), (6.6)

define an operator T, from H into L,(M). The operator T, is called the
maximal Carleman operator induced by k. An operator is a Carleman
operator if and only if it is the restriction of a maximal Carleman operator.

Theorem 6.13.

(a) Every Carleman operator is closable. The closure of a Carleman operator
is a Carleman operator. Every maximal Carleman operator is closed.

(b) If T\, T, are Carleman operators (with inducing functions k,, k,) and
a, beC, then aT,+ bT, is a Carleman operator (with inducing function
ak, + bk,).

(c) If T is a (maximal) Carleman operator from H, into Ly(M) (induced by
k) and S € B(H,, H,), then TS is a (maximal) Carleman operator from
H, into Ly(M) (induced by S*k).

(d) Let T be an operator from H into Ly(M), and let P be the orthogonal
projection onto D(T). The operator T is a Carleman operator if and only
if TP is a Carleman operator.

(e) If H is separable and k|, k, are inducing functions of a Carleman
operator T, then Pk (x)= Pk,(x) almost everywhere in M, where P
denotes the orthogonal projection onto D(T).

PROOF.

(a) Since an operator is a Carleman operator if and only if it is a
restriction of a maximal Carleman operator, it is sufficient to show that
every maximal Carleman operator is closed. Let k : M— H be measur-
able, and let T, be defined by (6.6). Take a sequence (f,) from D(T})
for which f,—f € H, T, f,—g € Ly(M). Since {k(x), f,>—<{k(x), f (for
all x € M), we have

(k(x), f> = g(x) almost everywhere in M.

Hence f € D(T,) and T, f=g, i.e., T, is closed.

(b) This assertion is obvious.

(c) Again, it is sufficient to show the statement for maximal Carleman
operators. Let 7, be the maximal Carleman operator induced by k.
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Then

D(T,S) = {feH, : SFED(T,)} = {fEH, : <k(), Sf) EL(M)}
= {f€H, : (S*k(-), [) ELL(M)},
T, Sf(x) = {k(x), Sf> = {(S*k(x), f> almost everywhere in M,

1e., T, S is the maximal Carleman operator induced by S*k.

(d) By part (c), along with T the operator TP is also a Carleman operator.
Since T is a restriction of 7P (we have D(TP)=D(T)+ D(T)* and
T=(TP)|xzy), along with TP the operator T is also a Carleman
operator.

(e) If {e,, ey ...} is an ONB of D(T) that is contained in D(T), then it
follows that

(ky(x) = ky(x), e, = 0 almost everywhere, for all n € N,
and thus

1 P(ky(x) = k(X)) = % [<ky(x) — ky(x), en>|2
= 0 almost everywhere. ]

Theorem 6.14 (Korotkov [46]). An operator T from H into L,(M) is a
Carleman operator if and only if there exists a measurable function x : M—R
such that for all f € D(T)

| Tf(x)] < || fll«(x) almost everywhere in M. (6.7)

ProOF. If T is a Carleman operator induced by k, then (6.7) holds with
k(x)=||k(x)||. Let (6.7) now be satisfied. Then there exists a bounded
function g : M—(0, o) for which gk € Ly(M); for example we can choose
the function

g(x) = [(1 +|x)"(1 + ;c(x))]_l, x €M (for MC R™).
If G €B(Ly(M)) is the operator of multiplication by g, then for all
feD(T),
|GTf(x)| < || fllg(x)x(x) almost everywhere in M.
By Theorem 6.12 the operator GT is therefore the restriction of a Hilbert-
Schmidt operator and there exists a function k' : M—H such that GTf(x)

= (k'(x), f> almost everywhere in M. With k(x)=g(x)~'k’(x) we there-
fore have for all f &€ D(T') that

Tf(x) = g(x)” "Ck'(x), f> = (k(x),f> almost everywhere in M. [

Theorem 6.15. Let H be a separable Hilbert space, and let T be an operator
from H into Ly(M). The operator T is a Carleman operator if and only if the
series X.,| Te,(x)|* converges almost everywhere for every orthonormal system
{e}, ey ...} in DXT).
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Proor. If T is a Carleman operator, then, as in the proof of Theorem 6.14,
we can find a g : M—(0, o) for which GT is the restriction of a Hilbert-
Schmidt operator. Then for every ONS {e|, e,, . .. } from D(T)

> f |GTe,(x)? dx = D} ||GTe,||> < .
n M n
Consequently, by B. Levi’s theorem,

g(x)’S|Te, (x)? = D |GTe,(x)]> < oo almost everywhere in M.

Division by g2 gives the assertion.

Now suppose the series 3, | Te,(x)|* is almost everywhere convergent for
every ONS {ej, e,, ...} in D(T). First we show: If {e;, e, ...} is an
arbitrary ONS in D(T), then T'|,. . . ,is a Carleman operator. For this,
let My={xEM:3 |Te,(x)]*=00)}. M,is of measure zero by our assump-
tion. The function

n

K(x) = { > (Te,(x))*e, for x€&MM,,
0 otherwise,

induces T, ., ...y since for fEL(e, e, .. .)

Tf(x) = % (e, fOTe,(x) = <§ (Te,(x))*e,, f>
= (k(x), f> almost everywhere in M.

Let {e|, €5, . . . } now be an ONB of D(T), let k be an inducing function of
To=T|ye,e, ..., and let T} be the maximal Carleman operator induced by
k. We show that T c T,. For this, let f&€ D(T), let {f,, f,, ...} be the
ONS that arises from {f, e;, e,, . . . } by orthogonalization, and let k" be
an inducing function of T;,=T|, . . . Because of the inclusion L(e,,
e, ...)CL(f, fys...) we have T,C T,; hence k and k' are inducing
functions of T, If P is the orthogonal projection onto D(7)=
D(T,)=L(e,, e,, . . . ), then by Theorem 6.13(e) we have Pk’'(x)= Pk(x)
almost everywhere. Since f € D(T), it follows from this that

Ck(x), f> = (Pk(x), f) = (PK'(x), f) = {k'(x), f> = T, f(x);
sofeD(T,)and Tf=T, f=T,f. |

Theorem 6.16. An operator T from a separable Hilbert space H into Ly(M) is
a Carleman operator if and only if Tf (x)—0 almost everywhere in M for
every null-sequence (f,) from D(T).

PROOF. It is evident from the definition that every Carleman operator has
this property. It remains to prove the reverse direction. By Theorem 6.15 it
is sufficient to show that the series 3, |Te (x)|* is almost everywhere
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convergent for every ONS {e,, e,, . . . } from D(T). Let {e, €5, .. . } be an
ONS in D(T). Assume that there exists a measurable subset N C M such
that A(N)>0 and 3, |Te(x)*=c for x€N (A stands for Lebesgue
measure). For all m, / €N let us define N,, , by the equality

!
N, = [xEN: > |Te,,(x)|2>m2}.

n=1

Then N= U ,;cyN,, ; for every m €N, and there exists an /(m) EN such
that

ANy, imy) = (1=37")A(N).
Consequently, for No= N, cnNan, imy We have
AMNp) > (1— > 3""))\(N) > 0.
: m=1

For all m €N we have
l(m)
D | Te,(x)? > m* for x €N,

n=1

By Exercise 6.9, for every m €N there exist finitely many elements (x,, ;) =

(gm’j, e s &m’j, ,(m)) eClm, j=1,2, ... , p(m) for which we have: |xm,j|2
=2XDE, ;o <2m ™% and for every x=(¢,, . . ., &) EC'” with |x[> >
m? there exists a j € {1, ..., p(m)) for which

{(m)

2 gm,j,ngn > 1

n=1
Let us set

{(m)

gm,j = Z gm,j,nen’

n=1

Then for every m € N and for every x € N, there existsaj € {1, . . ., p(m)}
such that
{(m)
|Tgm,j(x)| = Z gm,j,nTen('x) > 1
n=1
Thus, for the sequence
(g,) = (31, 19 81,2 > 81,p(1» 82,10+ - -5 82,p2 83,10 -+ )

we have: g,—0 and for every x € N, there exists an arbitrarily large n €N
such that Tg (x) > 1. This contradicts the assumption. O
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Theorem 6.17. An operator T from Ly(M,) into L,(M,) is a Carleman
operator if and only if there exists a measurable function K : My X M;—C
such that K(x, -) € Lo(M,) almost everywhere in M, and

Tf(x) =f K(x,y)f(y) dy almost everywhere in M,, f € D(T). (6.8)

M,
Such a kernel K is called a Carleman kernel.
ProoOF. If T is induced by a Carleman kernel K in the sense of (6.8), then
the assumption of Theorem 6.14 (Korotkov) 1s fulfilled with «(x)=
| K(x, )||; so T 1s a Carleman operator. If 7 is a Carleman operator, then
we proceed as in the proof of Theorem 6.14. GT is then a Hilbert-Schmidt
operator from L,(M;) into Ly(M,); therefotre, by Theorem 6.11, it is

induced by a kernel K’ € Ly(M, X M,). The kernel K(x, y)=g(x)"'K'(x, y)
is then a Carleman kernel and it induces T. |

Let K : M—H be a measurable function, and let M,={x €M : || k(x)||
<n and |x| <n}. Let

D(T, o) = { g8 € Lp(M): there exists an n € N such that
g(x) =0 almost everywhere in M\M, }.

For every g € D(T; () the equality

(Teo8 /> = [ g*(x)Ck(x).f> dx forall [EH

n

uniquely defines an element T} g, since because of the inequalities

J g*()<k(x), £> dx| < mifIl [ |g(x)] dx < nN(M)l gl 11 £
M, M,

the function f= [, g*(x){k(x), f> dx is a continuous linear functional on
H. The mapping g— T, , g is obviously linear. T , is therefore an operator
from Ly(M) into H; D(T, ,) is dense in Ly(M). The operator T, , is called
the semi- Carleman operator induced by k.

Theorem 6.18. We have (T} o)* = T,. (In what follows we write T} , for
(Ty,0)*)

ProoF. By the definition of T} , we have for all f € D(T}) and g € D(T} ,)

(& T f)> =<g<<k(:),f>> = fMg(X)*<k(X),f> dx =<T; o8, f,

i.e., the operators T, and T} , are formal adjoints of each other; therefore
T, C T o It remains to prove that D(7} o) C D(T,). Let f € D(TF o). Then



6.2 Hilbert-Schmidt operators and Carleman operators 147

for every g € L,(M,) and all » €N we have

J, 8 GXKG), 1> dx =(T o8, > = &, Thof> = [ g*(0)TEof(x) dx.

n

Consequently,
fM g* () {<k(x), f> = T2 of(x)} dx = 0 forall g e LyM,).

Because of the relation {<k(*), f> — T} o f(*)}a € L2(M,) it follows from
this that

T# of(x) = <k(x), f)> almost everywhere in M,.

As this holds for all n, it follows that {k(-), f)>=T¢,f € Ly(M), ie,
€ D(Ty). O

If K: M,X Mj—»C is a Carleman kernel and k& denotes the mapping
k : My—Ly(My), k(x)=K(x, -), then we write Ty =T, and Ty =T} ,. It
follows from the definition of T, , (by Fubini’s theorem) that for all
f € D(T o) we have

Tk of(x) = fM K(y, x)*f(y) dy almost everywhere in M;.

Theorem 6.19. Let T be a densely defined Carleman operator from L,(M,)
into Ly(M,) that is induced by the Carleman kernel K. The adjoint T* is a
Carleman operator if and only if K™ is a Carleman kernel (K™ (x,y)=
K(y, x)* for (x,y)E M, X My) and T D Tg+ . Then T* is induced by K™.

PrOOF. By assumption, T C Ty. As T is closable, D(T*) is dense. If T* is
defined by the Carleman ker kernel H : M{ X M;—C, then T* C Ty. Conse-
quently, T=T**> T} = TH 02 Ty o- It remains to prove that H(x,y)=
K *(x, y) almost everywhere in M; X M,. Let

M, , = {xEMlszlH(x,y)!zdy<n and |x|<n].
2

Then H|, m € (M, ,X M) and HT|,, xm, , € Ly(My X M, ,). Hence
the function H +, as a kernel on M, X M, ,,, is a Carleman kernel. There-
fore, for every n€N, Ty ol m, , is 2 Carleman operator induced by H ™"
and K. Consequently, by Theorem 6. 13(e) we have H "(x,y)=K(x, y)
almost everywhere in M, X M, , for every n€N. Hence H *(x,y)=
K(x,y) almost everywhere. In particular, K* is a Carleman kernel and
T D Tk+ o If KT is a Carleman kernel and T>O Tg+ o then T* = T*C

(Tk+ o)* = Tg+; so T* is a Carleman operator induced by K. O
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Corollary. If T is a symmetric Carleman operator on Ly,(M) with inducing
kernel K, and T* is also a Carleman operator, then the kernel K is
Hermitian, i.e., K(x,y)= K ¥ (x,y) almost everywhere. In particular, the
kernel of a self-adjoint Carleman operator is Hermitian.

EXERCISES

6.7.

6.8.

6.9.

Let H; and H, be Hilbert spaces and let H, be separable. A closable operator
T from H, into H, is the restriction of a Hilbert-Schmidt operator if and only
if there exists an orthonormal basis {e,, e,, . . . } of D(T) such that 3 || Te,||?
< oo (cf. Theorem 6.10).

Let H, be a separable Hilbert space and let T be an operator from H, into

L,(M). Assume that

(1) If (f,) is a null-sequence from D(T) and (7f,(x)) is convergent almost
everywhere in M, then T¥f,(x)—0 almost everywhere,

(ii) there exists an orthonormal basis of D(T) such that = ,|Te,(x)]* < o0
almost everywhere in M.

Then T is a Carleman operator.

Hint: cf. Theorem 6.15. Remark: (1) cannot be replaced by the assumption

of the closability of 7.

For every m&N and C >0 there are finitely many elements x; =

G- g )EC j=1,..., p=p(m, C), for which |x| <2C~" and for
which we have: for every x=(§,, ..., §,) €EC™ with |x| > C there exists a
JE{L,...,p} such that
m
[<x, x| = kzlg;:gj,k > L

6.10. If K is a Hermitian Carleman kernel over M X M and T  is bounded, then

6.11.

6.12.

Ty is from B(L,(M)) and T is self-adjoint.

Let H, and H, be Hilbert spaces.

(a) The equality (T, S> =23, ca(Te,, Se,> defines a scalar product on the
space By(H,, H,) (here let {e, : « € A} be an arbitrary orthonormal basis
of H,). The corresponding norm is the Hilbert-Schmidt norm.

(b) By(H,, H,) is a Hilbert space with this scalar product.

(c) With this norm, B,(H) is a Banach algebra (without identity element in
the case dim H is infinite).

(d) We have (S, T)=(T*, S*> for all S, T € By(H,, H,).

Let 7 be an operator on L,(M), and let (z,— T) ™' be a Carleman operator
for some zy € p(T).
(@) (z— T)~!is a Carleman operator for all z € p(T).
(b) If T is self-adjoint and k,(x,y) is the kernel of (z— T)~! for some
z €p(T), then k,«(x, y)=k,(y, x)*.
Hint: Notice that [(z— T)"'J*=(z*— T)~!, and use Theorem 6.19.
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6.3 Matrix operators and integral operators

Let H, and H, be infinite dimensional Hilbert spaces over I, let {e, : n €
N} and {e, : n €N} be orthonormal bases of H, and H,, respectively, and
let (a;); ren be an (infinite) matrix with a, € K. (If H, or H, is finite
dimensional, then some simplifications arise.) First we show that the
formulae

D(A4) = {feHl : 'rgim 2 a; e, f) exists forall jEN, and

ajk<ek’ />

"MS >\~

§ <o } (6.9)

Af = i (k§ ajk<ek,f>)ef for f &€ D(A)
i=1\k=1

define a linear operator from H, into H,: If f, g& D(A) and a, b € K, then
the limit

lim 2 a; e, af + bg)

nl—> 00 ——)

= 2 k<ek, >+ b 2 ajk<ek’g>

k:

8

{ § k<ek’f>+b2 k<ek’g>}

8

obviously exists, and we have

2 2

2 jk<ek’f>+b2 k<ek’g>

2 > a e, af +bg)| = > |a
j=1]k=1 j=1

2{|a|22 > e
j=1|k=1
+|b|2.2 2 k<ek’g> }<°°-
J= =

Therefore, it follows that af+ bg € D(4) and A(af + bg) = aAf + bAg.

Theorem 6.20. Let H,, H,, {e, : nEN}, and {e, : nEN} be as above. If
(ay) is a matrix such that 2. \|a,[> < oo for all k €N, and A is the operator
from H, into H, defined by (6.9), then the following holds: D(A) is dense in
H,, A* is a restriction of the operator A* from H, into H, induced by the
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adjoint matrix (a; ) = (a) analogously to (6.9):

D(AT) = {gEH2 : n%l_r)noo > a; e, gy exists for all jEN, and
=1

2
<oo}.

Arg =3 ( > a,-Z<e;'<,g>)e,- for gED(AY).
j=1\k=1

o8}

>

Jj=1

0

2 ajl-:<el,c’ g>

k=1

If we also have 2;{"’=I|ajk|2< oo for all jEN, then A is closed and A* is
densely defined.

Proor. For all n € N we have

2

o .
2 ajk<ek’ en>

k=1

co co
2 ajk<ek’ en> = ajn and 2
k=1

Jj=1

00
= 2 Iajnl2 < 0.
=1

Consequently, L({e, : nE€N})cD(4); so D(A) is dense. Let A,=
Ali(e, : nenyy We show that A =A"; this then implies that A*C 4 ™. It is
easy to see that 4, and A" are formal adjoints of each other, i.e., that we
have A% Cc A¥. What remains is to prove that D(A¥)C D(A™). Let g&
D(Ag). Then, because of the relation ¢, € D(A,), we have for every k €N
that

(e, AGg) = (Apey, 8) = <

j=1 j=1
Consequently,
e e] e e] 2
2| 2 ailegy| = |l43z]’ < oo,
k=1|j=1
ie,gEDA™).
If we also have 27_j|a,|> < oo, then A =(4y)* where Af =
A™| (e  nenyy Hence 4 is closed, and 4* is densely defined. O

Theorem 6.21. Let H, and H, be separable Hilbert spaces, and let T be a
densely defined operator from H, into H,. The operator T is closable if and
only if there exist orthonormal bases {e, : n €N} of H, and
{e, : nEN)} of H,, and a matrix (ay) with the properties: 7 |a,|* < oo
Jor all kEN, B7_\lay[>*< oo for all jJEN, and T is a restriction of the
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operator A defined by (6.9). The orthonormal bases can be chosen from D(T)

and D(T%*), respectively.

PrRoOOF. If T has this form, then it is closable by Theorem 6.20. If T is
closable, then there are orthonormal bases {e, : n €N} of H, in D(T) and
(stnce D(T*) 1s dense) {e, : n €N} of H, in D(T*). With

= <e_;’ Tek> = <T*eja e_[>’ (J’ k) ENXN

we then have

o0 o0
Dlaxl = 1Tel? < o, 3 laxl? = [ T*¢|2 < oo,

for all k€N and for all j €N, respectively. For every f € D(T)

o0

=2

J=1

= 2 KT*e, /O = 2 K¢, TP
j=1 j=1

o0

Z _/k<ek’

Z <T*ej” e, <,

k=1

= || Tf|I* < co.

Therefore f € D(A). Moreover, we have

uMg

= 3 6. T = B (T¢.0e) = ( S <1 ,,ek><ek,f>)

J

o0

Z ( 2 k<ek’f>)e_; = Af.
]

Proposition. If T is a symmetric operator on a separable Hilbert space H,
then there exists an orthonormal basis {e, : n €N} and a Hermitian matrix

(ay) such that F_,|a,|* < oo for all jEN, and

1f = §(Z k<ek’f>) forall f€DT).

Jj=1

Proor. In the proof of the preceding theorem choose for {e, : n€N} and
{e, : n€N} the same orthonormal basis in D(T)C D(T*). The series of
equalities

<ek’ Te, >* = ak_/

Ay = <ej, Te,) = <T &) =

shows this matrix 1s Hermitian.
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Corollary. If T is a symmetric operator on [, and I, C D(T), then there
exists a Hermitian matrix (ay,) such that 3%_,|a,|* < oo for all jEN and

o0

Tf = T(f,) = ( > ankfk) forall feD(T).
neN

k=1

This can be deduced from the previous proposition if we choose the
basis {e, : n €N} so that e, =(8,);en

Now we prove some simple criteria for the boundedness of the operators
that are induced by matrices in the sense of (6.9).

Theorem 6.22. If 3, ,|a,|>= C? < o0, then the operator A defined by (6.9) is
a Hilbert-Schmidt operator, and |||A||| = C.

PrROOF. By Theorem 6.20, A is densely defined and closed. For the basis
{e, : n€N} we have

2 | de,|* = X

n n

2 .
= Z.lajnlz = C2‘
n’j

> (% a, e en>)ejl

J

Therefore, by Theorem 6.10, A is a restriction of a Hilbert-Schmidt
operator. Since 4 is densely defined and bounded, we have D(4)=D(A4)=
H,, and thus 4 € B(H,, H,). Hence 4 is a Hilbert-Schmidt operator, and

4l = C. O
Theorem 6.23. Let a, = b, c;.; furthermore, let

2 |byl> < CP forall jEN,
k

and
Slexl> < € Jorall k€N,
J

then the operator A defined by (6.9) is from B(H,, H,), and ||A|| < C,C,.

PROOF. For every f € H, we have

b

J

2 2

% ajk<ek’ f>

= Z % bjkcjk<ek’ f>
<3S 15,3 e /P
J k k

<CEY lcjk!2|<ek’f>|2
ok

< CIC7 2 e FHP
k

= CICI fIP%
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It follows from this that H, = D(A4) and ||Af|| < C,G,]| f|| for all f € D(A4) =
H,. O

Proposition. The assumptions of Theorem 6.23 are satisfied in particular if
Dlayl < Ct forall jEN
k

and

2laxl < C3 forall keEN.
r

For the proof, in Theorem 6.23 let us take b, = la,|'/? and Cix =
iajkll/2 sgn a;,, where sgn a =0 for a =0 and sgn a =|a| ™ 'a for a #0.

ExampLE 1. The matrix

g | .
for k<,
a {J J

0 for k>j

defines a bounded operator A by (6.9) and we have ||4|| < V6 . For the
proof, let us define b, = c; =0 for j <k and

by = j kT ey = TN for k<

Then we have

J .
Sloul2 =712 3 k72 <7 k7 dx = 2,
k k=1 0

and

d [eo]
Siaf =75 <R e
J k

=k
=k 14+2<3,

for all j €N and k €N, respectively. The assertion follows from this with
the aid of Theorem 6.23.

Similar arguments can be made for operators T from L,(M,) into Ly(M,),
that are induced by a measurable function (kernel) K : My, X M;—C. Let K
be such a kernel. The equalities

D(Ty) = {fELz(Ml) : K(x, .)f is integrable over M; almost

everywhere in M,, and fM K(.,y)f(y)dy isin Lz(Mz)],
1

T f(x) = fM K(x,y)f(y) dy almost everywhere in M, (6.10)
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define a linear operator from L,(M,) into L,(M,) (notice that the notation
Ty 1s compatible with that of Section 6.2). Special cases of such operators
(Hilbert-Schmidt operators and Carleman operators) have already been
studied in Section 6.2. Now we want to give a further criterion for the
boundedness of an integral operator (formally this is an exact analogue of
Theorem 6.23 for matrix operators).

Theorem 6.24. Let k : My X M;—C be measurable, and let K, and K, be
measurable functions defined on M, X M; such that K(x, y)=
Kl(x, y)Kz(x3 y) and

f |K,(x,y)|*dy < C} almost everywhere in M,,
M,

f |K,(x, y)>dx < C? almost everywhere in M.
M,

Then the operator Ty is in B(Ly(My), Ly(M,)), and || Tk|| < C,C,. The adjoint
Ty is equal to the operator Ty + induced by the adjoint kernel K*. -

Proor. For every r>0 let My(r)={x&€M, : |x|<r}. The Lebesque
measure of M,(r) is finite. For every f € L,(M,) Fubini’s theorem implies
that

fM()XMlK(x,)’)f()’)ldx dy < fM(){1+ fMlK(x,y)f(y)| dy] }dx

2

=M+ [ K K ) SO0) | d
A+ [ | [ 1K@ [ 000 8 | d

<A + €2 VO] [ Kt n)P dx |

< MMy(r)) + CICF| fI? < oo.

By Fubini’s theorem again, the integral f m K(x, y)f(y) dy exists almost
everywhere in M,(r) and defines a measurable function there. Since this

holds for all r > 0, the equality
T f(x) =f K(x,y)f(y) dy almost everywhere in M,
M,

defines a measurable function on M, for every f & L,(M,). For all those
x € M,, for which this integral exists, we have

T ()] < [ 1K:(o ) Ko ) S(2)] dy

1/2
< Cl{fM |K2(xay)f(y)|2 dy} ’
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and thus

TP dx < CEf [ [Ky(x,») f()P dy dx

2" M,

— 2 2 2 22 2

= C2 [ ISP [ 1Ko, p) dx dy < CIC2I £
M, M,

Hence, for every f €& L,(M,) the function Tyf belongs to L,(M,), and
| T fl| € C,C,]| f]|- Since the mapping fi= T f is obviously linear, we then
have Ty € B(L(M,), L,(M,)) with ||T|| < C,C,. The corresponding argu-
ments show that K induces an operator T+ € B(Ly(M,), L,(M,)) and
that for all f € L,(M,) and g € L,(M,) the integral

[ 18I 1KCx, 2)f()] dy dx

exists. Therefore, it follows from Fubini’s theorem that

$g Tef> = | 80" | K(x,»)f(y) dy dx

=f f(y){f K*(y, x)g(x) dx}* dy = (Tx+g f).
M, M,
Hence, Tg¢ = Ty-. ]
Corollary. If K : M, X M;—C is measurable, and

f |K(x,y)| dy < C} almost everywhere in M,
M,

f |K(x,y)| dx < CF almost everywhere in M,
M;

then the operator T, defined by (6.10) is from B(LyM,), Ly(M,)), and
| Txll < €, Gy

This follows from Theorem 6.24 if we take K;(x,y)=|K(x,y)|"/? and

Ky(x, )= |K(x, )|'? sgn K(x, y).
It is important to observe that the operators occurring in Theorem 6.24
are not necessarily compact (cf. the following example).

EXAMPLE 2. Let M; = M, =R. The kernel K(x, y) =exp (—|x —y|) satisfies
the assumption of the above corollary. Assume that f € L,(M,), f50, and
f(x) > 0 almost everywhere. Then T, .f#0. Let us set f,(x)=f(x — n). Then
£ 50, and

Tefy(x) = [exp (=|x =y f(y ~n) dy
= [exp (=I(x=n) =y f(») & = (Tef)(x = n).
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Consequently, || Txf,|| = || Txf]| for all n. So we do not have T,f,—0, i.e.,
Tk 1s not compact.

Theorem 6.25. Let K : My X M;—>C be measurable, and let K, K, be
measurable such that K(x,y)= K\(x, y)Ky(x,y). Let (My;) and (My;) be
increasing sequences of measurable subsets of M, and M, such that M;=
U2 My and My = U 2| My, respectively. Assume that for all j €N

|K(x, y)|? dx dy < oo,
My, X M,

and for every € >0 there exists a j,= j,(€) EN for which

fM |K,(x,y)? dy < € almost everywhere in My \ M, ,

1

fM |Ky(x, y)? dx < € almost everywhere in My \ M.,
2

|K,(x, )]> dy < € almost everywhere in M,,
MMy,

|K,(x,y)[* dx < € almost everywhere in M,.
Mo\M,,

Then Ty € B(Ly(M,), Ly(M,)), and T is compact.
PRrOOF. Let us set

K(X,y) for (x>y)€M2jXMlj>

0 otherwise

Hi(x,y) = {

and L;= K— H,. Then TH is a Hilbert-Schmidt (hence compact) operator,
and || TL | <e provnded that J 2jo(€). The operator T is therefore the limit
of a sequence of Hilbert-Schmidt operators, so that it is compact (Theorem

6.4(e)). O
ExAaMPLE 3. Let M C R” be measurable and let

K(x,y) = fi(x) L(») s(x—y), (x,y) E MXM;

where f; and f, are bounded measurable functions defined on R™ and
f(x)—0 as |x|>00(j=1, 2); f; is measurable and [|f;(x)| dx < co. With
M), =M,y ={x€M: |x|</} and

Kl(X,y) = fl(x)|f2(x _)’)|1/2
Ky(x,y) = H(y)fs(x —y)|'/? sgn fy(x - y),

the above theorem is applicable; hence 7, is compact.
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ExaMPLE 4. Let M be a bounded measurable subset of R™, and let

|x = y|*""H(x,y) for (x,y)EMXM, x+#yp,
0 for x=yeM,;

K(x,y) = [

where a >0, and H is a bounded measurable function on M X M. If we set

K(x,y) for Ix—y|>;11-,
Kn(x’y)= l
0 for |x—y|<;

and L, = K— K, then the K, induce Hilbert-Schmidt operators, and the
operator induced by L, converges to 0 as n—co. Hence Ty 1s compact.

6.4 Differential operators on L,(a, b) with
constant coefficients

In the following let (a, b) be an arbitrary (non-empty) open interval in R,
1.e., let — o0 <a <b < 0. Furthermore, let

Ala,b) ={f:(a,b)>C:f,f,...,f" Dare
continuously differentiable on (a, b) and

f =Y is absolutely continuous on (a, b)}.

Hence, for f € A,(a, b) there exists an “nth derivative” f for which the
following holds: f™ is integrable over every compact subinterval of (a, b),
and for a <a < <b and every functidn g, absolutely continuous on (a, b),
we have (cf. Appendix AS)

[P 9(3) dx = 8BS (B) - 5() 1)
oo
forje{l,...,n}.

Theorem 6.26. For every n €N, every interval (a, b), and every € >0 there
exists a C >0 such that for all j€{0,1,...,n—1} and all f € A, (a, b)

f P dx < e f P dx+ C f | AP dx.

Here we have to consider an integral to be equal to oo in case the integrand is
not integrable. The relations f € A,(a, b)N Ly(a, b) and f € Ly(a, b) there-
fore imply that fP € Ly(a, b) forje(1,...,n—1}.
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PROOF. We prove this by induction on n. For n=1 we only have to treat
the case j =0. Then for every € > 0 we may choose C = 1. The assertion is
just as obvious for n =2 and j = 0. Therefore, let n =2, j=1.

Let (a, B) be an arbitrary bounded subinterval of (a, b),let L= —a >
0, and let J;=(a, a+ 3L), Jy=[a+ 1L, B~ 3L}, Js=(B— 3L, B). For
arbitrary s € J;, and t € J;, by the mean value theorem there exists an
Xo= Xo($, 1) €(a, B) such that '

f(xg) = (1= )" [ f(1) = ()]
With this x, it follows for all x € (a, ) that

N =| )+ [ 1) a
<L)+ D + [l v,

This holds for all s € J; and ¢ € J;. The inequality can be integrated over
J, with respect to s and over J; with respect to . We obtain that

3] < [ ) ds + [ 170] de+3722 [ 11775 0y
< [ dy + 37222 [177()) ay

<{cflsona) s L firore)”
It follows from this that
R < 2L{3L7 [0 ar+ [l )P av),
and thus by integration over («, ) that
[A170R ax < 162072 [A1)P ay + 222 [ (R 0y,

If we divide (a, b) into (finitely or infinitely many) disjoint intervals of
length L, then we obtain

/ “If ()P dx < 16202 / °|F(x)P dx + 212 / “IF7 ()P dx.

As L can be chosen arbitrarily small, the assertion follows for n =2 and
j=1

Let us now assume that the assertion holds for n <k (k>2). Let
f € Ac41(a, b). Since the theorem holds for n=2 and j =1, for every n >0
there exists a C, > 0 such that

[P dx < ¢, [P dx o+ 40P d.



6.4 Differential operators on Ly(a, b) with constant coefficients 159

By the induction hypothesis there exists a C, > 0 for which

b b b
f | f*D(x))? dx < C,_f | f(x)]* dx + %C,‘lf | FE(x)? dx;
consequently, |

JArOP dx < 3[R0 dx + €€, [1f(0P dx
[ 1€ 0 d,

and thus

] | fO0P dx < 2€,C, / 1 F(x)P dx + 27 / °| D) dx.

This is the assertion for n=k+ 1 and j= k. For j <k the assertion now
follows easily with the aid of the induction hypothesis. O

In what follows we shall use the notation

W, .(a, b) = {f€A,(a, b)NLy(a, b) : f" ELy(a, b)}.

W, .(a, b) is called the Sobolev space of order n over (a, b).

Theorem 6.27. Let (a, b) be an arbitrary open interval in R, and let
fE W, (a, b). If — o0 <a, then f'? can be extended continuously to a for all
JE{0,1,...,n—1};ifa= — o, then lim fUx)=0. The correspond-
ing assertion holds for the point b.

PrOOF. Let ¢ €(a, b). If a> — o0, then
c . c ) 1/2
S0 dx < {(e=a) [ 19 (0P dx ) < os,
because f/*V & L,(a, b) (Theorem 6.26). Hence the limit
)lcin}z f(j)(x) = 1in}1 {f(j)(c)——fcf(f“)(s) ds}
= f9e) = [ 19 (s) ds

exists.
Now let a= — o0. For all x €(— o0, ¢) we have

J 1919 (s) dx = 4{ ) 1O ()},

The integral here converges as x-— — oo, therefore the limit
lim,_, _ . fY(x)?* also exists. If this limit were different from zero, then f()
could not be 1n L,(a, c¢); which would contradict Theorem 6.26. ]
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Now we shall study differential operators on L,(a, b) that are induced
by the differential form r,=(—1)"(d"/dx"). The minimal operator T,
induced by T, is defined by

D(T, ,) =Cs°(a,b) and T, ,f=7,f for fe&D(T,,).
The maximal operator T, induced by T, is defined by
D(T,) =W, ,(a,b) and T,f=1,f for feD(T,).

The maximal operator is obviously defined on the largest possible sub-
space on which 7, can act meaningfully. Below we shall show that
Tyo=T,;ifACT, , and /Taé—f,:;, then 4* 3& Tyo=T, 1e., A* is not a
differential operator induced by 7,; this is why T, , is called the minimal
operator (it is also usual to call _7:,:—(; the minimal operator). For n=0 we
obviously have m= T,=1

Theorem 6.28. We have k € R(T, ) if and only if k € Cs°(a, b) and

fbxfk(x)dx =0 forall jE{0,1,...,n—1}.

a

PrOOF. If k= T, og for some g€ D(T, o) = Cg°(a, b), then we obviously
have k € Cs°(a, b), and forj€{0,1, ..., n—1}

fbxjk(x) dx = fbxj(fr,,g)(x) dx = (——1)"fab(fr,,xj)g(x) dx = 0.

a a

Conversely, assume now that k € Cs°(a, b) has this property, and [a, (]
is a compact subinterval of (a, b) that contains the support of k. Set

g(x) = (i)"faxfax" ce faxzk(xl) dx,...dx,.

Then we obviously have g€ C%(a, b) and g(x)=0 for x E(a, a]. For
x €[ B, b) we have

g(x)=(i)"faxfxx...fx k(x)) dx, ...dx,

Xn—1

= (i)nfaxk(x,){f:...f)C dxn...dxz} dx,

Xn-1

= (i)"fbk(xl)p(x,) dx, = 0,

because p(x;) is a polynomial of degree n—1. Hence, g € Cs°(a, b) and
k=T, ,8. |

Theorem 6.29. We have T, o= T,,.
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PrOOF. Let f€ D(T,), g € D(T,, o) = Cs°(a, g), and let [a, 8] be a compact
subinterval of (a, b) that contains the support of g. It follows via integra-
tion by parts that

Tufig> = [ (17 () dx = [ *(m)*(x)g(x) dx
= [N (0)8(x) dx = [P (x)(r,8)(x) dx
= [*P()(rg)(x) dx = <J. T, 08

(the integrated terms vanish, since g, together with all of its derivatives,
vanishes at a and B). Consequently, 7, , and T, are formal adjoints of
each other. What remains is to prove the inclusion T)),CT,. Let f€
D(T} o) and hE A (a, b) such that 7, A=T; ,f. Such an A exists; for
example we can define 4 in the following way:

h(x) = (i)"fcxfcx" . foZ(T;Of)(xl) dx, . ..dx,

with some ¢ €(a, b). Then it follows by integration by parts (let [«, 8] be
chosen as above) that for all g€ D(7,, ()

fy Trogd = <Thof 8> = [(Ttof)*(0)g(x) dx

= [ rms(x) dx = ["H(0)T, 08(x) dx.

a

Hence, for all k € R(T, ,) we have
b
J UG~ h(x)*k(x) dx = 0.
The null space of the linear functional F : Cg°(a, b)—C defined as

F(k) = [ (F(x)— h(x))*k(x) dx for k € Cg(a, b)

contains therefore R(T, o). By Theorem 6.28 we have
n—1

j=0
where the 1*} are the linear functionals

b .
F,: Cs*(a, b) - C, F(k)= f xk(x) dx.
By Theorem 4.1 there exist complex numbers ¢, ¢y, . . ., ¢,_; such that
n—1
F= 2 ¢F,.
j=0
n—1
Hence, with p(x)= > c}x/ we have
j=0

[P = h(x) = p(x)*k(x) dx = 0 forall k € Cs(a, b).
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For every compact subinterval [a, 8] we have (f—h—p)|, 5 € La(a; B)
and (f—h—p)l, g+ C*(a, B), and thus (f— h—p)|, z=0. Since this
holds for every compact subinterval [a, 8], it follows that

f(x) = h(x) + p(x) almost everywhere in (a, b).

It follows from this that f € A,(a, b) N Ly(a, b) and 7, f=T} (f € Ly(a, b).
Hence f € D(T,). |

Theorem 6.30. In the case (a, b)=R we have T, (=T,=T}; thus T, , is
essentially self-adjoint and T, is self-adjoint.
Proor. The relations 7} =T, and T, ,C T, imply that T} C T} y=T,.

We show that T, is symmetric; then it will follow that T* ¢ 7, c T*; hence
T,=Ty=T}4=T,, For f, g€ D(T,) we have

G Tgd = lim [ f00(r,8)(x) dx

= lim {R@+ " ()80 ax]
= lim f_cc(T,,f)*(x)g(x) dx = (T.f, g7,

because R(c) is a linear combination of terms of the form
fO(x )*g®(+ ¢) withj+ k=n—1, and so R(c)—0 as c— o0, by Theorem
6.27. L]

Theorem 6.31. In case (a, b)# R we have

. fl@)=fa)="- - - =f""D(a)=0 if a> —oo,
D(Tn,0)= fEWZ,n(a’ b) *

fB)=f(b)=" - -=f""D(b)=0if b<oo
In this case m# T, (for n >0), and none of these operators are self-adjoint.

Proor. We write W3 ,(a, b) for the subspace given in the theorem. Let S,
be the operator induced on W3 (g, b) by 7,. Then one verifies easily that
S, and T, are formal adjoints of each other. Therefore S, C T;¥ =T, . Let
fED(TY), and let a> — 0. For every j€{0, 1,..., n—1} there exists a
g € D(T,) such that gj(")(a)= O for k{0, 1,...,n—1} and g(x)
vanishes identically in some neighborhood of b (we choose an arbitrary
smooth function § such that §“(a)=§,, and set g =¢g|, ,, Wwhere
¢ € C°(R) and ¢(x)=1 in some neighborhood of a, ¢(x)=0 in some
neighborhood of b). With these g; we have

n—1
0={<fTg> —<TiH &> = (—i)"kgo(— 1)~k ftn=k=1(g)* g(O(q)
= (=1)"(=1)" 7 =i D),
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As this holds for all j€(0, 1, ..., n—1}, it follows that
f(a) =f’(a) = . . =f("—1)(a) = (),
It follows analogously that
f(b) = f(b) = - - - = J*(b) = 0,

in case b<co. Consequently D(—T—’,:;) =D(T¥) c W3 .(a, b), and thus
S,=T, =T

On the basis of our reasoning so far, it is clear that (for n>0) D(_YT’;)
# D(T,), thus T, (#T,. Because of the equality T, ,*=T,, none of these
operators are self-adjoint. O

The question of whether T, , has self-adjoint extensions in the case
(a, b)# R, will in general be answered in Chapter 8. For even n we can
now give the following theorem.

Theorem 6.32. The operator T,, , is non-negative. The Friedrichs extension
Ty, r of T, o is given by the formulae

flay=f(a)="--- =f""Da)=0, if a>— o0,
D(T2n,F) = fED(TZn):
fB)y=f(B)= - =f""Nb)=0, if b< oo
=W, 2(a, b)) N W3 (a, b),
Ton f = 1, for f&€D(T,, f).

PrROOF. For all f € D(T,, o) = Cs°(a, b) we obviously have
n (b n b n
i Typof > = (1) f F(x)*fP(x) dx =f |f™(x)]? dx > 0.

In this case the sesquilinear form s used in Theorem 5.38 is

S(fa g) = <f(n)a g(n)>’ f’ gE Co°°(aa b)
Therefore the s-norm || - ||, is equal to the T, ynorm | - ||
(cf. Theorem 5.1). Hence, the completion of Cg°(a, b) with respect to
| - lls is equal to the completion of D(T, o)= Cg°(a, b) with respect to
| . |, , and thus it is equal to D(T,, o). Consequently, by Theorem 6.31

H, =D(T, ;) =W} ,(a, b)
fla)=f(a)= -+ =f""Ya)=0 if a> — 0,
= feW, (a, b):
fb)y=f(b)= - - =f""D(p)=0 if b<
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The assertion follows from this, because of the equalities D(7,, ;)=
D( T;n, 0) N Hs = D( T2n) N HS' D

In some cases we can explicitly calculate the spectrum of the self-adjoint
operators induced by 7.

Theorem 6.33.
(a) If (a, b)=R, then

o(T5,) =[0, ) and o(T,,_,) =R forall neN.

(b) If (a, b) is a half-line ((a, o) or (— o0, b)), then for every self-adjoint
extension A of T,, , we have

a(4) O [0, ).
For the Friedrichs extension T,, r of T,, o we have

o(T,, r) =[0, ).

PROOF.
(a) T,,=T,, o is non-negative. Hence for every s <0 we have

I(s = To) 112 = IsPIAI? = 2 Re s<f, Tonf > + 1 TaufI1* > IsPUAIP,

ie., s—1T,, is continuously invertible. Therefore, (— o0, 0) Cp(T,,).
Now we show that every s > 0 lies in a(7,,). To this end, let ¢ : R>R
be infinitely often differentiable and let

1 for x<0,
p(x) = 0<p(x)<1 for O0<x<1.
0 for x>1,

Furthermore, for all m €N let
Pu(x) = @(|x| —m), x €R

Let us set (with s'/2" > 0)

Julx) = @m)" g, (x) ™, xER.

Then f, € C5°(R), || f,ll>1 as m—co0 and (s — T3,)f,, = (s — 7,,)f,—0,
as a simple calculation shows. Consequently, s — 7,, is not continu-
ously invertible, and thus [0, c0) C 6(T,)).

We can show analogously that R c a(7,,_,) if for every sER we
define the sequence (f,)) of functions by the equalities

fulx) = 2m) "2, (x) 777, xER



6.4 Differential operators on L,(a, b) with constant coefficients 165

(here the root s'/"~D has to be taken in such a way that s'/@"=D <
for s <0 and s'/@ =D >0 for s > 0).

(b) Without loss of generality we may assume that (a, b) = (0, c0). Then
the inclusion [0, co) C a(A4) follows as in part (a) if ¢, is replaced by

Ym(X) = @, (x —m—2)
(notice that v, € Cg°(0, o0)). Since the Friedrichs extension T, . is

non-negative, it follows that o(T,, ;) C[0, o) (cf. the beginning of the
proof of part (a)); consequently, o(7,, ) =[O0, ). O

Theorem 6.34. Let T be a self-adjoint operator on L,(a, b) induced by ,
(i.e., T, oCT=T*CT,). Let

“ df(x
(o)(x) = 3, a(x) L)
be a differential expression such that sup {|a (x)| : x €(a, b)} <1 and
sup {|a;(x)| : x E(a, b),j=0,1,...,n—1} <oco. Assume that the operator
S defined by the equalities

D(S)=D(T) and Sf=of for f€ED(S)
is symmetric. Then T + S is self-adjoint.

Proor. If ¢ =sup {|a,(x)| : x € (a, b)}, then by Theorem 6.26, the operator
S is obviously T-bounded with T-bound ¢ < 1. The assertion follows from
this by Theorem 5.28. O

EXERCISE

6.13 Let 4 be an (unbounded) self-adjoint operator in a Hilbert space H and P an
orthogonal projection with PD(4) C D(A). Then the operator PAP is in
general not self-adjoint. Counterexamples may be constructed along the
following lines: Let H=Hy® Hy, B self-adjoint in H,; C symmetric with
B-bound < 1 and P(f}, f,)=(f}, 0) for (f}, f,) € H= Hy®D H,,.

(2) The operator Ao(g g) with D(Ag)= D(B)® D(B), Ag(fy, f2) = (Bf, Bf,)
is self-adjoint.

(b) The operator A4 =( g g,) = Ay + ( g 2‘) is self-adjoint.
(c) If C is not (essentially) self-adjoint on D(B), then PAP is not (essentially)

self-adjoint. If C has no self-adjoint extension, then PAP has no self-
adjoint extension.
(d) Possible examples for B and C are as follows:

(a) C essentially self-adjoint, but not self-adjoint: B= —d?/dx? C=
id/dx in Ly(R) with D(B)=D(C) =W, ,(R),

(B) C not essentially self-adjoint: B= —d?/dx?, C=id/dx in L,(0, 1)
with D(B)=D(C)={f € W, 50, 1) : f(0)=/(1)=0),

(y) C has no self-adjoint extension: B= —d?/dx?, C=id/dx in Ly(0, o)
with D(B)=D(C)={f € W, ,(0, ) : f(0) =0} (see also Section 8.2,
Example 1).



The spectral theory of self-adjoint
and normal operators

7.1 The spectral theorem for compact operators,

the spaces B,(H,, H,)

We studied the spectrum of compact operators thoroughly in Section 6.1.
For compact normal operators the results obtained there may be shar-
pened.

Theorem 7.1. (The spectral theorem for compact normal operators.)

(a)

(b)

Let T be a compact normal operator on a complex Hilbert space H and
let {A;, Ay, ...} be the non-zero eigenvalues ‘of T; furthermore let
(P, Py, ...} be the orthogonal (finite rank) projections onto the corre-
sponding eigenspaces (cf. Theorems 6.7 and 5.41), then

T =2 \P; (7.1)
J

this series converges in the norm of B(H). If T is self-adjoint, then this
holds in real Hilbert spaces, as well.

If (\) is a null-sequence (or a finite sequence) from K\ {0} such that
A # N, for j#k, and the P; are non-zero orthogonal projections of finite
rank such that P;P, =0 for j#k, then the series (1.1) is convergent in
B(H), and T'=2 )\ P, is compact and normal. Furthermore, {A}, Ay, . . . }
is the set of non-zero eigenvalues of T and the R(P)) are the correspond-
ing eigenspaces. The representation (1.1) is therefore unique in this sense.
If the A; are real, then T is self-adjoint.

PROOF.

(a)

166

Let M be the closed linear hull of {R(P):j=1,2,...}, and let P be
the orthogonal projection onto M+,
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If M+ {0}, then for all fEML, gEH, and j=1,2,... we have
(Tf, Pg) = {f, T*P,g) = N/, Pg) =0,

i.e., TM* Cc M~L; we can prove in just the same way that T*"M+ c M+,
Hence it follows that the restriction S of 7 to M- is a normal operator
on the Hilbert space M. Every eigenvalue of S is an eigenvalue of 7,
every corresponding eigenvector of .S is an eigenvector of T contained
in M+, therefore it follows that S can only have the eigenvalue 0 (since
M is the closed linear hull of all eigenvectors of T that belong to
non-zero eigenvalues). Therefore (cf. Theorem 6.7), a(S)= {0}, and
thus r(S)=0 by Theorem 5.17(c) and (d). Hence S =0 by Theorem
5.44, i.e., T vanishes on M.

Consequently, it follows for f € H (whether M+ = {0} or M+ % {0})
that

Tf = TP+ T2 Pf = 2 TPf = JAPS.
J J J

If the sequence ())) is infinite, then for every f € H and meN

2 00

= > NPUPSIE < sup (AP ij>m+ 1} S

J=m+l1

i)

j=

Since the sequence (A) is a null-sequence (cf. Theorem 6.7), this
implies the norm convergence of (7.1).

(b) We can show the convergence of the series just as in part (a). For every
m €N the operator 7. A, P; is of finite rank, consequently compact.
The compactness of T follows by Theorem 6.4(e). It is easy to verify
that T is normal. All the A; are obviously eigenvalues of 7, and every
fER(P) is an eigenelement of T belonging to the eigenvalue A. If
A#0 is an eigenvalue of T and f#0 is a corresponding eigenvector,
then

2

0= [|A=DfII> = Z A = APIPS + A
J

f-3 Pf
J

i.e, A=A ||Pf||=0 for all j and f=2 Pf. Since f#0, there is a j,
such that P, f#0. Hence A =A, . Consequently, A7 A, for all j #/,, and
thus P,f=0 for j #j,. It follows from this that f € R(P, ). ]

Theorem 7.2. (The expansion theorem for compact normal operators). If T
is a compact normal operator on a complex Hilbert space, then there exists a
zero-sequence (or a finite sequence) ( ;) from C and an orthonormal sequence
(f;) from H such that

Tf = 2 S f2f, forall fEH. (7.2)
J
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Conversely, every operator defined by (1.2) is compact and normal; the
numbers y; are eigenvalues of T; the elements f; are corresponding eigenvec-
tors. If T is self-adjoint, then this is true in real Hilbert spaces, as well.

PROOF. Let T'=23 A, P; be the representation from Theorem 7.1. For every j
let {g; 1,82 --:8; K } be an orthonormal basis of R(P)); furthermore,
let p; 4 =}\j fork=1,2,..., kj Then by Theorem 7.1 and Theorem 3.7

Tf = ZNBS = 2N 2850 B8 x = 2 %uj,k<g,-,k,f>g,-,k-
J J J

(7.2) follows from this by changing the indices. We leave the rest of the
proof to the reader. 0O

Theorem 7.3. Let T be a compact normal operator on a complex Hilbert
space, and let (N;) be the sequence of non-zero eigenvalues of T; every
eigenvalue counted according to its multiplicity, and |\,| > |\, | for all n.
Then

M= 1T

L ] inf EHsup{IITfII fEH flgy ..., g, I fl=1} (7.3)

for n€N (cf. also Exercise 1.2). If T is self-adjoint, then this holds in real
Hilbert spaces, as well.

PROOF. It follows from the relations r(T) = || T'|| and o(T)\{0} C 0,(T) that
A|=1[IT|| (cf. Theorem 5.17(c) and (d)). Let (f) be an orthonormal

sequence such that Tfj =}\ij If we choose gj=fj forj=1, ..., n, then for
every f1g,,...,g8, we have
2
ITAI? =] 2 A5 = 2 WPKEHP
Jj>n j>n
< NP 2 KA OF < I PIAR
J>n
It follows from this that |\, | >inf sup {...}. If g, ..., g, are arbitrary,
then there exists an f€&€ L(f,...,f,.,) for which |f]|=1 and
flg, ..., 8, We have for this f that
n+1 2 n+1

ITf)1? =

DRNTAPY

= 3 WK P

= I}\n+l'2”f“2 > |}\n+l|2'

It follows from this that |A,, ;| <inf sup {...}. Consequently, the theorem
is proved. ]



7.1 The spectral theorem for compact operators, the spaces B,(H;, H,) 169

If T=2% AP, is the representation of the compact normal operator T,
given in Theorem 7.1, then for all n €N the equalities

T" = 2 \'P.
J

obviously hold. If Aj'/ " is chosen in some way, then the operator

An — 2>‘jl/npj
J

has the property (A4,)" = T. The roots Ajl/ " can be chosen in a unique way
if we require that, for example, 0 < arg Aj'/ " <27 /n. Therefore, we have
the following theorem.

Theorem 74. Let n€N, n>2. Fvery normal compact operator T on a
complex Hilbert space has exactly one normal compact' nth root whose
eigenvalues all lie in {z€C : 0<arg z<2w/n}. Every non-negative self-
adjoint compact operator has exactly one non-negative compact nth root.

ProOF. The operator 4, =3 A'/"P, with 0<arg A/” <2m/n has the re-
quired property. Let B=3, u, O, be an operator having the same property.
Then we have in particular that

%Mk"Qk =B"=T=2\P,
J

The uniqueness statement of Theorem 7.1 assures that u”=A; and Q;= P,
(this is true perhaps only after an appropriate reindexing). The inequalities
O0<arg w, <27 /n imply that g =>\jl/"; consequently, B=A,. If T is non-
negative, then A >0 for all j; the condition 0<arg)//”<2m/n then
implies that A//” > 0. O

If T is a compact operator from H, into H,, then T*T is compact,
self-adjoint, and non-negative. Hence we can define the absolute value of
T by the equality |T|=(T*T)"/?, where (T*T)"/? is the uniquely de-
termined non-negative square root of 7*T (a definition for arbitrary
densely defined and closed operators will be given in Section 7.3). |T| is
obviously compact. The term “absolute value” is justified by the following
theorem.

U Actually, the compactness of the nth root does not have to be assumed. Every normal nth
root 4, of a normal compact operator T is compact: If (A4,)" =T, then (42A4,)'=T*T;
consequently, (4 A,)" is compact. The compactness of 4} A, follows from this by Theorem
7.20 (for n=2 this follows from Theorem 6.4(c) because of the equality (434,)’=
(A3 A,)*(AFA,)). The compactness of 4, follows from Theorem 6.4(c).
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Theorem 7.5. Let T be compact. Then || |T|f|| = || Tf|| for all f € H. There

exists an isometric operator U from R(|T|) onto R(T) such that T= U|T)|,
and |T|= U"'T. The representation T= U|T)| is called the polar decom-
position of T.

PROOF. For all f € H we have

TP = TIA T = AT > = (T*Tf )
= (Tf, Tf ) = || Tf|1>
If for every f € H we set
V(Tlf) = T,
then V is obviously a linear isometric mapping of R(|T|) onto R(T). Then

U=V is an isometry from R(|T|) onto R(T) (cf. the proof of Theorem
4.11), and we have T= U|T|. ]

If T is a compact operator, then the non-zero eigenvalues of |T| are
called the singular numbers or singular values or s-numbers of T. In the
following let (s5;(T)) denote the (possibly finite) non-increasing sequence of
the singular numbers of T'; every number counted according to its multipl-
icity as an eigenvalue of |T|. For 0 <p < oo we denote by B,(H;, H,) the
set of all compact operators T out of B(H,, H,) for which

S [5(T)]” < .

J

We write B, (H,, H,) for the set of compact operators belonging to
B(H,, H,) (cf. Section 6.1). For B,(H, H) we briefly write B,(H).

Theorem 7.6. Let T € B(H,, H,), s;=s(T). Then there exist orthonormal
sequences (f;) from H; and (g;) from H, (these sequences can be finite) for

which
Tf = %g(]ﬁ-,f)gj for all f € H,,
T*g = §sj< g, 8> forall g€H,
IT|f = %%-(Jj-,f»j- forall f € H,,
|T*| g = %sj<gj, g>g forall g€H,

The elements f; and g; are eigenelements of |T| and |T*|, respectively. In
particular, T, |T|, T* and |T*| have the same singular values, and the
following assertions are equivalent:

Te Bp(Hla H2)’ |T| € Bp(Hl)a T* € Bp(HZ’ Hl)’ |T*| € Bp(HZ)'

Proor. By Theorem 7.2 the compact operator | T'| has a representation of
the above form. Since |T| is non-negative, all the 5; are positive. Conse-
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quently, with the operator U .from Theorem 7.5 it follows for all f € H, that
1 = UITIS = U( S 5<5.55) = S 55 U
J J

Along with (f), the sequence (Uf) is also an orthonormal sequence;
therefore, we have the required representation of 7. For all f&€ H, and
g € H, we have

f T*g> = (Tf, g) = <§s,<j;,f>g,-, g)
- (4 gsj<g,~,g>f,.>;

the required representation of 7* follows from this. We can deduce from
these identities that

T**T*g = TT*g = %sk<fk, 2 5< & g>jj~>gk =2 548 808
J J

for all g€ H,. Consequently, we have the required representation of
| T*| = (T** T*)"/%. The remaining assertions are now clear. O

With the aid of Theorem 7.3 we have the opportunity of determining the
singular numbers.

Theorem 7.7. Let S and T be from B (H, H,). Then
si(T) = || T,
se(T) = inf _ sup {ITf| :f€H, flgy ... g IfI=1} (74)

4 TRRRE gj

Jor all jEN, and
Sivk41(S+T) <s5,;,(S)+ 5,,.(T) forall j, k€N, (7.5)
If TeB(H, H) and S € B, (H,, H,), then for all j, KE N,
sj+k+l(ST) < Sj+1(S)Sk+1(T)- (7.6)
If T€ B (H, H) and S € B(H,, H,), then

5(ST) = s(T*S*) < |IS|Is(T) = || S*[Is{(T*)- (7.7)
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Proor. The formulae (7.4) follow from (7.3), since the s(T) are the

eigenvalues of |T| and since || Tf||=||T|f|| for all fEH. For S, T &
B (H, H) and j, keEN,

Sjrr+1(S+T)

= infg”sup IS+ D)f|l :fEH fLlgy, ..., 8,0 IfII=1}

24 RSP )
< gh”i‘nfgﬂsup{||Sf||+||TfH fEH flg), ..., 8k 1fl=1)
S k[sup {ISfll : fEH, fLgy ..., 8 IfII=1}

+sup {||Tf|| : fEH, fLg h1s- s 8w IfII=1}]
= inf , Sup {IISfll : fEH fLgy, ..., 8 Ifl=1}

.....

+ ot sup (| Tf|l S EHSLg n - 8un I1I=1)

gj+l """ J+

= 5;:1(8) + 5.(T).

For T € B(H, H,), S € B (H, Hy) and j, Kk €N, we have (set
I TS|~ | STSf || =0 if Tf=0)

S jrk+(ST) = , ir;f ,SuP {(ISTSIl - fEH, fLgy .., 8juw IfII=1}
b I+ k
< inf sup{||STf|| fE€H flgy, ..., 8 T* 84
B gEH
Bk+1r++ > gk+jEHl

o T IS =1)

| ISTS)
- inf su ——=\Tf|| : feH fLg,...,8;
g p{ iz 170 b B

Bkatr-e o g +; EH)

TfLgrts - -+ s 8rays I|f||=1}

< inf [sup {||Shll :hEH, hLge,p -, 8sy IBI=1)}
25,8 EH
Bk+1s 0> gk+jEHl

Xsup {||Tf|| : fEH, fLgy, -, 8 Il =1}]
= 8§41(8) 81 (T).

If T € B, (H, H,) and S € B(H,, H,), then for all j €N,

$41(ST) = in§EHSUP {ISTAI| : fEH fLgy, -8 ISl =1}
8- 8&
SIS it sup (IT 5.2} = IS s (T).
Bly e gJEH

The remaining equalities follow from the equalities s5;(4) = 5,(4*). ]
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In what follows we write

Tl = { S |s,-(T)|f’}l/p

J
for T € B,(H, Hy) (0<p < ).

Theorem 7.8.
(@) If §, TE€B,(H, H)) (0<p <), then S+ T also belongs to B,(H, H)),
and

IS+ T, < 2Y2(|S|l, +ITl,) for p > 17
IS+ T|5 < 2(1S1I5+ITI5) for p < 1.
The sets B,(H, H,) are therefore vector spaces.

(b) If TEB,(H, H,), SEB,(H;, H)) 0<p,g< ) and (1/r)=(1/p)+
(1/q), then ST € B.(H, H,) and

IST|I, < 2V7IS|| T,
(¢) If T € B,(H, H,) and S € B(H,, H,), then ST € B,(H, H,), and we have
ISTl, < ISIITI,
The corresponding assertions hold for T € B(H, H,) and S € B,(H,, H,).

REMARK. Theorem 7.8(a) and (c) imply that the sets B,(H) are two-sided
ideals of B(H) and we have ||ST||, <|IS| [T, and ||TS|,<[IS|IT]|,
for S € B(H) and T € B,(H).

PRrooOF.
(a) By virtue of (7.5) we have

Z5(SH+TY =2 {52, ((S+TY +s,(S+TY}
< S {(5(8) + (1)) + (s(S) +5,,(T))}.

J

If p> 1, then it follows by the Minkowski inequality for the /,-norm
that

1S+ T8 <

(= %(S)P)’/’?r(;%(n")””r

-+

(§~s<s>")]/p+(g%,(w’)””r

< 2SN, +ITI,]"-

2 More accurate studies show that the || . | » are norms for p > 1 (cf. Theorem 7.12 for p = 1),
and that ||ST||; < [|S{|,lITl, for (1/p)+(1/q)=1; cf. [5], Lemma XI. 9.14 or [10], Theorem
I11, 7.1.



174 7 The spectral theory of self-adjoint and normal operators

If p<1, then we can use the elementary inequality |aff +|B|° >
|a + B[P (proof: it is sufficient to prove the case |a|+| 8| =1). With the
aid of this inequality we obtain that

IS+ Tl5 < 2 {25(SY +5(T) +5,,,(T)}

< 22 (s,(sY" +s(TY) = 2() S|12+ || T|5).

(b) As (r/p)+(r/q)=1, it follows from (7.6) with the aid of Holder’s
inequality that

STy, = (g s,-(ST)’)V'

1/r
< { 2 5(8)s(T) + 2 5;(S) s 1(T)r}

J

A { (% s"(S)q)r/q( 25 T)”)r/p + ( > s,-(S)")r/q( 2 %](T)p),/,,} "

J

< 27|, T,
Assertion (¢) follows from (7.7). O

Theorem 7.9. Let p, q,r>0 with (1/p)+(1/g)=(/r). We have T €
B.(H, H,) if and only if there exist operators T,E€B,(H, H,) and T,&
B,(H,, H,) (with an arbitrary Hilbert space H,) for which T=T,T,; the

operators Ty and T, can be chosen such that || T||,=||T|| || T,

Proor. By Theorem 7.8(b) we have T,T, € B,(H, H,) for T, € B,(H, H,)
and T, € B,(H,, H,). Now let T &€ B,(H, H,) and let (cf. Theorem 7.6)

Tf = Ss(T)f 18 fEH,
J
where (f) and (g;) are orthonormal sequences in H and H,, respectively. If

{hy, hy, . .. } is an ONS in a Hilbert space H, and we define T, and T, by
the equalities

T\f =2 s(T)""f, [k, fEH,
J

T2h = 2 sj( T)r/q<hja h>gja he H2,
J

then obviously 7= T,T,. The numbers s/ T)/? and 5;( T)”/9 are the singu-
lar numbers of T, and T,, respectively. Therefore, T, € B,(H, H,) and
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T, € B,(H,, H,). Moreover,

1/p
||T1||,,=(2s,<T)"“’”’) —|T|7» and ||T,

J

Ity = 109

consequently, || T, = | Tyl /| T3l 0

Theorem 7.10.

(a) The set By,(H, H,) coincides with the set of Hilbert-Schmidt operators.
For T € By(H, H,) we have ||T|,=|||T]||l-

(b) We have T € By(H, H,) if and only if there exist operators T, €
By(H, H,) and T, € By)(H,, H,) (with an arbitrary Hilbert space H,) such
that T=T,T,; the operators T, and T, can be chosen such that ||T|,=

I T3l Tl

PROOF.

(a) Let T € By(H, H)). If f,, f,, . . . are the orthonormalized eigenelements
of |T| that belong to the non-zero eigenvalues s{(T) and if {g, : a E
A} is an ONB of N(|T|)=N(T), then {f}, f5, . .- JU{g, : «a E A} is an
ONB of H, and we have

ZITHP + 2N Teull® = ST = Zs(T) = || T < 0.
J « J J
Consequently, T is a Hilbert-Schmidt operator with |||T|||=||T|},. If T

is a Hilbert-Schmidt (therefore compact) operator from H into H, and
fis fps - - . are chosen as above, then

25(T) = ZITHIP < [ITNP < o0,
J J

i, T € By(H, H)).
(b) This follows from Theorem 7.9 forr=1andp=¢g=2. O

The set Bj(H, H,) is also called the trace class of operators from H into
H,. This term originates from the fact that for T € B,(H) a trace can be
defined by

tr (T) = §<ea, Te,>, (7.8)

where {e, : « € A} is an ONB of H. This is so, because then 7'= T, T, with
appropriately chosen Hilbert-Schmidt operators T, T, and

1/2
S Kew Ted| = SKTte, Tiel < (SITtelP ST ) < o,
a 44 [4 4 [4 4

For matrices the trace does not depend on the choice of the basis with
respect to which the matrix is determined. Analogously, the definition of
the trace does not depend on the choice of the ONB in the above case.
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Theorem 7.11,

(a) Definition (1.8) of the trace of an operator T € B,(H) is independent of
the choice of the orthonormal basis.

(b) If T, €By(H,, H,) and T, € By(H,, H)) or T,EBy(H,, H,) and T, €
B(H,, Hy), then tr (T,\T,)=tr (T,T,). (This also holds for T, €
B,(Hy, Hy) and T,€ B/(H,, H)) with (1/p)+(1/q)=1; cf. Exercise
7.6(c).)

PRrOOF.

(a) By Theorem 7.10(b) there exist operators T, € B,(H, H,) and T, €
B,(H,, H) such that T=T,T,. If {e,: a €A} and {f; : B EB} are
arbitrary orthonormal bases of H and H,, respectively, then

% (ew TrTe0) = %(Ti"ew Tie) = 2 %(T;ewfp><fp, T\e)

S S Tthp e e Tola)

% S T T S (7.9)

where all sums have at most countably many summands and the sums
are absolutely convergent. If we choose another ONB {¢, : a € A} of
H, then it follows from this that

§<ea’ T2Tlea> = %<fﬂ, T1T2fﬂ> = % <€;, T2Tle¢;>'

This is the required independence.

(b) The first assertion has been proved in part (a). If T, € B,(H,, H,) and
T, € B(H,, H,), then there exist operators B € By(H,, H;) and A4.€
B,(H5, H,) such that T, = AB. Thus it follows from (7.9) that

tr (T,T)) = tr (T,4)B) = tr (B(T,A4))
= tr ((BT)4) = tr (A(BT,)) = tr (T\T),
since 7,4, B, BT,, and A4 are Hilbert-Schmidt operators. M

Theorem 7.12. An operator T from H, into H, such that D(T)=H, is in
B\(H,, H,) if and only if there are sequences (p,) from H, and ({,,) from H,
such that ||@,|l = ||Y,|| =1, and there is a sequence (z,) from WK for which
2|z,| < oo and

Tf = 22,{@p, O, | E Hy. (7.10)

The norm ||T||, is the infimum of those sums Z|z,| for which there are
normed sequences (@,) from H, and (y,,) from H, such that (7.10) holds. || . ||,
is a norm on B;(H,, H,), the so-called trace norm.
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Proor. If T € B|(H,, H,), then Theorem 7.6 gives the required representa-
tion (7.10); moreover, it follows that || T'||, is greater than or equal to the
given infimum. If (7.10) holds, then T is compact, since T is the limit of the
finite rank operators 7,,, T,.f=27_,z,{®,, fO¢, in the sense of the norm
of B(H,, Hy) (because |T—T,|| <Z,-,lz,)). Hence, we obtain with the
notation of Theorem 7.6 that

2 5(T) = 2(Tf, g> = Z<§zn<%,fj>¢n, g

< S Szl Kom £ 8
Jj n

1/2
< Slal{ Son P 9P )
n J J

< glm el W]l = glznl;

thus, T € B)(H,, H,). As this holds for every representation of the form
(7.10), the equality given for || T'||, follows. The fact that || . ||, is a norm
follows immediately from this. ]

EXERCISES

7.1. If T is a self-adjoint compact operator and n €N is odd, then there is exactly
one (compact) self-adjoint operator 4 such that 4" =T.

7.2. In (7.3) and (7.4) we can replace “inf sup” by “min max”.

7.3. Theorems 7.1 and 7.2 do not hold for normal operators on real Hilbert
spaces. As an example, one can consider the operator induced by the matrix

(_(]) (l)) on R?; this operator has no eigenvalue.

74. If T is a normal operator on H and there exists a zy € p(T) such that R(zq, T)
i1s compact, then R(z, T) is compact for every z €p(T), and there exist a
sequence (A;) from K such that [\;|— o0 as j— oo and a sequence (P)) of finite
rank orthogonal projections such that PP, =8, P, D(T)={f€EH:
S,INPIPSI? < 00}, and Tf =3 AP f for f € D(T).

7.5. Let {A, : a € A} be a family in K\ {0} for which A, 5=Ag for a+f, and let
{P,: a €A} be a family of orthogonal projections on the Hilbert space H
such that P,Pg=90,,P, for a, B € A.

(a) The equalities

D(T) = {feH: » l>\a|2||Pm|2<00} and

aEA

TF= S MPS for feD(T)

aEA

define a normal operator on H.
(b) Every A, such that P, 50 is an eigenvalue of T, and N(A,— T) = R(P,).
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7.6.

1.7.

71.8.

7.9.
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(¢) T is compact if and only if we have:
(i) dim R(P,) < oo for all a € A,
(ii) for every € >0 there are only finitely many a € A such that [A,| >¢
and P,+0.

(@) Let 0<p < co. For every T € B,(H,, H,) there exists a sequence (7,) of
finite rank operators such that | 7,||, < ||T||, and || T~ T,[,—0 as n—
0.

Hint: Theorem 7.6.

(b) For every T € B,(H) we have |tr (T)| < || T|{;-

Hint: If Tf=23,N{f, f)g then define the trace of T by means of an
ONB that contains {f}, f5, ... }.

(c) For TE€B,(H,, H,), S € B(H,, H)), where (1/p)+(1/g)=1, we have

tr (ST)=tr (TS).
Hint: Without loss of generality we may assume that ¢ <2. Let (7,,) be
chosen as in part (a). Then T, € B,(H,, H,), S € By(H,, H,); conse-
quently, by Theorem 7.11(b) we have tr (ST,)=tr (7, S). Moreover,
tr (ST) — tr (ST,)| < 2||S|[IIT = T,|l, and |tr (TS)~tr (T,S)| <
2)\S|i I T~ T,,[|,—0.

Prove Theorem 7.2 without reference to Theorem 6.7:

(@) There is an eigenvalue p, of T such that |u,|=||T|.
Hint: By Theorem 5.17(c) and (d) and Theorem 5.43 there exist a u, € K
and a sequence (g,) from H for which |u|=||T|, || g.ll=1, and (u,—
T)g,—0. The sequence (g,) has a convergent subsequence (g,); the
element f, =lim g, is an eigenvector of T belonging to the eigenvalue p,.

(b) Let the eigenvalues wy, . . ., i, (4] > | 2| > . . . > | u,]) and the eigenele-
ments f, . . ., f, be determined. The restriction T, of T to L(f, ..., f)*
is a normal operator on L(f},...,f)" . 4 and f,,, are obtained by
using (a) for 7,.

(¢) Prove (7.2).

Let T and S be operators on H such that p(T) N p(S) S, and let Ay Ep(T)
Np(S), 0<p < 0. If RQAg, T) — R(Aq, S) E B,(H), then RQA, T)— R, S) €
B,(H) for all A€ p(4) N p(B).

Hint: We have

A=T)"'=A-T)~'
=M= TYA-T) Qo= T)™ =R~ T)™ ' [R~ T)(A~Tp) ™"
Give a proof, independent of Theorem 7.12, that || - ||, is a norm on
By(H,, H,).

Hint: Let Af=Zs/(f, f>g, Bf=Z2s/'{f", f>g, and (4 + B)f=Zy
{f» f>& as in Theorem 7.6. Then

I4 + Blly = Z A+ B)fj, g>
=2 %(J’-,A*g@(&’uw +2 %Oﬁ» B*gi )< 8 817
J J

< 41l + || Bf-
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7.10.

7.11.

7.12.

7.13.

7.14.

7.15.

(a) If T,€ B (H,, H,), T € B(H,, H,), and ||T,, — T'||—0 as n—o0, then for
every k €N we have 5,(7,)—s5,(T) as n— 0.
Hint: Use (7.5).

®)If T, €B,(H, H), TEBH, Hy), |[T-T,)|]->0 as n—o0, and
lim inf, ,, ||7,ll, < o, then T € B,(H|, H,), and ||[T|, <
lim inf, ,, || Tl

(c) If (T,) is a sequence from B,(H,, H,) such that || T, — T,,|,—0 as n, m—
oo, then there exists a T € B,(H,, H,) such that ||T— T,]|,—0 as n—oco.
(Consequently, B,(H,, H,) is a Banach space.)

Let S, T € B(H,, H,) be bijective. Then §— T is in B,(H,, H,) if and only if
S—l - 7-‘_l iS il’l Bp(HZ’ Hl)'
Hint: S '—- T '=S Y(T-5T""

Let S, T € B(H), S— T € B,(H).
(a) We have S"—T" € B,(H) for all nEN.
Hint: $"—T"=372,T/(S~T)S" /..
(b) We have p(S)—p(T) € B,(H) for every polynomial p.

If TEB,(H,, H,) for some p<oo, then T*T €8, (H,) and (T*T) €
B, 2,(H) C By(H) for n>>p/2. We have || T” = hm,,_,oo [tr (T*T)"}/?n,
Hint: {S%_,|a|"}"/"—>max {|a]:j=1,...,k} as n—>o0.

Let H, and H, be Hilbert spaces, and let T € B_(H,, H,). For every ¢ >0
there exists a finite-dimensional subspace M, of H, such that || 7f|| <e€|| f|| for
all femMt. _

Hint: Use the representation in Theorem 7.6.

Let H, and H, be Hilbert spaces. Let H| = B(H,, K) be the Hilbert space of

continuous linear functionals on H, (cf. Exercise 4.3(a)).

(a) H;® H, is isomorphic to the space of bounded finite rank operators from
H, into H,; we can make the element X7, ,c;L;®g; from H;® H, corre-
spond to the operator T for which D(T)= H, and Tf 27=16Li(f)g;.

(b) We have||27.,¢,L;® gi|| = || T||,; the space H| &® H, can be 1dent1f1ed with
the space B,(H,, H2) of Hilbert-Schmidt operators from H, into H,.

(c) A norm || - ||, on H{®H, is called a “cross”-norm if ||[LQg|,=
L] || gll. The completion H{®_H, of H{® H, with respect to || . ||, can
be identified with a subspace B.(H,, H,) of B_(H,, H,). The spaces
B.(H,, H,) are two-sided ideals of B(H,, H,).

(d) For every “cross”-norm || . ||, we have B,(H,, H,) C B.(H,, H,). Further-
more, B.(H,, H,) = B,(H,, H,), if we choose

2 L®g

J=1

! n
=inf{ RN E EM zlg-@&}-
T J=1

Jj=1 J=1

We have B.(H,, H,)= B,(H,, H,) if we choose

T
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7.2 Integration with respect to a spectral family

(7.11) A spectral family on a Hilbert space H is a function E : R— B(H)
having the following properties:
(a) E(?) is an orthogonal projection for every t ER,
(b) E(s) < E(¢) for s <t (monotonicity),
() E(t+ €)= E(?) for all t ER, as e—0+ (continuity from the right),
(d) E(t)i>0 as t— — oo, E(t)—S>I as t— oo.

REMARK. Property (7.11(c)) is not essential, it is needed only in the
uniqueness statement of Theorem 7.17. Right continuity can be replaced
by left continuity; then we have to replace lim;_,, by lim;_,_ in Theorem
7.17.

ExaMpPLE 1. Let M be a measurable subset of R” and let g : M—R be a
measurable function. For every r € R let

M(1) = {xeM: g(x) <t}.
M(?) is obviously a measurable subset of M.
(7.12) The equality E(t)f = Xp, f for f € Ly(M) and t ER defines a spectral
Jamily on Ly(M).

PROOF. Properties (7.11(a)) and (7.11(b)) are evidently satisfied. We show
(7.11(c)): Let t €R, let f € L,(M), and let (¢,) be a null-sequence of positive
numbers. Then

ICEG+6) = EOMIE = [ Xunes (0) = Xuo(KDS (P d.

Because of the relations O < Xy +ey(X) = Xmp(¥) <1 and xpypey(X) —
Xmn(X)—0 as n—co for all x €M, it follows by Lebesgue’s theorem that .

(E(t+¢,)— E(1))f >0 as n-— oo,

As this holds for every zero-sequence (€,), property (7.11(c)) follows. We
can show (7.11(d)) similarly, since we have

XM(,)(x) —1 forall xeM, as t » .
Xu(x) >0 forall x €M, as t —» —co. [

EXAMPLE 2. Let {p, : « € A} be a family of right continuous non-decreas-
ing functions defined on R.

(7.13) The equalities

E(0)(f,) = X(=w q(f2)
= (X(-w,qfy) for (f,) € a?ﬁ\ L(R, p,), t ER

define a spectral family on @ . Ly(R, p,).
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PROOF. It is clear that the E(r) are orthogonal projections. The increasing
character follows from the equality

(L (B() = EG)(£)> = 2 f( s qlfa(x)lz dp,(x) > 0

fort>s and (f,) € ® 1 Lx(R, p,). For t—s_, we have

J

(s, ¢

Ifa(x)|2 dp,(x) >0 forall a€A.
]
Because

f | £(x)]? dp,(x) < f |£.(x)]* dp(x) forall s, ¢ andall «
(s, 7] R

and

b fmlfa,(x)l2 dp(x) = (L), e <

aEA

it follows from this that
HE@~EGE)YIN =3 f( ]lf,,(x)lz dp(x) >0, t->s,,
a J(s,t

i.e., E is right continuous. The remaining assertions E(f)—1 as t— + o0
and E(t)—0 as t— — oo are clear. ‘ O

ExaMpLE 3. Let (A)) be a sequence of pairwise different real numbers, and
let (P;) be a sequence of orthogonal projections on H such that P, P, =0 for
J#k and ®,R(P)=H.

(7.14) The equalities
E()f= Pf for feHand t€R
{1 y<t}
define a spectral family on H.

PROOF. Properties (7.11(a)), (7.11(b)) and (7.11(d)) are clear; we leave their
proof to the reader, and only prove the right continuity here. For every
teER and € >0

WEG+o-EOMIP= 2 IBSI”

{jri<h<rt+e}

The sum converges to zero as e >0+ (since the series || P; f |? is conver-
gent and for every n,&N there exists an e€>0 such that A&(7,
t + €] for j <ny). J

Let E be a spectral family on the Hilbert space H. For every fE H
define

o(1) = {f, E()f) = |E(DfI°, tER. (7.15)
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The function p, : R—R is obviously bounded, non-decreasing, and right
continuous; lim,_, _, p{#)=0, lim,_, , p{n)= || f||*.

A function u : R— K is said to be E-measurable if it is p; -measurable for
every f € H (cf. Appendix A). Non-trivial examples of E-measurable func-
tions (for every spectral family E) are all continuous functions, all step
functions, and all functions that are pointwise limits of step functions; all
Borel measurable functions are E-measurable. The function u, with uy(f) =
1 for all t€R is in Ly(R, o) for every f € H. Consequently, by Theorem
A 14, every bounded E-measurable function u : R—K belongs to Ly(R, o)
for all f& H.

For a step function ¥ we can define the integral [u(f) dE(f) by the
equality

[ S ex,(0dE@) = 3 GE),
Jj=1 Jj=1
where
E((a, b]) = E(b) — E(a), E((a b)) = E(b—)— E(a),
E([a,b]) = E(b) — E(a—), E([a, b)) = E(b—)— E(a-)

(here let E(t—)=s—1lim_ 4, E(f— ¢); this limit exists by Theorem 4.32
and is an orthogonal projection). For any step function ¥ : R—K and for
every f € H we obviously have

fu(t) dE(t)/“2 = f|u(t)|2 dpA(1), (7.16)

as a simple calculation shows. If f & H and u &€ Ly(R, p,), then by Section
2.2, Examples 7 and 13, there exists a sequence (u,) of step functions for
which u,—u in Ly(R, p,).” Then

Hfu,,(t) dE(t)f—fu,,,(t) dE(t)/"2 = f|u,,(t)— u,(1)]° do(2)
— 0 as n,m — o0,

i.e., the sequence (fu, dE(f)f) is a Cauchy sequence in H. Therefore, we
can make the definition

f u(r) dE()f = lim f u, (1) dE(D)f. (7.17)

This definition is obviously independent of the choice of the sequence (u,),
and we have

3 Here and in the sequel Ly(R, py) is meant to be the real or the complex L,-space according
as M is real or complex.

fu(t) dE(t)f“2 = f|u(t)|2 dp(1). (7.18)




7.2 Integration with respect to a spectral family 183

For u, v € Ly(R, py) and a, b €K it follows from (7.17) immediately that

f(au(z) + bo(2)) dE(2)f = afu(z) dE()f + bfu(z) dE(0)f. (7.19)
The integral just defined is therefore linear. 0

In our further studies we shall use the following auxiliary theorem; for
functions that are pointwise limits of step functions (all functions explicitly
occurring in the following are of this kind) this auxiliary theorem is not
needed.

Auxiliary Theorem 7.13. Let E be a spectral family on H and let u : R—K
be an E-measurable function. If {f,, ..., f,} is a finite set in H, then there
exists a sequence (u,) of step functions that converges to u almost everywhere
with respect to oy for j=1, ..., p. If u is bounded, then the sequence can be
chosen to be bounded.

PrOOF. It is enough to show that there exists an # € H for which every
py-null set is also a pfj-null set forj=1,..., p (then we choose a sequence
of step functions that converges to u p,-almost everywhere). In order to
prove this, it is enough to find, for any two elements f, = f and f,=g, an
element h€ H for which every set of p,-measure zero is of p; - and
p.-measure zero; the rest is simple induction.

For this, set M=L{ E(¢)f: t €R}. Let us introduce the notations: P is
the orthogonal projection onto M, g,=Pg, g,=(I—P)g=g—g,, and
h=f+g,. Then for arbitrary intervals /; and /, in R we obviously have
E(h)f L E(L)g, and E(l)g, L E(h)g, (since E(h)f €M, E(l)g, €M, and
E(h)g,€M™).

Let N be a set of p,-measure zero. Then there exists a sequence (S,) for
which N ¢ §,, and S, = U ,,,J,, where the J,,, are at most countably many
mutually disjoint intervals for fixed » €N, and

> ou(dm) >0 as n— oo.

Because of the equalities
(o) = | ECLm) 11> = | E(dum)FII* + [ E(Jum) 821> = 0L i) + Py, (um)

for all n, m, it follows from this that
> p(Jwm) >0 and P (Jm) >0 as n— oo

Consequently, N is a set of p-measure zero.
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For all r €R we have
2
- <|3 £

= % IE(dn)f I = %pf(‘lnm) -0 as n— .

Since the set { E(¢)f : t € R} is total in M and the norms of the operators
k-2 E(J,,)k are less than or equal to 1, Theorem 4.23 implies that
> E(Jm)k—0 for all k € M. As g, €M, it follows from this that

2
— 0,

S 03, hm) = S N E o)1 = ” S E(hm)z,

consequently,

2 05(m) = 22 (05, (Jom) + 25, (Jem)) = 0
m m
as n— co. Therefore, the p,-measure of N equals zero. |

For f, g € Hand a bounded E-measurable function v : R— K, according
to the polarization identities (1.4) and (1.8), respectively, we define

fu(z) dg, E()f)
= 3{Ju(?) dpg.. (1) — [u(t) do,_ (1) +ifu(z) dp,_; (1)
~ifu(?) dp,.; (1)} if K=C,
= ;{Su(?) dp, . (1) — fu(?) do,_[(1)} if K=R

With this definition we obtain for any bounded E-measurable functions u
and v that

fo()*u(?) dg, E(1)f > = {fo(1) dE(1)g, fu(r) AE()f). (7.20)

For step functions ¥ and v this is evident. In the general case this follows
by Lebesgue’s theorem if, according to Auxiliary theorem 7.13, we choose
bounded sequences (u,) and (v,) of step functions that converge
r s Pg s Pgtpr Pg— —p Pg+if Pg—is almost everywhere to u and v, respectively.

Now we are in a position to generate linear operators by means of
integrals with respect to a spectral family.

Theorem 7.14. Let E be a spectral family on the Hilbert space H, and let
u : R—>WK be an E-measurable function. Then the formulae

D(E(u)) = {fEH: uelyR, p))}
E(u)f = fu(t) dE(1)f for f e D(E(u)) (7.21)
define a normal operator E‘(u) on H. For (7.21) we briefly write
E(u) = fu(r) dE(2).
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If u,v : R—>WK are arbitrary E-measurable functions, a, b € K, and

Loif fu(x)|<n, 1M}(}{):{l if Jo(x)| <n,

0 otherwise,

@, (x) = {

0 otherwise,

then it follows: A A
(a) For all f € D(E(u)) and g € D(E(v)) we have

(E(v)g, E(u)f) = Jim [9,()o(0)*e,()u(r) dlg, E(1)f);

for the latter we briefly write [o(t)*u() d{g, E()f).
(b) For all f € D(E(u)) we have

IE@)fI? = flu(n)f doy(2).
(¢) If u is bounded, then E(u) € B(H) and
IE(w)|l < sup{|u(?)| : t €RY}.
(d) If u(ty=1 for all tER, then E(u)=1.
(e) For every f € D(E(u)) and all g € H we have
g E(u)f) = fu(r) dg, E(1)f).
(H) If u(t) >c for all t R, then

S EQfy > e fIP forall f e D(E(u)).

(8) E(au+bv)D ak(u)+ bE(v), D(E(u)+ E(v)) = D(E(ju| +|0])).
(h) E(u)> E(w) E(v), DEWE(v)) = D(E©)) N D(Ewuo))
(1) E(u*)= E(uw)*, D(E(u*))= D(E(u)).
PrRoOF. The mapping E(u) : D(E(u))—H is well-defined, because of
(7.17)-(7.21). We show that this mapping is linear. It is clear that fe
D(E(u)) and a € K imply that af € D(E(u)) and E(u)(af)— aE(u)f

First assume that u is bounded. Then D(E(u)) H. By Auxiliary theo-

rem 7.13, for arbitrary f, g € H there is a bounded sequence (u,) of step
functions that converges to u almost everywhere with respect to Py Py and

Oreg: Then u,—u in Ly(R, py), Lz(R, p,) and L2(R Pr+y)s therefore, E(u )
—)E(u)f E(u )g—)E(u)g and E(u )WSf+ g)—)E(u)(f+g) Since E(u) 18
obviously linear, it follows that

Eu)(f+g) = lim E(u,)(f+8g)

= lim (B(u,)f+ E(u,)g) = E(w)f + E(u)g.

Now let u be an arbitrary E-measurable function, and let f, g € D(E(u)).
Then (|¢,(#)u(r)|) converges to |u(¢)] monotonically for all # €R. Using the
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identity we have just proved and on the basis of (7.18) we obtain that
1/2
{fl(pn(t)u(t)lz dpf+g(t)}
= [|E(,u)(f+8)|
< [[E(@,u)f|| + | E(p,u)8]]
1/2 1/2
= {J19.()u())f dpf(1) } "+ {fl@a()u(D)? dp, (7))

() doy()} "+ {/lu(n)? dp,(}'"*
= | E@)f|| + | E(w)gl| < co.

A

It follows from this by B. Levi’s theorem that u € [4(R, p;,,); conse-
quently, f+g€& D(E(u)) and

E(u)(f+g) = lim E(p,u)(f+2g)
= lim (E(g,u)f+ E(9,u)g) = E(u)f + E(u)s.

So E(u) is linear. We obtain from the proof of (i) that E(u) 1s normal.

(a) This equality is clear for step functions u and v. For bounded E-
measurable functions # and v the equality follows by means of Aux-
ihary theorem 7.13. In both cases the passage to the limit does not
actually take place, as ¢, =4, =1 for large n. If v and v are arbitrary
E-measurable functions, then we have for f € D(E(u)) and g€ D(E(v))
that

(E(v)g, E(u)fy = lim (E(4,0)8, E(pu)f>

= lim_ [ (e(ty e, (Du() &g, EOF.

(b) follows from (7.18) with v =u, g=f.

(¢) Since u 1s bounded, we have u € Ly(R, py) for all f € H. Consequently,
D(E(u)) H. The estimate of the norm immediately follows from (b).

(d) By (c) we have E(u) € B(H). Furthermore, x,_, ,(0)—u()=1 for all
t € R; therefore,

E(u)f = im E(x(—nm)f = lim (E(n)f =~ E(=n)f) =

(e) follows from (a) with v =1, by taking (d) into account.

(f) immediately follows from (e).

@)*1f f € D(E(u) + E(v)) = D(E(u)) N D(E(v)), then u, v € Ly(R, py); conse-
quently, au+ bv € Ly(R, py), e, f€ED(E(au+ bv)). The equality
E(au + bv)f=aE(u)f+ bE(v)f therefore follows from (7.19). Since for
E-measurable functions u, v we have u, v € Ly(R, py) if and only if
|u| +|v] € Ly(R, py), we have D(E(u)+ E(v)) = D(E([u|+|v|))

4 Properties (g), (h), and (i) follow more easily from Theorem 7.16.
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(h) By (a) and (d) we have for all bounded E-measurable functions Q, Y
and all f, g € H that

(g E(p)f> = (E()g, E(p)f> = (E(o*)g, EQ)f)> = (E(p*)g, f>;

consequently,

(& E@)EQ)Y = CE(o*)g, EWF> = [@(09(2) dlg, E(O)f

= (g, E(pu)f>.

For bounded E-measurable functions ¢,  we therefore have E((p)E(z,b)
= E(gy). )

Let f € D(E(u)E(v)), i.e., let f € D(E(v)) and E(v)f € D(E(u)). As
the function @,u is bounded for fixed n €N, it follows that ¢,uy, v—
@, uv in Ly(R, p) as m— co. Consequently,

E(w)E(v)f = lim E((p,,u){ lim EQy,, v)f}

n—on

= lim 11m E((pnu)E(z,bmv)f

n—-»>o0 m—

= lim hm E(p, ), 0)f = 11m E(p,uv)f.

n—>o0 m—

The existence of this limit means that the sequence (¢,uv) is a Cauchy
sequence in Ly(R, py). Since, moreover, @, ()u(t)v(t)—u(t)v(?) for all
tE R it follows that wo belongs to Ly(R, p;); consequently, f (S
D(E(uv)) and E(u)E(v)f E(uv)f Therefore, D(E(u)E(v))cD(E(v))
N D(E(uv)) and E(u)E(v) C E(uv) If fe D(E(v))ﬂ D(E(uv)) then

E(uv)f = lim  lim E(gui,0)f = lim lim E(p,u)E(Y,0)f
= lim E(p,u)E(v)f.

The ex1stence of this limit means that u € Ly(R, pz)p); consequently,
E(v)f S D(E(u)), and thus f € D(E(u)E(v))

(i) We first show that D(E(w)) is dense. For this we prove that for every
f € H and every m €N we have E((pm) f € D(E(u)) because of the limit
relation f= hm E((pm)f it follows from this that D(E(u)) is dense. Let

fEH me N and g= E((pm)f Then by (h) we have for all n > m that

[1oa(yu(dP doy(e) = 11 E(@,u) E(@ )1 = 1 E(gnifIP < oo.

Therefore, u € Ly(R, p,), i.e. E((pm)f ge D(l*:"(u)) for all me N.
We obviously have D(E(u*)) D(E(u)) By (e) we have for f, g€
D(E(u)) = D(E(u*)) that

(8 Ewf> = [u(t) &g B> = | [u()* &, E(0)g) |
= (S, E(u*)gy* = (E(u%)g, f>,
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1.e., E(u) and E(u*) are formal adjoints of each other. It remains to
prove that D(E(u)*)cD(E(u*)) Let gED(E(u)*) Then for all f&
D(E(u))

(E(u)*g, f> = (g E(w)f> = lim g, E(gu)f> = lim (E(p,u*)g, f>.
In particular, for every fE Hand meN
CE(@n)Ew)*g, > = CEw)*s, E(@,)f> A
= lim (E(q,u*)g, E(@,)f) = lim (E(9,9,u%)8,f)
= C(E(@nu*)g. .
Consequently, for all g € D(E(u)*) and all mEN

E(p,)E(u)*g = E(9,u")sg,
and thus

E(uy*g = lim E(g,u*)g = lim fqom(t)u(t)* dE(1)g.

The existence of this limit means that the sequence (g, u*) converges in
Ly(R, p,), 1.e., u* € Ly(R, p,), and thus gED(E(u*))

We have in particular D(E(u)*) D(E(u)) and (by (b)) HE(u)f” =
|[E(u)*f|| forall f & D(E(u)) Le., E(u) is normal. O

ExAMPLE 1 (continued). Let E be the spectral family of Example 1. If
u : R—C is a step function, u(f) =27_, JxJ(t) then

n

( [ uts dE(t)f)(x) = 3 ex,(s()A(x)

j=1
= u(g(x))f(x), fE€ L(M).
Therefore, it follows for every E-measurable function u that

D(E(u)) = {f ELy(M) : (u ° g)f EL(M))
and

(E(u)f)(x) = u(g(x))f(x) for fe& D(E(u)),

Le., E(u) is the maximal operator of multiplication by u o g. For u=1id we
obtain the operator of multiplication by g.

EXAMPLE 2 (continued). If E is the spectral family of Example 2 on

D, cal2(R, p,) and u : R—C is an E-measurable function (cf. Exercise
7.18), then

D(E(w) = {(L)E€ & LR p): (u)E @ LyR,p,))
and

E(u)(f,) = (uf,) for f e D(E(u)).
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We call this operator the maximal multiplication operator induced by u on
D, c1L2(R, p,). The proof is along the same lines as in Example 1.

ExAMPLE 3 (continued). Let F be the spectral family of Example 3. Then
every function u: R—K is E-measurable, since for all t€{A :j=
1,2,...}

m

u(t) = % u(A)x,(2) = ,JI_IPOO gl u(A)xy(0);

as R\{}\j :j=1,2,...} 1s a set of p; -measure zero for all f € H, we have
found a sequence of step functions that converges to u p,-almost every-
where for all f € H. It is now easy to see that for all u : R—K

D(E@W) = { feH: S uMPIBSP <o ).
J
E(u)f =3 u(\)P,f for fe D(E(u)).
J
For u=1id we obtain in particular that

DEG) = | feH: SNPIRSP <]
J
and

E(id)f = NP f for f e D(E(id)).
-

Theorem 7.15. Let H,; and H, be Hilbert spaces, let U be a unitary operator
from H, onto H,, and let E be a spectral family on H,. Then by the formula

F(t) = UE(HU™!', teR

a spectral family is defined on H,. A function u : R—K is F-measurable if
and only if it is E-measurable. If Fis defined analogously to E, and u is
E-measurable, then

F(u) = UE(w)U .

PROOF. It is clear that F is a spectral family on H,. If p{¢) = || E(£)f I and
o (1)=|F(ng|*, then pt) = oy (#) obviously holds. Consequently, u is
E-measurable if and only if it 1s F-measurable, and Ly(R, p) = Ly(R, o).
The equality F(u)= UE(u)U ™" is evident for any step function u. The
assertion follows from this fact immediately. OJ

Theorem 7.16. Let E be a spectral family on the Hilbert space H. Then there
exists a family {p, : a € A} of right continuous non-decreasing functions (the
cardinality of A is at most the dimension of H) and a unitary operator
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U: H>® o ,L(R, p,) for which
E(t)= U'F(t)U forall tER

with the spectral family F from Example 2. For every E-measurable function
u

E(u) = U 'F(u) U,
where ﬁ(u) is the maximal operator of multiplication by u on
®a€AL2(R’ pa)'

PrOOF. For any fE€H, f+#0 let H=L{E(:)f : tER} and let p(t)=
I E(2)f||*. Then the formula

U, ( S C,-E(t,-)f) = S X

Jj=1 j=1

defines an isometric mapping of L{E(#)f : t €R} into Ly(R, p)), as can be
verified easily. For all g€ L{E(?)f : t €ER}

Uf, ol E(2)g) = X(~ o0, 1] Uf, 08

The range of U, , contains the space of left continuous step functions, thus
it is dense in Ly(R, p;) (observe that the left continuous step functions are
dense in the space of step functions). The closure U, = Uy, is therefore a
unitary operator from H; onto Ly(R, p;), and for all g E Hf

UAE(?)g) = X(=o,qnUsg-

With the aid of Zorn’s lemma we see immediately that there exists a
maximal system {H; : a € A} such that H; 1 H, for a#f (partial ordering
=inclusion, upper bound = union). We write H, for H,, and show that
H=®  c4H,. If we had H+* @, ,H,, then there would be a g€ H, g+#0
such that g L H, for all « € A. Then we would also have E(¢r)g L H, for all
a € A, and thus H, L ©,.,H,; this contradicts maximality.

Let p, =p;, let U, : H,—Ly(R, p,) be the corresponding unitary opera-
tors, and let P, be the orthogonal projections onto H,, then

Ug=(U,P,g), gEH

is a unitary operator from H onto @ . ,Ly(R, p,). For all g€ H we have
UE(1)g = (U, P,E(1)g) = (U,E(1)P,g)
= (X(—oo, t] UaPag) = F(t) Ug'

E(u)= U“'ﬁ‘(u)U follows by Theorem 7.13. The rest of the assertion
follows from Example 2. |



7.3 The spectral theorem for self-adjoint operators 191

EXERCISES

7.16. Let E be a spectral family, and let ¥ : R-—>¥ be a continuous function. For
— oo <a<b< oo we can define the integral 2 u(z) dE(¢) as a Riemann-

Stieltjes integral, i.e., the integral is the limit in B(H) of the sums
n

2 u(t) # (B(5) = E(4-0)

Jj=

with a=1t, <t; < - - - <t,=b, provided that the maximal length of the
intervals tends to O.

7.17. Let FE be a spectral family on H.

(a) For every sequence (f,) from H there is an # € H for which we have:
Every set of p,-measure zero is of pg-measure zero for all jEN.

(b) If His separable, then there exists an 4 € H for which we have: Every set
of p,-measure zero is of p~-measure zero for all f € H.

(c) If His separable, and u : R—K is an E-measurable function, then there
exists a sequence (u,) of step functions that converges to u pralmost
everywhere for all f € H.

7.18. Let E be the spectral family of Example 2. A function ¥ : R—C is F-measur-
able if and only if it is p,-measurable for every a € A.

7.3 The spectral theorem for self-adjoint operators

If u 1s a real-valued E-measurable function on R, then the operator E‘(u) 1s
self-adjoint by Theorem 7.14(i). We show in this section that every self-
adjoint operator can be represented in this way and there exists exactly one
such representation with u =id.

Theorem 7.17 (Spectral theorem). For every self-adjoint operator T on the
Hilbert space H there exists exactly one spectral family E for which T =
E(1d) or in another notation, T = [t AE(?) (c¢f. Theorem 7.14). In the com-
plex case the spectral family E is given by
1
(g, (E(b)= E(a))f> = lim lim ——f *(g, (R(i —ie, T)

80+ e—0+ 271

— R(t+ie, T dt (7.22)

for all f, g€ Hand — oo <a<b<co. We say that E is the spectral family of
T.

ProoF. First we assume that H is complex. A
Uniqueness: If T= E(id), then z— T'= E(z—1id) by Theorem 7.14(g).
Then for all z € C such that Im z 0 we have by Theorem 7.14(h), with the
notation u,(f)=(z— )", that
(z—T)E(w)f = E((z—id)u,)f = f forall feH,
E(uw)(z—T)f = E(u(z—id))f = f forall fe& D(T).
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Consequently, E(uz)= R(z, T) for all z& C such that Im z#0. This im-
plies via Theorem 7.14(e) that

{f, R(z, T)f) =f(z~t)_ldpf(t) forall fe H.

The functions p1)= I|E()f||* and F(z)=<{f, R(z, T)f) therefore satisfy
the assumption of Theorem B1 of the Appendix, and thus for all r R

NE(O)f|]> = {f, E(t)f> = 8lim lim —! t+6lm<f, R(s+1e, T)f> ds

-0+ e0+ T — o0

t+98
= al_i,gl+ El_i){)n+ 2—17;;[_00 {f, (R(s—ie, T)— R(s+1i¢, T))f) ds.
(7.22) follows from this with the aid of the polarization formula (1.4). Since
(7.22) holds for all f, g € H, the uniqueness has been proven.

Existence: If there exists a spectral family E such that T = E’(id), then
(7.22) must hold. Therefore we study whether (7.22) defines a spectral
family E with the property E(id)= T. For every f& H the function F;
defined by the equality F(z)=<{/f, R(z, T)f) satisfies the assumptions of
Theorem B3 (Appendix), since F; is holomorphic for Im z >0 by Theorem
5.16 and we have

Im F(z) = Im{f, R(z, T)f) = Im{(z = T)R(z, T)f, R(z, T)f)
= ||R(z, T)f|*Imz* <0 for Imz >0
and (by Theorem 5.18)
|F{(z) Tm 2| < [Im z|™"|| f||*m z| = || f]*.

Consequently,

Rz Ty = F(2) = [(z= 07" dw(f, 1), (7.23)

where

1 t+8
= li 1 — y —1¢€, T) — +1 , T .
w(f, 1) 81_1)r51+ 61_1){)n+ 5 f~00 {f, (R(s—ie, T)— R(s+1ie ))f> ds
w(f, ) is a non-decreasing and right continuous function of ¢, and w(/, ?)
—0 as t— — o0, w(f, 1) < || f||* for all r€R. Equation (7.23) holds for all
z €C\R since {f, R(z*, T)f)> =<{{, R(z, T)f >*. Furthermore, we define
) i 1 8 : :

w(g, f, 1) = 81_1)r51+ 61_1){)n+ mf_t; (g, (R(s—ie, T)— R(s+1i¢, T))f> ds;
the existence of this limit follows by means of the polarization identity for
the sesquilinear form (g, )< g, (R(s —1¢€, T)— R(s+1i¢, T))f>.

The mapping (g, )+>w(g, f, ¢) is a bounded non-negative sesquilinear
form on H for every t € R. The sesquilinearity is clear from the definition;
moreover, w(f, f, 1) =w(f, t) > 0 for all t €R. The Schwarz inequality and
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the inequality w(f, £) < || f||* imply for all f, g€ H and ¢t €R that

w(sg, f, O < w(g, yw(f, 1) < Il glPILfII%

Therefore, by Theorem 5.35 there exists, for every t R, an operator
E(?) € B(H) for which ||E(?)|| <1 and

(g E()f)=w(g f,t) forall f geEH
It is obvious that E(¢) is self-adjoint and E(z) > 0.

Now we show that E is a spectral family. For this we first show that
E(s)E(t)= E(min(s, ¢)) for all 5, t€R. For all zeC\R and for all fe H

<ga R(Z’ T)f> = f(z_ t)ul dW(g,f, t) =f(z—t)—l d<g’ E(t)f>
(7.24)

This follows from (7.23) using the polarization identity. Consequently, the
first resolvent identity implies for all z, z’ € C\R with z %z’

[=07" d(R(%, T)g, E()f> = (R(z*, T)g, R(z, T)f
= (g R(z’, T)R(z, T)f
= (2 ~2)"'{<& R(z, T)f) — (& R(z’, T)f))

= (=27 (=07~ (~07"] Ke. EOF
=f(z_t)-'(z'—t)" d<{ g, E()f
= [z-n7"4, f_’w(z’ —5)"" (g, E()f>-

It follows from this by Theorem B2 (Appendix) that

[=9)7" d<a EGVE(DS) = (8, R(z', T)E()F
= (R(z'*, T)g, E()f
= [" (@=97" dg E(5).

Therefore it follows for all f,ge H and s,7€R again by Theorem
B2 (Appendix) that

(g, E(s)f> for s<t,

(g E(s)E(1)f)> = [<g, E(t)f> for t<s.

This means that for all s, r€ER
E(s)E(t) = E(min(s, £)).
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In particular, E(¢)*>= E(f). Therefore, the E(¢) are orthogonal projections
for all t €R, and E(s) < E(¢) for s <t (cf. Theorems 4.29 and 4.31). Thus
(7.11(a)) and (7.11(b)) are satisfied. The right continuity (7.11(c)) follows
from the formula

IE(z+e)f = E()fI* = | E(t+ Of I — I E(DSII°

=w(f,t+e)—w(f,1) >0 as e€—->0+,

since w(f, - ) is right continuous. Moreover, ||E(t)f|]>=w(f, £)—0 as t—
—o00. Therefore, E(t)—{>0 as t——oo. It only remains to prove that

E(t)—s->1 as t—oo. As E( - ) is monotone, E(¢) strongly converges to an
orthogonal projection E(o0) as t— o0 (cf. Theorem 4.32). We have

f E()f = Bim (f, EG)> > S, B(Of.
Consequently, E(c0) > E(?) for all t ER. Let F=1— E(o0). Then
E()F = E(t)(I— E(0)) = E(t) —E(t) =0, tER

It follows from this for all f, g € H, Im z #0 that

(8 R(z, DEY = [(z=0)7" &g EWOF> = 0.

Hence R(z, T)Ff=0 for all f € H, and thus F=0, i.e., E(o0)= 1. Conse-
quently, we have proved that E is a spectral family.

R(z, T)= E(u ) by (7.24) and Theorem 7.14. This implies that E(z —1d)
=z~ T and E(1d) = T (Theorem 7.14(h) and (g) respectively). Hence, the
theorem is proved in the complex case.

If T is a self-adjoint operator on the real Hilbert space H, then we
consider the self-adjoint operator T on the complex Hilbert space Hg
(cf. Exercise 5.32). By what we have Just proved, T has exactly one
spectral family E¢ for which Ec(ld) = T. The restriction E of E; to His a

spectral family on H such that E(1d) = T. If F were another spectral family
on H with the property that F(1d)— T, then the complexxflcatlon of F
would be another spectral family Fz on Hg such that F c(id) = T. There-
fore, Fc = E¢, and thus F= E. The details are left to the reader (cf Exer-
cise 7.25). O

ExamPLE 1. If T is the operator of multiplication by a real function g on
D, cala(R, p,) (cf. Section 7.2, Example 2 (continued)), then E(r) is the
operator of multiplication by the characteristic function of {s ER : g(s) <
1}. We also write briefly that E() = X er : gs)<s 1D corresponding result
holds for multiplication operators on L,(M). The proofs are contained in
Examples 1 and 2 of Section 7.2.
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ExAMPLE 2. Let P be an orthogonal projection on H. Then

0 for <0,
Ep(t)=11I—-P for 0<r<I,
I for 21

is the spectral family of P, since for this spectral family we have

f u(t) dE(2) = u(0)(I - P) + u(1)P;

consequently,
f t dE(t) = P.
In particular, the spectral family of the zero operator is given by

- ] 0 for <0,
Eo0) {1 for ¢3>0,

and that of the identity operator by

_ 40 for <1,
EI(I)_{I for t>1.

ExampLE 3. Assume that T is a compact self-adjoint operator on H, (\) is
the sequence of non-zero eigenvalues of T, (P;) i1s the sequence of the
orthogonal projections onto the eigenspaces N(A,— T) and P, is the or-
thogonal projection onto N(T'). Then the equality

[ > Pf for 1<0,
B f=1 U
> Pf+ Pyf for t>0
L{j:)\j<t}

defines the spectral family of T, since

E(id)f = S ANPf+ 0P f = Tf forall fEH
J

by Theorem 7.1.

Theorem 7.18 (Spectral representation theorem). Let T be a self-adjoint
operator on H. Then there exist a family {p, : a € A} of right continuous
non-decreasing functions and a wunitary operator U from H onto
D, c 1R, p,) for which

T=U"'T U,

where T,y denotes the maximal operator of multiplication by the function id
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on D,c2Ll(R, p,). For the spectral family E of T we have E(t)=
U—IX(—oo,t]U‘

REMARK. In place of the assertion of Theorem 7.18 we can briefly say the
following: Every self-adjoint operator is unitary equivalent to a multiplica-
tion operator by the function u=1d; these are operators that we already
know quite well. The cardinality of the set A is at most equal to the
dimension of H. The spaces Ly(R, p_ ) have to be chosen to be real when H
is real. One disadvantage of this theorem compared to Theorem 7.17 is that
this representation is not unique.

PROOF. If E is the spectral family of T, and @ . ,L:(R, p,), U, and F are
constructed as in Theorem 7.16, then by Theorem 7.16 and Theorem 7.17

T = E(id) = UT'F(id)U = U ~'TU,
E(t) = UT'F()U = U™ 'X(~ 00, qU. 0

If E is the spectral family of the self-adjoint operator T, and u 1s an
E-measurable function, then we write u(T') for E(u). We already know that
u(T)=(z— T) " for u,(£)=(z—t)”". The following theorem gives further
justification for this notation.

Theorem 7.19. If u(1)="_.c;t/, then u(T)= 2] _oc;T’, where we set T°=1I.

ProoF. The assertion obviously holds for n=0 (cf. Theorem 7.14(d)). Let
us assume that it holds for polynomials of degree <n—1. Then o(T)=
36T/ for v(f)=Z2]_,c;/~'. Because of the equality u = v-id + ¢y, it
follows from Theorem 7.14(h) that

u(T) D o(T)T + c,l.

Since for n>1 we moreover have D(T)= D(E(id))j D(u(T)), it follows
from Theorem 7.14(h) that

D(u(T)) =D(T) N D(u(T)) =D(o(T)T),
and thus

n

u(T)=v(T)T+c01=(zchj—l)T+coj= ZC,-Tj- O
j=1 j=0

Let E be a spectral family on H. A subset M of R is said to be
E-measurable if its characteristic function x, is E-measurable. We write
E(M) for E(XM). We have E(R\M)=E(1 —x,)=1—E(xy)=1— E(M). If
E is the spectral family of T, then E(M) = x,(T). The operators E(M) are
orthogonal projections.

Proposition. Let T be a self-adjoint operator on H, and let E be its spectral
Jamily.
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(1) For any E-measurable subset M of R the subspace R(E(M)) is a reducing
subspace of T, i.e., E(IM)T C TE(M).

(2) Let DM, T)= E(M)D(T). We have {f, Tf) <y|f|I* for all f€
D((~ o0, ¥), T), f#0, and {f, TfY <yl|fII* for all f € D(~ %, v}, T).
Similar statements hold for (y, o) and [y, ).

(3) We have {f, Tf> <v||f||* for all f € D(T) if and only if E(t)= I for all
t>v. We have {f, Tf> >v||f||* for all f € D(T) if and only if E(f)=0
for all t<y.

(4) For every bounded interval J the subspace R(E(J)) is contained in D(T)
and TE(J)= E(id x,) € B(H).

(5) Assume that t ER and s >0. We have f € D(T) and ||(T — 0)f|| <s|| f]|
for every f€ R(E(t+s)— E(f —¥9)).

(6) If u is a real-valued E-measurable function, then we have for the spectral
family F of u(T) that F(t)= E({s€R : u(s)<t}) for every t ER and
F(M)=E({s€R : u(s)€ M}) for every Borel set M.

The proofs are obvious when T is the operator T;y on @ ., L(R, p,). In
the general case we use the spectral representation theorem 7.18. As to Part
6, observe that F(M) = x(u(T))=(xy ° uU)T), Xm ° U=X(ser: usyem and
use Section 7.2, Example 2.

Now we are itn a position to define the nth root of an arbitrary
non-negative self-adjoint operator and give the polar decomposition of
unbounded operators.

Theorem 7.20.

(a) Every non-negative self-adjoint operator T possesses exactly one non-
negative self-adjoint nth root T'/". If E is the spectral family of T, then
TV = (/" AE(t) (here t'/" > 0 for t > 0; for t <O the value of t'/" is
immaterial, as the pr-measure of (— oo, 0) vanishes for every f € H). If T
is compact, then T'/" is also compact.

(b) Let T be a densely defined closed operator from H, into H,. The operator
T can be uniquely represented in the form T = US, where S is a
non-negative self-adjoint operator on H, and U is a partial isometry with
initial domain R(S) and final domain R(T). We have S = (T*T)"/?; we
again write | T| for (T*T)"/2.

PrOOF.

(a) By Theorem 7.14(f), (h) and (i) the given operator T''/” is a non-nega-
tive nth root of 7. By Part 6 of the last proposition the spectral family
of T'/" is

_ [0 for ¢<Q,
E‘/"(t)_—{E(t") for t>0.

If S is an arbitrary non-negative nth.root of 7 with spectral family F,
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then the spectral family of 7= S§" 1s
0 for ¢<0,
F(1) = {F(tl/") for ¢>0.

The equality E = F, follows because of the uniqueness of the spectral
family of 7. Consequently, F=E, ,,, and thus §=T"'/",

If T is compact, then there exists a compact non-negative nth root of
T by Theorem 7.4. The operator T'/" constructed here is then com-
pact, because of the uniqueness of the nth root.

(b) If T= US i1s such a representation, then T*T= S*U*US = SU*US =
S2, since U*U is the orthogonal projection onto R(S). The equalities
S =(T*T)"/?=|T| follow from part (a). This proves the uniqueness,
since U is uniquely determined by the equality U|T|f= Tf. It remains
to prove the existence of such a representation. By Theorem 5.40 we
have D(|T|)=D(T) and || |T|f|| = ||Tf|| for all f € D(T). The mapping
V: R(|T|)—R(T), |T|f> Tf is therefore isometric, and 7= V|T|. The
operator ¥ can be uniquely extended to an isometric mapping V acting
from R(|T|) onto R(T). The equality U(f+ g)= Vf for f € R(|T|) and
g € R(|T|)* proves the assertion. ]

The boundedness and the norm of self-adjoint operators can be seen
from their spectral family.

Theorem 7.21. 4 self-adjoint T on H is bounded if and only if there exist real
numbers vy, and vy, for which

0 for <y,

E(f) = for Y1

I for t>v,.

We can then choose
vy =m=inf{{f, Tf) : f€D(T), || fl| =1},
Y2 = M = sup{{f, If> : fED(T), || fl| =1}
For m <t <M we have E(t)0 and E(f)+1.

PrOOF. By Theorem 4.4 the operator T is bounded if and only if m and M
are finite. By Part 3 of the last proposition this is equivalent.to the
assertions that E(¢)=0for r <m and E(f)= 1 for t > M. If we had E(¢,)=0
for some t,>m, then we would have {f, Tf > > t,|| f||* for all f € D(T), on
account of Part 3 of the last proposition. This contradicts the definition of
m. The relation E(¢)# I for t <M follows similarly. [

EXERCISES

7.19. Assume that 7 is a self-adjoint operator, E is its spectral family, and M is a
closed subspace of H. We have M= R(E(¢)) if and only if M is a reducing
subspace of T and {f, Tf> <¢|| fl|* for f € D(T)N M and {f, Tf> > || f||* for
fEDTINML.
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7.20.

7.21.

7.22.

7.23.

7.24.

7.25.

7.26.

7.27.

Suppose that T is self-adjoint with spectral family E, a, b€Ep(T)N R, and T
is a positively oriented Jordan curve for which (a, b) N o(T) lies inside I" and
all other points of the spectrum of T lie outside I'. Then E(b)— E(a)=
(27 )" frR(z, T) dz in the sense of the Riemann integral.

Assume that T is self-adjoint, 0 < p <1, and fE€ D(T), T? = ( t? dE(¢) with
an arbitrary choice of the branch of the function R—C, t+—>¢?. Then
T2 < N TAIP LA,

Hint: Hélder’s inequality for || T?f||>= { |¢|% d||E(5)f]|

Let T be a non-negative self-adjoint operator, and let A>0. Then A+ 7)~!
=(1/A) fFe™* cos A~ /%T'/?) ds, in the sense of the improper Riemann-
Stieltjes integral.

(a) Let T; and T, be densely defined and closed. Assume that DX T')) = D(T5,)
and || Ty f|| = || T, f|| for all f&€ D(T,). Then |T,|=|T5|. If T, and T, are
self-adjoint and non-negative, then T, = T5.

(b) A densely defined closed operator is normal if and only if D(T*T)
= D(TT*) and || T*Tf| = || TT*f]| for f € D(T*T).

If T is self-adjoint and u, v : R—>R are Borel functions, then u(v(7))=

(u o o)(T).

Hint: Use the spectral representation theorem 7.18.

Assume that H is a real Hilbert space, T is a self-adjoint operator on H; Hg

and T¢ are the complexifications of H and T, respectively (cf. Exercise 5.32).

(a) The mapping K : He— Hg, (f, g)=>(f, —g) for f, g € H has the properties
KK =TI and K(ah,+ bh,;) = a* Kh, + b* Kh, for all h,, h, € Hc (K is called
a conjugation; cf. also Section 8.1). We have H={h& Hg : Kh=h}.

(b) We have KT¢= TcK and K(z — Tg) ' =(z* — T¢) " 'K for all z €p(Ty).

(c) If Eg¢ is the spectral family of T, then KE(#) = Ec(#)K for all t ER.
Hint: Use (7.22).

(d) The formula E(¢f) = Ec(#)|y, ¢ € R defines a spectral family on H such that
T = E(id).

(¢) E is the only spectral family for which T'= E(id). (This proves Theorem
7.17 for real Hilbert spaces.)

Let T be a densely defined closed operator on H and let T= U|T| be its
polar decomposition.
(a) We have N(|T|)=MN(T) and R(|T|)=R(T*).
(b) We have T* =|T|U* and |T*|= U|T|U*.
Hint: TT* =(U|T|U*(U|T|U*), and U|T|U* is non-negative and self-

adjoint.

(c) Prove, furthermore, that T=U|T|=|T*|U=UT*U, T*= U*T*=
|T|U*= U*TU*, |T|= U*T=T*U= U*T*U, |T* =UT*=TU*=
U|T|U*.

(d) If T is normal, then |T|=|T*, U|T|=|T|U, U*|T|=|T|U* and
R(T)=R(T*)=R(|T}).

(e) If T is normal, then the operators T(T*)* are normal for all j, k € Ny;
furthermore, D(T/(T*)*) = D(T’/**), (T/(T**)* = T*(T*Y and
| T/(T*Yf|| = || T/ *¥f|| for f € D(T*%).

Let S be closed and symmetric but not self-adjoint, and let T=|S|. Then
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T+ AS is self-adjoint for A& (—1, 1), closed and not self-adjoint for |[A| > 1,
and not closed for |A|=1. (S is T-bounded with T-bounded 1.)

7.28. Let T be a self-adjoint operator on L,(M) and let (z5— 7)™ " be a Carleman
operator for some zy€p(T).
(a) (z—T)~ " is a Carleman operator for every z € p(T).
(b) E(b)— E(a) is a Carleman operator for all a, b €R.
Hint: (z— T)"(zo— T)™" and (z — T)"(E(b) — E(a)) are bounded.

7.29. (a) If T is a non-negative self-adjoint operator, then D(T) is a core of T'/2,
(b) If 4 is symmetric and non-negative, T is the Friedrichs extension of A4,
and S is an arbitrary non-negative self-adjoint extension of A4, then
D(T'?* c D(S'/?).
Hint: D(T'/?) is the completion of D(A4) with respect to the norm

(IR + S Af Y2

7.30. Let S and T be non-negative self-adjoint operators. We write 7 < S if
D(S'?HcD(T"? and | TV < ||S V| for all f € D(S'/?).
(a) If 0€p(T), then T<S if and only if S™'<T™! (e, (f, S > <

{f, T for all fE H).
Hint: Show that T< Se|| T2 ~V| < 1e{||S 2T/ < || f|| for all
feTHes <L

(b) If 4 is symmetric and non-negative, T is the Friedrichs extension of A4,
and S is an arbitrary non-negative self-adjoint extension of A4, then S < 7.

7.30' Let T be self-adjoint on a complex Hilbert space, and let 4 be T-bounded.
(a) The relative bound of 4 equals lim,_, _ || A(ir— T)7"|.
(b) If T is bounded from below, then the relative bound of A4 equals
lim,_, |4+ T)7 Y.

7.4 Spectra of self-adjoint operators

We know from Section 5.3 that the spectrum of a self-adjoint operator is a
closed subset of the real axis (of course, this is a non-trivial statement only
in the complex case). In this section we want to study how the spectral
points of a self-adjoint operator may be characterized by means of its
spectral family.

Let T be a self-adjoint operator on H. The spectrum o(T) and the point
spectrum a,(T) are defined as in Section 5.2. )

Theorem 7.22. Let T be a self-adjoint operator on H, let E be the spectral
family of T, and let T, be a restriction of T for which TO= T. Then the
following statements are equivalent:
(1) s€o(T);
(ii) there exists a sequence (f,) from D(T) for which lim inf || f || >0 and
(s—T)f,—0;
(ii1) there exists a sequence (g,) from D(T,) for which lim inf || g, || >0 and
(s = To)g,—0;
(iv) E(s+¢€)— E(s—¢€)#0 for every € >0.
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PrOOF. The equivalence of (i) and (ii) immediately follows from Theorem
5.24.

(ii) implies (i1i): Since D(T,) is a core of T, for every n €N there exists a
g, E D(T,) for which |lg, —f | <n~! and ||Tyg,— Tf,|| <n~'. Hence,
lim inf || g,|| >0 and (s — T,)g,—0.

(1i1) implies (i1): This is clear because of the inclusion D(T,) C D(T).

(ii) implies (iv): Assume that (iv) does not hold, i.e., that there exists an
€ >0 such that E(s +€)— E(s —€)=0. If (f,) is the sequence from (i1), then

I =TI = [Is = (P AIE@SI? > € [ dIED £,
= I,

(here we have used the fact that |s — 7| > € almost everywhere relative to the
measure induced by p, = E( - ) £.II»). This is a contradiction because
(s— T)f,—0 and lim inf || f,|| > 0.

(iv) implies (ii): We have E(s+n~")— E(s—n"")%0 for every n€N,
i.e., there exists an f, € R(E(s + n~')— E(s — n ")) such that || f,|| = 1. For
this sequence we have lim inf || f ||=1 and

I =TI = [ls = P AIEDLIF < n72 [ d)E@) LI
= n72 £, 2> 0. O

Corollary 1. Let a <b. If E(b)— E(a)5%0 then (a, blNo(T)# . We have
(a, bYN o(T)# D if and only if E(b—~)— E(a)#0.

PRrROOF.

(a) Assume that (a, b]Cp(T). Then by Theorem 7.22 the spectral family £
is constant in some neighborhood of s for every s&(a, b]. Conse-
quently, E is constant in (a, b], and thus E(b)— E(a)=s —
lim_ o, (E(b)— E(a+¢€))=0.

b) If (a, b)Nno(T)=, then we can prove, as in part (a), that E is
constant in (a, b), i.e., that E(b—)— E(a)=s—1lim_, ,, . (E(b—¢€)— E(a
+¢€)=0.If A\&€(a, b))N o(T), and € >0 is so small that (A—¢, A+ €] C
(a, b), then E(A+ €) — E(A — €)% 0, so that E(b—)— E(a)#0. »

Corollary 2. A self-adjoint operator T is bounded from below if and only if its
spectrum is bounded from below. The greatest lower bound of T is equal to
min o(T).

PrROOF. By Part 3 of the proposition preceding Theorem 7.20, we have
{f, TF> 2 vl f)? for all f € D(T) if and only if E(¢)=0 for t <y. If E(/)=0
for t <v, then by Theorem 7.22 no spectral point of T can lie in (— o0, ).
Therefore, min o(T) > vy. If o(T) is bounded from below, then E is con-
stant in (— oo, min o(7T)). Consequently, E(¢)=0 for ¢t <min o(T), and
thus y > min o( 7). ]
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Theorem 7.23. Let T, T\, and E be as in Theorem 1.22. Then the following
assertions are equivalent:
() 5 € 0,(T);

(11) there exists a Cauchy sequence (f,) from D(T) for which lim||f,| >0
and (s — T)f,—0;

(1i1) there exists a Cauchy sequence (g,) from D(T,) for which lim|| g, || >0
and (s — Ty)g,—0;

(iv) E(s)— E(s—)#0.
We have N(s — T)= R(E(s)— E(s—)).

PROOF. (i) implies (i1): If f is an eigenelement of 7T belonging to the
eigenvalue s, then we can choose the constant sequence f, = f.

(11) implies (ii1): Since D(T,) is a core of T, for every n € N there exists a
g, € D(T,) for which || g, —f,||<n~ ! and ||T,g, — Tf,|| <n~'. Everything
follows from this.

(iit) implies (1): Let f=1im g,. Then (s — T)f=lim(s — Ty)g,=0.

(1) implies (iv): Let f be an eigenelement of T belonging to the eigen-
value s. Then

0= |[(s= TSI = [Is = o AUED) S,

i.e., |s—¢|=0 almost everywhere with respect to the measure induced by
pr=||E()f||*>. Therefore, E(r)f is constant in (— o0, 5) and in (s, o), and
thus E(s —)f=0, E(s)f= E(s+)f=f. Hence, E(s)— E(s —)#0.

@iv) implies (1): For every f& R(E(s)— E(s—)) we obviously have
It = TYfIP = fls — 12 A EOF P =0.

It follows from the last two steps that N(s — T) = R(E(s)— E(s—)). O

Proposition. Any isolated point A of the spectrum of a self-adjoint operator T
is an eigenvalue of T.

PrROOF. There is an € >0 such that [A—¢, A+€]No(T)={A}. Hence, by
Corollary 1 to Theorem 7.22, E is constant in [A — ¢, A) and in (A, A + ¢].
Since A € o(T), by Theorem 7.22 we have

EA)— EA—-)=EQA+¢)— EA—¢) #0,
i.e., A is an eigenvalue of T. 0

The essential spectrum o,(T) of a self-adjoint operator T is the set of
those points (of o(7)) that are either accumulation points of o(T) or
isolated eigenvalues of infinite multiplicity. The set 0,(T)= o(T)\ 0o (T) is
called the discrete spectrum of T. By the last proposition a,(T) is the set of
those eigenvalues of finite multiplicity that are isolated points of (7). We
say that T has a pure discrete spectrum if o,(T) is empty.
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Theorem 7.24. Let T, T,, and E be as in Theorem 7.22. Then the following
statements are equivalent.
(1)) s€a,(T);

(i) there exists a sequence (f,) from D(T) for which f, =0, lim inf | f.ll>0
and (s — T)f,—0;

(iii) there exists a sequence (g,) from D(T,) for which g, %0, lim inf A
>0 and (s — T,)g,—0;

(1v) for every € >0 we have dim R(E(s + €) — E(s — €)) = 0.

PROOF. (1) implies (ii): If s is an eigenvalue of infinite multiplicity, then
there exists an orthonormal sequence (f)) in N(s — T); this sequence has
the properties required in (ii). If s is an accumulation point of ¢(7), then
there exists a sequence (s,) from o(7) such that s, s, s, s, for n#m,
and s,—s as n—co. Let us now choose €, >0 so small that the intervals
(s, — €, s, + €,) be mutually disjoint. Since s, € o(T), we have E(s, +¢€,) —
E(s,—¢€,)#0. Let us choose a normed element f, from R(E(s,+¢,)—
E(s, - €,)). Then we obviously have (f, f,,> =6, and (s — T)f,—0.

(i) implies (iii)): For every n €N there exists a g, € D(7,) for which
g, —f,l|<n~!and || T,g,— Tf,|| <n~'. All the properties required in (iii)
follow from this.

(ii1) implies (iv): Assume that we have dim R(E(s + ¢) — E(s—e) <0
for some € >0, i.e., that the projection E(s + ¢)— E(s — €) is compact. For
the sequence (g,) from (iii) we then have (E(s + €) — E(s — €))g,—0. Con-
sequently,

1= Dig,l” = [Is — o dI E(1)g, |
> €| [ AIEO8~ [ xo- s ) AEO)

= E[lIg,l1* ~ I(E(s +€) — E(s — ©))g,[I?],
and thus

lim inf||(s ~ T)g,||* > € lim inf| g || > 0.

This is in contradiction with (iii).

(v) implies (1): If dim R(E(s)— E(s —)) = oo, then s is an eigenvalue of
infinite multiplicity (Theorem 7.23). Therefore, s € 0,(T). Let R(E(s)—
E(s —)) be finite-dimensional, but let dim R(E(s +¢€)— E(s — €)) = oo for
all €>0. Then the set (s — ¢, s)U (s, s+ €] contains at least one spectral
point for every € >0 by Corollary 1 to Theorem 7.22; hence s is an
accumulation point of o(T'). N

Theorems 7.22 and 7.24 provide natural characterizations of 6,(7T). We
will not give these explicitly here. They are partly contained in the
following propositions.
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Proposition. If a <b and dim R(E(b—)— E(a))=m (m €N), then o(T)N
(a, b) consists of only isolated eigenvalues of finite multiplicity. The sum of
the multiplicities of these eigenvalues equals m.

Proor. By Theorem 7.24 we have (a, b)No (T)=, i.e., (a, b)Nnao(T)C
o,/T). Let A, A,, ... be the eigenvalues of T in (a, b) (there are at most
countably many of these, since they cannot accumulate in the interior of
(a, b)). Then

E(b—)— E(a) > il(E()\j)——E()\j-)) forall neN.

j=

Therefore, only finitely many eigenvalues A, A,, .. ., A, can le in (a, b),
and

k
dim R(E(b—)— E(a)) = ‘gl dim (E(\,) — E(\, —)).

The right-hand side equals the sum of the multiplicities of the eigenvalues
Al, « v ey Akt D

Proposition. If dim R(E(b))=m < oo for some bER, then T is bounded
Jrom below.

Proor. By the previous proposition the interval (a, b) contains at most m
spectral points for any a <b; hence (— o0, b) contains at most m spectral
points. The smallest of these finitely many eigenvalues is a lower bound for
T by Corollary 2 to Theorem 7.22.

Proposition. If dim R(E(b)— E(a))= oo, then o (T)N[a, b]# 2.

Proor. If we had o,(T)N[a, b]=, then for every s €[a, b] there would
be an € >0 such that dim R(E(s+ €) — E(s — €)) < o0. The interval [a, b]
could be covered by finitely many intervals of this kind. This implies that
dim R{E(b)— E(a)) < o0, which is a contradiction. O

Theorem 7.25. Let T be a self-adjoint operator on H, and let H=H,®D H,®D
Hs with dim Hy = m < 00. Assume that the orthogonal projection P; onto H
maps D(T) into itself for j=1, 2. If

<a|fI* for fePD(T),

, Tf>{
>blif|? for f€P,D(T),

then (a, byN o(T) consists of only isolated eigenvalues; the sum of the
multiplicities of these eigenvalues is at most m.

SThen P, also maps D(7) into itself.
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ProoOF. Let us assume that dim R(E(b—)— E(a)) >m+ 1. Then there
exists an f € R(E(b —) — E(a)) N H5* such that f+# 0. Hence, f= P, f+ P, f,
and, putting ¢ = (a + b)/2, we have

— 2
(7= = [ XD = P AEDIE < (252 ) I
With properly chosen a; EKK, |a;| =1 it follows from this that
|<(T_ C)f, Plf>l + I<P2f’ (T_ C)f>|
= oaf{P [, (T—c)f) + &3Py, (T~ ) f>
= (o P f+ P, f, (T—c)f> < ||a,Pf+ P, f| I(T = ) f]|
= (1B SR+ 1P A1) T = ) 1l = 1A W= ) < <5211
Consequently,
BIP,fIP < (Pof, TPyf> = (Pof, Tfy = T, Py f> + (Pif, TP S
< c(IPfIP= 1P fIP) + <P f, (T= )
—(T—of, P f>+ a|l P, f|?
<BIPAIP = 25 LA + KPS (T= )
+|<(T_ C)f, Plf>|

< b||P, S|
This is a contradiction. Therefore, dim R(E(b—)— E(a)) <m, and the
assertion follows from the first proposition after Theorem 7.24. O

A corresponding theorem holds in the case when (a, b) is a half-line.

Theorem 7.26.

(@) Let T be a self-adjoint operator on H, and let H, be a closed subspace of
H such thar dim Hi* = m < 0. Assume that P,D(T)C DT) for the
orthogonal projection P, onto Hy, and that

S Tf> = blIfIP for fePD(T).

Then (— o0, bYyN o(T) consists of only isolated eigenvalues; the sum of
the multiplicities of these eigenvalues is at most m. The operator T is
bounded from below.

(b) Let T be self-adjoint on H, and let H, be an m-dimensional subspace of
D(T). Assume that {f, Tf> <a|| f||* for all f € H,. Then dim R(E(a)) >
m.

PROOF.
(a) With H,= {0} and Hi= H;* the assumptions of Theorem 7.25 are
fulfilled for every a <b. Consequently, (— o0, )N o(T) contains only
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1solated eigenvalues of finite multiplicity, with total multiplicity less
than or equal to m. In particular, o(T)N (— 0, b) is a finite set;
therefore, s,=min o(7) exists. Hence, T is bounded from below by
Corollary 2 to Theorem 7.22.

(b) If we had dim R(E(a)) <m, then there would be an f € H, for which
f#0 and fL R(E(a)). For this f

ST <allfIP <<, T,

by assumption and by part (2) of the proposition preceding Theorem
7.20. This is a contradiction. OJ

In some investigations another partition of the spectrum is useful. For
that we first need some definitions. Let 7 again be a self-adjoint operator
on H with spectral family E. Let H, denote the closed linear hull of all
eigenelements of T. We call H,= H,(T) the discontinuous subspace of H
with respect to T. The orthogonal complement of H, is called the continu-
ous subspace of H with respect to 7. This is denoted by H,=H,(T). The
singular continuous subspace H,. = H,.(T) of H with respect to 7 is the set of
those f € H. for which there exists a Borel set N C R of Lebesgue measure
zero (briefly: a Borel null set) such that E(N)f=f. The subspace H, is
closed. This can be seen in the following way. If (f,) is a sequence from
H,., f,—f, and the N, are Borel null sets such that E(N,)f =f,, then
N= U N, is also a null set and E(N)f=1lim E(N)f,=lim E(N,)f,=1im f,
= f. Since H, is closed, f lies in H., hence in H,.. The orthogonal comple-
ment of H,. relative to H, (i.e., H.© H,.) is called the absolutely continuous
subspace of H relative to T. This is denoted by H,.= H,.(T). The singular
subspace H, of H with respect to T is defined by the equality H, = H,(T)
=H,®H,. Let P,, P, P, P,, and P  denote the orthogonal projections
onto these subspaces.

Theorem 7.27. Let T be a self-adjoint operator on H with spectral family E.
Denote, for every fE€H, by p, the measure induced on R by means of
ECOHSI

(a) H, equals the set of those f &€ H for which there exists an at most
countable set A C R such that p(R\A)=0, i.e., for which the measure p;
is concentrated on (at most) countably many points.

(b) H, is the set of those f € H for which p{{t})=0 for every tER, i.e., for
which the function t+— || E(t)f)|* is continuous. (For f € H, we obviously
have pA)=0 for every at most countable set ACR.)

(¢) H, equals the set of those f € H for which there exists a Borel null set N
such that p(R\N)=0, i.e., for which p, is singular with respect to
Lebesgue measure.

(d) H,. equals the set of those f € H for which p{N)=0 for every Borel null
set N, i.e., for which p; is absolutely continuous with respect to Lebesgue
measure.
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PROOF.

(a) If f is an eigenelement for the eigenvalue A;, and f=2%% \¢;f, then we
obviously have E({A; : jeN)f=f If A={A;:jEN} and E(A)f=/,
then

f= 3 B = 3 (E0) - E0, )

Since (E(A)— E(A;, —))f (when it is different from zero) is an eigenele-
ment belonging to the eigenvalue A, the element f lies in the closed hull
of the eigenvectors.

(b) We have E({1})f € H, and <f, E(r})f)> = | E((t))f)]? for every fEH
and every t €ER. Iffe H, = H;*, then we have p({1})= || E({t)fI*=
{f, E{t})f)> =0 for every tER Let p({7})=0 for every € R. Then
p{(A)=0 for every at most countable set ACR; hence ||E(A)f |2 =
p{A)=0. If geH, and A is an at most countable set such that
E(A)g=g, then <f, g) =<{f, E(A)g)> =<E(A), g>=<0,8) =0, ie,
fEH,=H,.

(c) We have H,=H,+ H,. If f=f +f, with f,€H, and f_€E€H,, then
there exist an at most countable set ACR and a Borel null set N for
which E(A)f, =f,, E(N)f.=f, and thus E(AU N)f=f; the set AUN
is a Borel null set. Conversely, let E(N)f= f for some Borel null set N.
The set A of jump points of the non-decreasing function t+-|| E(2)f|)? is
at most countable, and E(A)f € H,. Let g € H, be arbitrary. Then there
exists an at most countable set A" such that E(A")=g. Since E({¢})(f
— E(A)f)= E({t})f— E({£) N A)f =0 for every tER (as {1} =(1}N A
for t€ A and E({t})f=E({t}NnA)f=0 for t+#A), it follows that
E(A)Y(f— E(A)f) =0, and thus

(g f— EAf) = E(A)g, f— E(A)S)
= (g, E(A)(f- E(A)f)) = 0,

ie., f— E(A)f € H;" = H,. Because of the equality E(N)(f— E(A)f)=
f—E(A)f we havef E(A)f € H,.; therefore, f= E(A)f+(f— E(A)f)
€H,+ H,=H,

(d) We have H,=H.©H,=H". Assume that f& H, =H> . Then
| E(NYf|]>={f, E(N)f)> =0 for every Borel null set N, since E(N)f €
H,. Let us now assume that E(N)f=0 for every Borel null set N. If
g € H, then by part c) there exists a Borel null set N such that
g= E(N)g. It follows from this that

{f, 8> =<f, E(N)g) = CE(N)f, g) =0,
and thus f € H: = H,,. J
Let M be a closed subspace of H, and let P be the orthogonal projection

onto M. We say that M reduces the operator T if PT c TP (this obviously
implies PD(T)c DT}, as well as (/- P)D(T)cD(T) and (I—-P)T C
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T(I— P); cf. also Exercise 5.39 and Section 7.3, Proposition 1). The
formulae D(T,)=Mn D(T) and T,,f= Tf for f € D(T,,) define an opera-
tor on M. The subspace M is a reducing subspace of T if and only if M+ is
a reducing subspace of 7. Then D(T)=D(T,,) + D(T,,.).

Theorem 7.28. Let T be a self-adjoint operator on H, with the spectral family
E, and let M be a reducing subspace of T. Then T,, and T,,. are self-adjoint
on M and M*, respectively. We have o(T)= o(T,,) U 6(T,,.). The subspace
M reduces T if and only if PE(t)= E(t)P for every t €R, where P denotes
the orthogonal projection onto M.

Proor. D(T,,) is dense in M, since M© D(T,,)= D(T)*- N M= {0} because
of the equality D(T)= D(T,,) + D(T,,.). As a restriction of a self-adjoint
operator, T,, is surely Hermitian. Therefore, T,, is symmetric on M. It
remains to prove that D((T,,)*) c D(T,,). Let g € D((T,,)*). Then

ATW*g, f> = A(Tw)*8: 1> = <& Twuh> = (& Tuh + Ty.fo> = (& If)

for all f=fi+f,E€D(T,)+ D(Ty.)=D(T); 1e, gEMNDT*)=MnN
D(T)= D(T,,). We can show the self-adjointness of T,,. analogously. We
have

1z = TfI? = 11(z = TWAI* + lI(z = Ty )foll®

for every z€K and for f=f,+f,eD(T,)+ D(T,,.)=D(T). 1t follows
from this by Theorem 5.24 that z € p(T) if and only if z € p(T,,) N p(Ty,2),
e, o(T)=0(Ty) U o(Ty.).

If M reduces the operator T, then R(z, T)P= R(z, T)P(z—T)R(z, T)
CR(z, TY(z— T)PR(z, T)= PR(z, T). Therefore, R(z, T)P= PR(z, T),
because D(R(z, T)P)=H. It follows, by formula (7.22) for the spectral
family E, that E(t)P = PE(¢) for all t €R. Now let the equalities E(f)P =
PE(t) (t € R) hold true. Then

JIeP AUE@PAP = [l AIPEWSIP < [1F dIE@SIF < o0

for every f &€ D(T). Consequently, Pf € D(T'). This implies that D(TP)>
D(T)=D(PT). If f€ D(T) and (u,) is a sequence of step functions such
that u, tends to id in Ly(R, p;), then u, tends to id in Ly(R, ppy) also, and

PTf = PE(id)f = P lim E(u,)f = lim PE(u,)f = lim E(u,) Pf
= E(id)Pf = TPf. ]

Theorem 7.29. Let T be a self-adjoint operator on H. The subspaces
H,, H., H., H,., and H reduce the operator T.

Proor. It is obviously sufficient to show that H, and H, reduce the
operator T. The remaining assertions follow from this, because H,=H,",
H,.=H,©H,, and H,. = H".

For any f € H, there is an at most countable subset A of R such that
E(A)f= f. Consequently, E(:)f = E(t)E(A)f= E(A)E(t)f € H, for all 1 €R,
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ie., E(t)P,= P,E(?)P,. 1t follows from this that
P,E(t) = (E(t)P,)* = (P,E(t)P,)* = P,E(t)P, = E(1)P,.

We can show in an entirely analogous way that P _E(¢)= E(f)P, if we
replace A by the null set N for which E(N)f=f. [

We denote by 7, 7,T,,T,, and T, the restrictions of T to
H,, H., H,, H,, and H,. These operators are called the (spectral) discon-
tmuous continuous, smgular continuous, absolutely continuous, and singular
parts of T.

The continuous spectrum o,(T), singular continuous spectrum o (T), ab-
solutely continuous spectrum o, (T) and the singular spectrum o(T) of T
are defined as the spectrum of T,., T,. and T,, respectively. In contrast
with this, the point spectrum o (T) is defined as the set of eigenvalues of T
(these are also the elgenvalues of T,; however, in general we only have
o(T,) =0, 0,(T); cf. Exercise 7.33). The sets a.(T), 0,.(T), 0,.(T), and o,(T)
are closed (as they are spectra). We obviously have o(T)=0,(T)U o, (T)
U 0,(T) = 0,(T) U 0,(T) = a,(T)U o(T).

We say that T has a pure point spectrum, pure continuous spectrum, pure
singular continuous spectrum, pure absolutely continuous spectrum and pure
singular spectrum if H,=H, H.=H, H,.=H, H,,=H, and H,=H, respec-
tively. We then have o(T)=0,(T), o(T)=0(T), o(T)=0,(T), o(T)=
0,(T), and o(T)=0(T), respectively.

ExampLE 1. Let p,, p,., and p,. be measures on R. Let p, be concentrated
on a countable set (i.e., there exists a countable set A such that p,(R\A) =
0), let p,. be singular continuous (i.e., there exists a Borel null set N such
that p . (R\N)=0 and p_({t})=0 for every t €ER), let p,. be absolutely
continuous (i.e., p,.(N)=0 for every Borel null set N). Let T be the
operator of multiplication by the function id on Ly(R, p,)® Ly(R, p,.)®
L2(Ra pac)' Then Hp = L2(R, Pp), Hc = LZ(R’ psc)® L2(R, pac)’ Hsc = L2(R’ psc)’
H,e = Ly(R, p,.), and H, = L,(R, p,)® Ly(R, p,.). The proof will be left to
the reader. We shall show in Exercise 7.34 that every self-adjoint operator
is the orthogonal sum of operators of this type.

EXERCISES

7.31. If T is a self-adjoint operator on H with pure point spectrum, and {e, : « €
A} is an orthonormal basis of eigenelements with corresponding eigenvalues
{As : « EA}, then D(T) is equal to the set of those f&H for which
S Al O} < 00; we have Tf =2 A Le,, fDe, for f € D(T).

7.32. Let T be a self-adjoint operator on the infinite-dimensional Hilbert space H.
(a) If T is bounded, then o,(7T)= .
(b) T is compact if and only if T is bounded and ¢,(T)= {0).
(c) If H is separable, then B, (H) is the only closed ideal in B(H).
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7.33

7.34.

7.35.

7.36.

1.37.

7.38.

7.39.
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. For any self-adjoint operator T we have the following:
(@) 0,(T)=10(T,); however, 0,(7T) is in general not closed, and thus ,(T)
o(T}) in general. L
(b) o(T)=0,(T) Vo (T)=0,(T) U0 (T)U 0,(T)=0,(T)U 0,(T).
(©) 0(T)=0,(T)U (0,(T) \ou(T)).

Every self-adjoint operator is unitarily equivalent to a maximal operator of
multiplication by the function id on (®,caL2(R, p )P (D gesly(R, 03)) ©
(D, erlyR, 7,)); where the measures p,, g, 7, have the following properties:
for every p, there exists a countable set A, such that
Po(R\NA,) =0; 05({¢}) =0 for every t ER, and there exists a Borel null set Ng
such that 65 (R\N)=0(B €B); all 7, are absolutely continuous with
respect to Lebesgue measure.

Hint: Apply Theorem 7.18 to 7, T, and T,.

Let T be a self-adjoint with spectral family E, and let ¥ : R— R be E-measur-

able. Then we have the following:

(@) o(u(T)) cu(e(T)); if u is continuous on o(T), then o(u(T)) =u(o(T)); if
T is bounded and u is continuous, then o(u(7)) = u(o(7));

(b) H,(T)C H,(u(T)), u(o,(T)) C 0,(u(T));

(©) Ho(u(T)) C Hoo(T), 0,(u(T)) Cu(o,(T)).

Let T be self-adjoint with spectral family E, and let v, v : R>C be E-

measurable. :

@) If u(r)=v(¢) for all t € o(T), then u(T)=o(T).

(b) If T has a pure point spectrum, then it is sufficient to assume that
u(t)=o(?) for all t € 0,(T) in (a).

Let T be a self-adjoint operator with spectral family E, and let M be a
subspace of D(T) such that ||[(A— T)f|| <c|| f]] for all fE M.

(@) dim R(EA+c¢)— E(A—c—)) > dim M.

(b) If dim M= o0, then 0. (T)N[A— ¢, A+ c]= <.

Let T be a self-adjoint operator on H. The operator T has a pure discrete
spectrum if and only if A — 7)™ ! is compact for every A €p(T). If H is not
separable, then o,(7) 5 <.

Let A be a symmetric semi-bounded operator, let 7" be the Friedrichs
extension of 4, and let S be an arbitrary semi-bounded self-adjoint extension
of A.
(@) dim E;(¢) < dim Eg(¢) for every t €R.
Hint: Exercise 7.30c and Theorem 7.26b.
(b) If S has a pure discrete spectrum, then T also has a pure discrete
spectrum.

7.5 The spectral theorem for normal operators

We

have shown in Section 7.3 that every self-adjoint operator can be

represented in the form [gf dE(r), where E is a (real) spectral family
defined on R. Here we show that every normal operator can be repre-
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sented in a corresponding way as an “integral” [z dG(z), where G is a
spectral family defined on C.

Let H be a Hilbert space. A function G : C—B(H) is called a complex
spectral family if there are real spectral families £ and F such that

G(t+is) = E(t)F(s) = F(s)E(¢) forall s,teR.

Theorem 7.30. Let G be a complex spectral family on H with G(t +1s)=

E(t)F(s).

(@ G(t+1s5)G(Y +15)=G(min{¢, ¢’} +imn{s, s'}) for all s,s5',t, ¢ ER;
in particular, G(z) < G(2") for all z,z’ € C such that Re z < Re z’ and
Imz<Im?z'.

(b) z,—>z, Re z, >z, and Im z, > z imply G(zn)-sa G(2).

(¢) If (z,) is a sequence from C for which Re z,—> — o0 or Im z,— — o0, then
G(z,) —s—>0; if (z,) is a sequence from C for which Re z,—>cc and
Im z,—>00, then G(z,)—> 1.

(d) The spectral families E and F are uniquely determined by G; we have
E(fy=s—-1lim_,_ G(t +is) and F(s)=s—1lim,__, G(t+1is).

(e) If we set G(J)= E(J,)F(J,) for an arbitrary interval J=J X J,={z €
C:Reze Jd, Imz€E€ U}, then G(J)G(J)=0 for JNJ' =

() The equality y(J)=|G(N)f |2 for all intervals J in C defines a regular
interval function on C for every f € H (cf. Appendix Al).

PROOF.
(@) Foralls,s',¢t, €R

G(t+is)G(¢ +is") = E(t)F(s)E(t')F(s")
= E(t)E(t')F(s)F(s') = E(min{¢, ¢'})F(min{s, s}
= G(min{¢, ¢} +imin{s, s'}).
(b) Let (¢,) and (7,) be null-sequences from [0, c0). Then
lim [[(G(z + ¢, +in,) = G(2)f |
= lim (E(t+¢) F(s +n,)f — E(VF()f, f>
= lim {<F(s+n,)f, E(t+¢)f> —CF(s)f, E(0)f>} = 0

forall z=¢+is and fEH.
(¢) Assume that z, =t +is,, and t,—» — c© or s,— — c0. Then for all fE H
lim [1G(z)fIP = lim <E(1,)F(s,)f. f>
= lim (F(s,)f, E(t,)f> = 0,
since in {F(s,)f, E(t,)f> at least one factor tends to zero, while the

other remains bounded. If ¢,— o0 and s,—c0, then it follows for all
f € H that

tim ||f = G(z)fI? = lim {|IfI>~<F(s)f; E(1,)f>} = O.
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(d) It follows from the formula F(s) 51 as s—>o0 that
E(t)f = slirgo F(s)E(t)f = slirgo G(t+is)f

for all f € H. The assertion for F follows in a similar way.
e If J=uj Xy, J'=J/XJ;yand JNJ' =, then JNnJ[=D or N,
=, and thus

G(N)G(J) = E(h)E(I)F(J)F(J5) = 0.

() If J; 1s an arbitrary interval in R, then we can show easily that there
exists a sequence (J1,») of open intervals for which J;cJ;, and
E(J, ,,)—) E(J;) (the sequence (J; ,) has to be chosen so that we have
Xs, (D—=>x,(D for all t€R). Let J, , be a similar sequence with the
property F(J, ,) 5 F(J,). Then

Yf(Jl X ) = <F(J2)f, E(J)f) = nl_ig}o <F(J2,n)f’ E(Jl,n)f>
= nanc}o ”G(Jl,n X J2,n)f”2 = nll)ngo Yf(Jl,n XJ2,n)

for all f € H. Since the intervals J, , X J, , are open and J; X J,C Jy ,,
X Jy, n» this proves the regularity of vy,. ]

If for the step function u : C—K,

u(z) = 3 ox,(2)
J=1
we define the integral with respect to the complex spectral family G by the
equality

n

Ju(2) 46(2) = 3 ¢G(4),

Jj=1

we can use the same arguments as we did in Section 7.2 when we discussed
integration with respect to a real spectral family. Let us also denote by v,
the measure that is induced by the interval function y, We say that a
function ¥ : C—K is G-measurable if it is y,-measurable for all f€ H. If
u € Ly(C, vy), then we can define the integral

[ u(z) dG(2)f
C

just as in Section 7.2. For every G-measurable function u : C—IK the
formulae

D(G(u)) = {fEH: uelLy(C, 1)},

G(u)f = fc u(z) dG(z)f for f € D(G(u))
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define a normal operator on H. We also write

éw)=ﬁf@)mxn.

The assertions of Theorem 7.14 (and their proofs) remain valid and will be
used in the following without further explanation.

Theorem 7.31 (The spectral theorem for bounded normal operators). Let H
be a complex Hilbert space, and let T € B(H) be a normal operator. Then
there exists exactly one complex spectral family G for which

T = fcz dG(z).

We have G(t +1s) = E(t)F(s)= F(s)E(¢) for s, t ER; where E and F are the
spectral families of the self-adjoint operators A =(T+ T*)/2 and B=(T —
T*)/2i,. respectively. G(z)=1I for z €C such that Re z > ||T|| and Im z >
IT|, and G(z)=0 for zE€C such that Rez< —||T|| or Imz < —||T}|.
Moreover, T=A +1B and AB = BA. The operators A and B are called the
real part and the imaginary part of 7.

ProoOF. If 4 and B are defined as in the theorem, then it is obvious that
A*=A, B*=B, T=A+1B, and

AB = ZIT(Tz_ TT*+ T*T—T*) = Zli-(Tz— T**) = BA.
Then we also have
R(z, A)R(z', B) =[(z’ = B)(z—A)] ' =[(z—A)(z' - B)]""

= R(z’, B)R(z, A)

for all z, z2€C\R. For the spectral families £ and ¥ of A and B,
respectively, it now follows with the aid of formula (7.22) that

E(t)F(s) = F(s)E(t) forall s,teER.
Now we define the complex spectral family G by the formula

G(t+1is) = E(t)F(s) forall s,t€ER.
Then
G(t+is) = E(1)F(s) = I for ¢ > ||T| and s > || T,

since |4|| < ||T| and ||B|| <|| T||. Similarly,
G(t+is) = E(t)F(s) =0 for ¢t < —||T|| or s < —||T|-

If for (u,) we choose a bounded sequence of step functions defined on R
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which converges to id uniformly for |¢| <||T||, then
A =th dE(f) = lim fRu,,(t) dE(r) = lim fcun(Rez)dG(z)

- fRe z dG(2),
C

where we have used the fact that G({z€C : Re z € J})= E(J). We can
obtain similarly that

B =|Im:zdG(z).
fc ( )
Consequently, it follows that

T=A+iB=fResz(z)+ifImsz(z)
C C

= [(Rez+i1Im2) dG(2) = [ z dG(2).
c C

It only remains to prove the uniqueness of G. Let G’ be a complex spectral
family for which

T =fz dG'(z) and G'(t+is) = E'(t{)F'(s) = F'(s)E'(¢).
C
Then
A=4T+T% = %fc(z+z*) dG'(z) =fCRez dG'(z) = fRz dE'(2).

The unicity of the spectral family of self-adjoint operators gives that
E = E’. We can show similarly that F= F’. Therefore, G=G". O

If G is the spectral family of the operator T in the sense of Theorem
7.31, then we also write u(T') for G(u). Theorem 7.19 also holds for normal
operators.

ExAMPLE 1. Assume T is a compact normal operator on the complex
Hilbert space H, {A, A,, ...} are its non-zero eigenvalues, P, is the
orthogonal projection onto N(A,— T), A;=0, and P, is the orthogonal
projection onto N(T). Then the formula

G(z) =3{P;:jENy, Re A ;<Rez,ImA,<Imz} for z€C
defines a complex spectral family, and we have

T = fcz dG(z).

The proof goes as in the self-adjoint case.
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Theorem 7.32 (The spectral theorem for normal operators). Let T be a
normal operator on the complex Hilbert space H. Then there exists a unique
complex spectral family G for which

T=j;:z dG(2).

The operators A =(T + T*)/2 and B=(T — T*)/2i are self-adjoint. For the
spectral families E and F of A and B, respectively, we have

G(t+is) = E(t)F(s) = F(s)E(?).

We have T= A +1B and T* = A —iB. The operators A and B are called the
real part and the imaginary part of T (cf. Exercise 7.49).

PrROOF. Since this theorem has little significance in the applications, we
shall not work out its proof in detail. The operator S= T*T is self-adjoint
by Theorem 5.39. Let E, denote its spectral family. 7.S= ST holds,
because T is normal. Hence R(z, S)T Cc TR(z, S) for all z€C\R. It
follows from this by (7.22) that Ey(f)T C TE,(t). This implies that the
subspaces

H, =R(E0((~n, —n+1]u(n—1,n])), neN

reduce the operator 7 (cf. Section 7.4). The same holds for T*. Let
T,=T|,. We have H,cD(T*T)Cc D(T) by Section 7.3, Proposition 4.
Therefore, D(T,) = H,. For all f € H, we have

ITLA? = {T*Tf, f> < nl| fII%,

ie, T,€ B(H,). Similarly, (T,)*€ B(H,), (T,)*=T*|,, and |[(T)*f|=
| T*fll = | Tf|| = || T,f|| for all fE€ H,, 1.e., T, is a bounded normal operator
on H,. Consequently, by Theorem 7.31 there is a complex spectral family
G, such that

T, =j;:z dG (z),

where G,(t+is)= E (t)F (s)= F(s)E (f) for s,tER with the spectral
families £, and F, of

respectively. In what follows we consider the operators G,(z), E, (¢), and
F,(s) to be defined on H (more precisely, we should write I,G,(z)P,, etc.,
where I is the embedding of H, into H and P, is the orthogonal projection
onto H,). Since H= @, . H,, the sums

G(z) = 2 G,(2),

neN

E(t)= 2 E(1) and F(s)= X F,(s)

neN nenN
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exist for all z€C and s, 1 ER in the strong sense. It is easy to see that E
and F are (real) spectral families and G(¢ +1s) = E(¢) F(s) = F(s)E(¢).

Now let Dy=L{H, : n€N}. Then D, is a core of T. For every f € D,
there exists an N € N such that f € @Y_, H,. Then

Tf = ZTPJ Zfsz(Z)f

n=1 n=1

—fzd(n

The restriction T, of T to D, is therefore contained in the normal operator
G(1d) Then we also have T'= ToC G(1d) and it follows by Section 5.6,
Proposition 1 that T= G(id).

Similarly,

Gn(Z))f = f 2 dG(2)f = Gid)f.
1 C

AP = (T4 T = [ 1B, Bf = 5(T=T*)f = [ s dF(s)f

for f € D,. As the restrictions of (T+ T*)/2 and (T~ T*)/2i to D, are
essentially self-adjoint by Exercise 5.43, it follows from this that

(T+T*) =4 = fz dE(?), %(T— T*) = B =fs d F(s).

We have T C A +1B, by construction. In order to prove that T= A4 +1B,
we therefore have to prove that D(A +iB)=D(A)N D(B)Cc D(T). If f&
D(A)n D(B), then (observe that G({z€C : RezeJ})= E(J), G({zE
C:ImzeJ})=F(J)))

[1zP dIGEIP = [ (Re 2P +]im 2P) d)|G(=)f |1
C C

= [ 2AIEDOAP + [ 5 dIFE)I? < o0;
R R
consequently, f € D(T). O

ExaMpLE 2. Let ¥ be a measure on C(=R?) and let T be the maximal
operator of multiplication by the function id, i.e., let

Tf =idf for fe€D(T).
Then T is normal, and the spectral family G of T is given by
G(2)f = x.f for fEL(C, ),

where yx, 1s the characteristic function of the set {w €C : Rew<Rezand
Imw<Im z}.
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We can show in an entirely analogous way as for self-adjoint operators
that every normal operator is unitarily equivalent to an orthogonal sum of
operators of the kind considered in Example 2. We give the theorem
without proof.

Theorem 7.33 (The spectral representation theorem for normal operators).
If T is a normal operator on a complex Hilbert space, then there exist a
family {y, : a € A} of measures on C and a unitary operator U : H—
D, ca L(C, v,) for which

where T,y is the maximal operator of multiplication by the function id on
D, csLAC,v,), i.e.,

D(Tig) = {(f)aca€ @, LoAC. 1) 1 (df)uca€ D LT 7)),
Tid(fa)ae AT (ld fa)ae A for (fa)ae A S D( Tid)‘

The spectral points of a normal operator can be classified similarly to
those of a self-adjoint operator, and they can be characterized by means of
the spectral family. We do not go into details and mention only the
following resulit.

Theorem 7.34. Let T be a normal operator on a complex Hilbert space, and
let G be the spectral family of T.
(@) z€a(T) if and only if

G(z+e+ie) + G(z—e—ie) —~ G(z+e—i€) — G(z—e+ie) # 0

Jor every € >0.
(b) |R(z, T)||=d(z, o(T))~" for zE€p(T), where d(z, o(T)) denotes the
distance of the point z from o(T).

For the proof: (a) The proof i1s analogous to that of Theorem 7.22.
Observe that G(x,,) = G(b,+ib,) + G(a, +1ia,) — G(a, +1b,) — G(b, +ia,)
for M={z€C : a;<Rez<b;,a,<Imz<b,}.

(b) ||R(z, T)|| >d(z, o(T))""' by Theorem 5.15. Since we have R(z, T) =
u,(T) with u,(w)=(z —w)~ !, and as |u,(w)| <d(z, o(T))~' G-almost every-
where, it follows that ||R(z, T)|| <d(z, o(T))"".

Theorem 7.35. Assume that T, (n €N) and T are bounded normal operators
on the complex Hilbert space H and ||T— T,||—0 as n—o0. Then

o(T) = lim o(T,)

n—oo

= {z EC: there exists a sequence (z,) from C for which
z,€0(T,)and z,—z}.
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(This is an assertion about the continuity of the set-valued function T+
o(T') defined on the set of bounded normal operators. We cannot allow all
bounded operators here, and ||T—T7,]|—>0 cannot be replaced by

T, -iT; cf. Exercises 7.41 and 7.42.)

PrOOF. If z&o(T), 1.e., z Ep(T), then (second Corollary to Theorem 5.11)
z€p(T,) for sufficiently large n and ||(z—T,)"'—(z— T)"!||-0. Hence,
Iz=T)"'lI=li(z—T)~"|| as n—co0. Since d(z, o(T,))=||R(z, T,)|| ", we
have lim, ,  d(z, o(T,))=||R(z, T)||"'>0. Consequently, the point z is
not contained in lim o(7).

Assume z €0(7’). Then by Theorem 5.43 there is a sequence (f,) from H
for which || f,]|=1 and (z — T)f,—0. Then

(Z - Tn)fn = (Z - T)f;z - (Tn - T)fn - 0;

hence d(z, o(T,))=||R(z, T,)|| "' < |l(z — T,)f,||-0. It follows from this
that z €lim o(7T,). O

Theorem 7.36. If U is a unitary operator on a complex Hilbert space, then
there exists a real spectral family E for which E(t)=0 for t <0, E(t)= I for
t > 27 and U= (e dE(¢) (cf. also Exercise 7.46).

PROOF. By Section 5.2, Example 2 the spectrum of U is contained in
{zeC:|z|=1}={(e": 0<1<27)}, ie, G({e":0<t<2n}=1, where G
denotes the complex spectral family of U. Then the formulae

0 for <0,
E(f) =1 G({e*:0<s<1t}) for 0<t<2m,
1 for 22«

define a real spectral family. We can verify easily that U= fe¥ dE(¢). [

EXERCISES

7.40. A function G : C—B(H) is a complex spectral family if and only if G(2) is an
orthogonal projection for every z& C and properties (a), (b) and (c) of
Theorem 7.30 are satisfied.

7.41. We cannot replace norm convergence by strong convergence in Theorem
7.35.
Hint: Let the operators 7,, € B(/,) be defined by T,(f)uen=(1,f2 -- -,
k)
S 0,0,0,...). Then T, > I, o(T,,)={0, 1} and o(/) = {1}.

7.42. Let the operators 7,,, m €N, and T from B(/,(Z)) be defined by the formulae
Josr for ns=-—1,

T = ith g, =
m(fn)n €z (gn)nez with g, { l'f() for n=-1,
m
T(f)wez = (8)nez With g, = {fm for ns -1,
0 for n=-—1.
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7.43.

7.44.

7.45.

7.46.

747.

7.48.

7.49.

(a) We have || T||=|T,,|| = 1. Therefore, o(T)C {z€C : |z| <1} and o(T},)
c{zeC:|z|<1}.

(b) For every z € C such that |z| < 1, the vector (f,),<z defined by f, =0 for
n<0 and f,=:z" for n >0 is an eigenelement of 7 belonging to the
eigenvalue z; hence o(T)={z€C : |z| < 1}.

(©) T,7'€ B(l(2Z)) for all mEN, and ~(T,,; ')=1. Consequently, {z€C : ||
>1}cp(T,;Y), and thus {z€C : |z] <1} cp(T,,) (cf. Exercise 5.27).

(d) Theorem 7.35 does not hold in general if the operators 7,, and T are not
normal.

Assume that 7" is a bounded normal operator on the complex Hilbert space
H, r>||T||, and u is a function, holomorphic in {z€C :|z|<r} with
u(z) =332 gu,;z’ for |z]<r. Then w(T)=Z7qu;T/, where the series con-
verges in B(H). For self-adjoint operators this statement holds in real Hilbert
spaces, as well.

Let T, and T, be similar bounded normal operators on the complex Hilbert
space H, i.e., let there exist a bijective operator S &€ B(H) such that ST, =
T,S. Prove that T, and T, are unitarily equivalent.
(@) S=¢T2S e *T for all z €C.
Hint: Exercise 7.43.
(b) eizT;Se—isz=ei(zT§+z*T7)S e—-i(zT’l"+z*T,). Consequently’ ”elzTi‘S e-—-izT’l"” <
| S| for all z&C.
(c) §=¢“Tig e 1271 for all z EC.
Hint: The Liouville theorem and part (b).

(d) ST¥=T5S.
Hint: Differentiate in (c) with respect to z and substitute z =0.
(e) TIS‘S= S*STI, TIISI = IS’T[ and TIISI_ l= ISl_lTl.

() If S=U|S| is the polar decomposition of S, then U is unitary, |S| is
bijective, and U=S|S|™".

(8) We have T, = U ~'T,U with the operator U from part (f). Hence T, and
T, are unitarily equivalent.

Assume that H is a complex Hilbert space, S, T € B(H), ST=TS, and T is
normal.
(@) Then ST*=T*S.

Hint: Use the reasoning of Exercise 7.44(b), (¢) and (d) for T,=T,=T.
(b) If G is the spectral family of T, then SG(z) = G(z)S for all z€C.

Prove the uniqueness of the spectral family £ in Theorem 7.36.

If T is a normal operator on a complex Hilbert space and n €N, then there
exists exactly one normal operator 4 for which 4”=Tand G({z=r¢€e® :r >
0, 0< p<2w/n})=1 for the spectral family G of 4.

If A and B are self-adjoint (not necessarily bounded) operators on a complex
Hilbert space with spectral families £ and F, and E(¢)F(s)= F(s)E(?) for all
s, tER, then T=A4 +1B is normal.

Decomposition in real- and imaginary parts for arbitrary operators (cf. Exer-
cise 5.38 and Theorem 7.32):
(a) If T is a densely defined operator on H such that D(7) C D(T*), then the



220 7 The spectral theory of self-adjoint and normal operators

operators A=(T+ T*)/2 and B=(T—T*)/2i are symmetric, D(A)
= D(B), and T=A +iB.

(b) If 4 and B are symmetric, D(4)=D(B), and T=A+iB, then A=
(T+7T*)/2 and B=(T—T*)/2i.

(c) Even if T is closed and D(T)= D(T*), we cannot expect that A and B in
(a) are essentially self-adjoint.

Hint: Choose T=|C|+(iC/2) or T=i|C|+(C/2), where C is a closed
symmetric but not self-adjoint operator.

(d) Even if 4 and B are self-adjoint, we cannot expect that 7 in (b) is closed.
Hint: Take an unbounded self-adjoint operator C. Define 4 and B by
the formulae D(A4)= D(B)=D(C)® D(C), A(f, g)=(Cg, Cf) and B(/, g)
=1i(Cg, Cf) for f, g € D(C).

7.6 One-parameter unitary groups

One example of the significance of the theory of self-adjoint operators is
shown by Stone’s theorem (cf. Theorem 7.37 and Theorem 7.38). We shall
learn more about this later in this section.

Let H be a Hilbert space. A family {B(¢) : t € R} of operators out of
B(H) is called a one-parameter group if

B(0) =1 and B(s)B(t) = B(s+1t) forall s, t€R.

(This 1s then a “representation” of the additive group R by operators on
H.) The one-parameter group {B(?) : € R} 1s said to be strongly continu-
ous 1f the function

B(-)f: R—>H, 1+ B(1)f

is continuous for every f € H.
Let {B(7) : t€R} be a one-parameter group of operators on H. The
operator A defined by the formulae

D(A) = {fEH: m%wu)—m exists},

Af = Jim %(B(t)—- If for fe D(A)

is called the infinitesimal generator of { B(¢) : t € R}.

It can be proved that every strongly continuous one-parameter group
possesses a densely defined infinitesimal generator. In the following we
only consider (one-parameter) unitary groups (i.e., one-parameter groups of
unitary operators). The situation is somewhat simpler in that case.

Theorem 7.37. Let T be a self-adjoint operator on the complex Hilbert space
H, let E be the spectral family of T, and let

U(t) = T = fe“s dE(s) for t€E€R.
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Then {U(r) : t € R} is a strongly continuous (one-parameter) unitary group.
The infinitesimal generator is iT. We have U(t)f € D(T) for all f & D(T)
and t € R.

PrOOF. By Theorem 7.14 we have
U(r) EB(H) and U()* = U(—1) = U(r)”' forall reR,
1.e., U(?) is unitary for all 1t €R (cf. Theorem 4.34). For all x,y €R

. X
Sin

e — e¥| = |elx /2 — 7ix=/2| = 2 : Y '

It follows from this that
|U@)f = U2 = | f (e =) dE(s)f)
= [le" = &P A E(s)fIP
_ (t=1)s
B 4f 2

for all f € H and ¢, ¥ € R. Because of the relations

(t—1t)s
2

2
d||E(s)f))?

sin

. (t=1)s
2

sin <1 and sin —0 as ¥ -1,

it follows by Lebesgue’s theorem that
U f— Ul -0 as ¢ —t.
This proves the strong continuity of U(r). For all f € H and 1 €R we have

1 1 :

—(U() = D)f = < [ =1) dE(5)f.
Because of the relations

%(ei’s—l)—>is as r—0, seR,
and

|
’7(e"s—1) < |s] for s,teER, 0,

the right-hand side converges, as —0, if and only if the function u(s) = |s|
belongs to Ly(R, py) (with p(s) = || E(s)f|*), i.e., if and only if f € D(T). The
limit equals 1Tf. Consequently, 17 is the infinitesimal generator of { U(¢) : ¢
€ R}.

If f€ D(T), then for every r ER

[1sP dIEGUMAE = [IsP d | UNEGSIP = [IsP dIESSI? < oo,
ie., U(H)f € D(T). O
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Actually, every strongly continuous (one-parameter) unitary group can
be represented in this form.

Theorem 7.38 (Stone). Let {U(f) : t €R} be a strongly continuous (one-
parameter) unitary group on the complex Hilbert space H. Then there exists a
uniquely determined self-adjoint operator T on H for which

U(t) = T forall t€R.

If H is separable, then strong continuity can be replaced by weak measura-
bility, i.e., it is sufficient to require that the function

S UC)E :R-Cr=(f, U(t)g)

is measurable (with respect to Lebesgue measure on R) for all f, g € H.

ProoOF. The equality U(f)=¢€"T implies that iT is the infinitesimal genera-
tor of {U(?) : t € R}. This proves the unicity of T and, at the same time,
provides an opportunity to construct 7. In what follows let 4 be the
infinitesimal generator of { U(¢) : t€R}, and let T= —i4. We show that T
is essentially self-adjoint and U(7)=¢€"*7. Since iT is then the infinitesimal
generator of { U(f) : t €R), it follows that 7= T. First, let us assume that
the group is strongly continuous.
D(A) is dense: For every ¢ € Cs°(R) and every f € H the equality

fp = [@(s)U(s)f ds

defines an f, € H (the integral is extended only to the support of ¢ and can
be understood as a Riemann integral). We have

HUW =D, = 1 [o(s)Uls+ ) = Us))f ds
= 2 [[#(5)Uls + )~ () U(s)] S ds
= [ 19— DU =65 U(s)] S ds
= [ (o(s= )= p(s) Us)f ds — — [ ¢/(s) U(s)/ ds

as 1—0. The set Do={f : f€H, ¢ € C*(R)} is therefore contained in
D(A). If (¢,) 1s a sequence from Cg°(R) such that

b

1
n
@,(s) >0 forall seR,

@, (s) =0 for |s| >

f(pn(s) ds =1 forall n€EN,
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then f, —f as n— oo, since

1o, = 11 = | [ oa(s) (W)= D)f as

< sup{||(U(s)—I)f|| : ——’1—1—<s<—’1;}.

Hence D,, and thus D(A4), too, is dense in H.
T=—14 is symmetric: If f, g€ D(T)= D(A), then

(8. 1f> = =g, f> = —lim i( g, L(U()~ D)
-~ lim i<%(U(—t)—I)g,f>

—

~ lim i<:l—t(U(—t)—1)g,f> = i4g, f>
= (Tg, f>.

R(x1—T) is dense in H: Assume g € R(i— T)* = N(i+ T*). Since for
every f,€ Dy and all r€R

U, = U [ @(s)U(s)f ds = [@(s = 1)U(s)f ds € D,

it follows that

s UMY = (8 AU, = (A%, UL,
= (—iT*, UW,> = ~{s, U,

The function a(¢) =<g, U(?)f,> is therefore a solution of the differential
equation k' = — h, i.e., we have h(¢)=e *h(0). Since U(¢) is unitary, h is
bounded; however this is possible only if {g, f,> =<g, UQ)f,> = #(0)=0.
Since this holds for all f, € D,, we have g =0. Consequently, R(i— 7)=H.
We can show similarly that R(—i— T)= H. Hence, T is essentially self-
adjoint. ~ _

We have U()=¢"": Let V(r)=¢"" and f € D,. Because of the relation
f€ D(T) we also have V(¢)f € D(T) by Theorem 7.37 and d/d¢ V(¢)f =
iTV(2)f. Since, moreover, U(t)f € D, C D(T) for all t €R, it follows that

S W~ V() = iTU@O] = TV(0)f = T~ V().
Consequently, because T is self-adjoint,

AU ~ VOSIR = 2 ReCU(f ~ V(L iT(U(f V() = 0.

It follows from this that U(#)f = V(¢)f for all t € R and all f € D,, because
U(0)f= V(0)f. Since D, is dense, this implies that U(z) = V(f) =¢€"7.
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It remains to prove that weak measurability implies strong continuity in
the separable case. Let f € H. As t—{U()f, g> is bounded (with bound
Il fIl Il gl) and measurable for all g € H, the function

g fo (U, g di

is a continuous linear functional with norm < a|| f|| for every a >0. By the
Riesz representation theorem (Theorem 4.8) there exists an f, &€ H for
which

fr 8D = f”< U()f, g dt.
0
Therefore,

(U, 8 = {fy U(—5)g)> = fo CU)f, U(=5)g) dt
= [+ g ar= [T CUs 8 ar

5

and thus

[ s e

a

KU(s)fy 8> — < fon 8] < ] f U, 8> dtl +
< 205 I£1 1 ll

Hence,
<U(S)fa’ g> - <fa’ g> as s—0,

i.e., U(-)f, is weakly continuous at the origin. Because of the equality
UL =1 £l the continuity of U(-)f, at the origin follows from this,
since

1U(s) = £lP = NUGLIP — 2 ReCUS), > + ILLIP—>0 as s 0.

We show, in addition, that the set of elements f, is dense in H. It follows
from this that U(s) is strongly continuous at the origin, and thus every-
where. Let # be orthogonal to all f,, and let {e, : n €N} be an orthonor-
mal basis of H. Then

f“<U(z)e,,, hy dt = e, 5 h) =0
0

for all n €N and all @ > 0. It follows from this that for all n €N we have
(U(?)e,, h) =0 almost everywhere in (0, c0) (cf. Theorem A16(c)). Conse-
quently, there is a £, >0 such that

CU(ty)e,, hy =0 forall neEN.

As U(t,) is unitary, {U(%,)e, : n €N} is an orthonormal basis. Hence, we
must have 2 =0. ]
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Corollary. Let { U(¢) : t €ER} be a strongly continuous unitary group, and let
1T be its infinitesimal generator. Then the initial value problem

1 d

H E;u(t) = Tu(t), u(0)=f

is uniquely solvable for every f& D(T) and the solution is u(t)= U(1)f. (4
solution is a continuously differentiable function defined on R with values in
D(T) that satisfies the differential equation.)

PrOOF. As U(r)f € D(T') for all f€ D(T) and all rER, the function
u(t)= U(r)f 1s a solution of the initial value problem. If ¥ and v are
solutions, then u(0) — v(0)=0, and d/dr ||u(f) — o(0)||> =2 Relu() — v(2),
1T(u(t) — v(£))> =0, i.e., u(t) = v(¢) for all t € R. n

A few more words about the significance of Stone’s theorem: In quan-
tum mechanics the states of a system are described by the normalized
elements of a Hilbert space. If u(?) is the state of the system at time ¢, then
we write u(?) = U(t)u(0); for reasons derived from physics, U(¢) has to be a
linear operator. Of course, every state has to be possible at any time; since,
moreover, U(?) has to preserve the norm of the states, it follows that U(7) is
unitary. If, in addition, we require strong continuity (weak measurability in
the separable case), which is quite plausible on a physical basis, then it
follows that there exists a self-adjoint operator T such that U(¢)=¢"T; in
particular,

1 d
T q; VS = TU(0)f

for all f € D(T). Since the time dependent Schrodinger equation is of this
form, this implies that the Schrodinger operators must be self-adjoint.

ExaMpLE 1. Let H= L,(R). The formula

UDf(x) = fix+1), feL(R)

defines a strongly continuous unitary group. The infinitesimal generator is
A =1T, where

D(T) =W2’ I(R) and Tf= “‘lfl

(for W, |(R) see Section 6.4). It is obvious that T contains the operator
T, , defined by the equalities

D(T, ) =C°(R) and T, ,f= —if".

As by Theorem 6.30 T, , is essentially self-adjoint, the assertion now
follows.
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ExaMpLE 2. Assume that H= L,(M) and g : M—R is a measurable func-
tion. The equality

U(D)f(x) = exp(ig(x))f(x), f € Ly(M)

defines a strongly continuous unitary group. It is easy to see that the
infinitesimal generator is 4 =17, where T is the maximal operator of
multiplication by the function g.

Theorem 7.39. Let T be a self-adjoint operator on the complex Hilbert space
H, and let M be a closed subspace of H. If e“Tf & M for all f € M and s €R,
then M reduces T and e“"M= M, e*TM* =M™~ for all s €R.

PrROOF. We have e“"M= M for all s €R, since

esTMcM forall seR

by assumption, and because every f € M can be written in the form

f=¢eT(e ™) with e *feM

for every s €R.
Forall fEeEM, ge M+ and s € R we have

(g, f> =g e "> = 0.

Consequently, e*"M - c M*, and thus e*7M*L =M<, If P is the orthogo-
nal projection onto M, then

PeT = TP forall s €R,

because of what we have just shown. We have to show that PT C TP. Let
J € D(T). Then

PTf = Plim — (¢'Tf— f) = lim — (e""Pf— PY).
t—0 I t—0 I
Hence, Pf € D(T) and TPf= PTY. O

We next prove the following special case of a theorem of H. Trotter for
unitary groups that are generated by the sum of two self-adjoint operators.

Theorem 7.40. Let T, S, and T + S be self-adjoint operators on the complex
Hilbert space H. Then

eT+5) = ¢ — |im [ei(t/n)Tei(t/n)S]”
n—oQ

Jor all t € R.
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PROOF. For every f€ D(T+ S)=D(T)N D(S)
£~ (T eifS — gUT+S))f
= 71T = I)f + t~ 1T (S — I)f — £~ (XT+S) — )f
SiTf+iSf—i(T+S)f =0 as t—0.
In particular, for every f € D(T + §) there exists a C(f) > 0 for which
71T S — T f| < C(f) forall e R\{0}.

Since the space D(T+ S) is a Hilbert space with the (7+ S)-scalar
product <., .>z, s, by the uniform boundedness principle (Theorem 4.22)
there exists a C > 0 such that

|67 1T &S — T+ < C| flgys for fED(T+S),1€R\{0).
If E is the spectral family of 7+ S, then for f€ D(T+ §)

[T 9f = T g = [+ e = &P A B

S_

<4f(z2+1)|sin( = t)|2dHE(t)f||2—>O as 5 —> s,

since the integrand is bounded by (2+ 1) (because of f € D(T + S) this
function is integrable) and tends to 0 pointwise. Hence, for fixed f € D(T
+ .§5) and r >0 the family of functions

¢, : [=r r] oH 1 €R\{0},
(P,(S) — t—l(eitT eitS__ eit(T+ S))eis(T+ s)f
is equicontinuous. Since e*7*S)¥ € D(T+ S), we moreover have g,(s)—0

as t—0 for an arbitrary s €[ r, r]. Consequently, ¢, uniformly converges
to 0 on [—r, r] as t—0. Let us now make the following estimates

H [ (ei(t/n)Tei(t/n)S)n _ eit(T+ S)]f”

n—1

S (/T /S YK iu/MT it/ mS _ gite/n)T+8)] (gile/nXT+ Sy =1= k,i
k=0

< n max ” [ei(‘/")T el(t/MS _ oi(t/n)(T+ S)]eis(T+ S)f“

ls| <1l
-1
= [¢| max (_ﬂ) [ei(l/n)T ei(t/n)S_ei(l/n)(T+S)]eis(T+S)
ls|<Je i\ 7

< [f] max{g,,,(s): sE€[ —|e, 7]}

For fixed ¢ the last expression tends to zero as n—co, as we have already
proved (choose [—r, r]=[—|¢|, |?]]). This proves the convergence for f €
D(T + §). Since D(T+ S) is dense and all operators have norm 1, the
required strong convergence follows (cf. Theorem 4.23). d
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If the operators S and T are bounded from below, then an analogous
result holds for e™*7, ¢ 'S and e ""*% with ¢ > 0.

Theorem 741. Let T, S, and T+ S be self-adjoint operators on the Hilbert
space H. Assume that these operators are bounded from below. Then

e—z(T+S) = s — lim [e—(l/n)T e—(z/n)s]n

n—>o0

for all t > 0.

The proof follows that of Theorem 7.40. We consider only nonnegative ¢
and s; the details can be left to the reader.

EXERCISES

7.50. Let U be a unitary operator.
(a) There exists a strongly continuous unitary group { U(?) : t €R} for which
U(1)= U and whose infinitesimal generator has norm < 2.
Hint: If G is the (complex) spectral family of U and we define z‘ = r’ ¢'*%
for z=re?® (0<r, 0<¢p <27, and tER), then we can choose U(7)=
f 2z dG(2).
(b) Prove Theorem 7.36 with the aid of part (a) and Stone’s theorem.

7.51. If T is self-adjoint and V¥ is a T-bounded operator, then > ¥ ¢‘7f is
continuous for every f & D(T).

71.52. Let T, and T, be self-adjoint operators on H, and assume that the strong
limit W=s—lim,_ . ‘T2 ¢~ ¥71 exists (W is called a wave operator; cf. Sec-
tion 11.1). We have:

(a) W is isometric.

(b) R(W) reduces ez,

(c) R(W) reduces T,.

(d) T; and Tyl are unitarily equivalent; Ty, = W ™~ 'T,|p, W.



Self -adjoint extensions
of symmetric operators

In Sections 5.4 and 5.5 we have already learned that certain symmetric
operators (the semi-bounded and continuously invertible ones) possess
self-adjoint extensions. The question of whether all (or which) symmetric
operators have self-adjoint extensions could not be answered there. The
key to our studies was the fact that A — 7" was continuously invertible for
some A ER; however, this is not always the case. In this chapter we
develop the von Neumann extension theory, which completely answers this
question. Moreover, we shall prove certain theorems about the spectra of
all self-adjoint extensions of a symmetric operator.

8.1 Defect indices and Cayley transforms
First let T be an arbitrary linear operator on a Hilbert space H. The set

I(T) = {z €K : there exists a k(z) > 0 such that
Iz =T)fl| > k(2)|Ifll forall feD(T)}

is called the regularity domain of T.

Proposition.

1. We have z € I(T) if and only if (z — T) is continuously invertible. Then
I(z—T)" || <k(z)~' (observe that (z — T)™" need not belong to B(H)).

2. If H is complex and T is Hermitian, then C\R c I(T).

3. If T is isometric, then K\{z €K : z=1} c I(T).

4. I(T) is open.

229
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PrOOF.

1. It follows from the inequality ||(z — T)f|| > k(z)|| f|| for all f € D(T) that
z— T is injective and |(z— T)~"|| <k(z)~". If (z— T) is injective and
(z— T)™ ' is bounded, then

IG=T)1 > Iz=T7) 7N liz = 1)~ (2 = T)f]
= Iz=T)" I MAl

Consequently, z € I'(T) and we can choose k(z2)=||(z—T)"
2. Forz=a+1b and f€ D(T)

Iz = T)f? = lI(a= THAII* + 2|1 f11* > B2|If)%

Hence, z € I'(T) and we can choose k(z) = |b|.
3. If |z} # 1, then

1= > TNTAL = 00 =11 =1z I

Consequently, z € I(T') and we can choose k(z) =|1—|z]||.
4. Let zo€ I(T). If z €K such that |z — z,| <k(z,), then

1z =)l > I(zo— T)fIl = |2 = 20| LfIl > (k(20) — |z = zo))I| f]|
for all f € D(T). Therefore, z € I(T), 1.e., I(T) is open. O

=1
[

The subspace R(z— T)* is called the defect space of T and z. The
cardinal number 8(7T, z) =dim R(z — T)™* is called the defect index of T
and z.

Theorem 8.1. The defect index B(T, z) is constant on each connected subset
of I'(T). If T is Hermitian, then the defect index is constant in the upper and
lower half-planes.

Proor. It is sufficient to show that B8(7, z) is locally constant in I{T), i.c.,
that for every z, € I(T) there exists an € >0 such that (T, z)= (7, z,)
for all z € I'(T) with the property |z — z,| <e. Replace 4 by z,— T and B
by I in Theorem 5.25, and write Q, for the orthogonal projection onto
R(z—T). Then ||Q, — Q, | >0 as z—z,. If P, is the orthogonal projection
onto R(z — T)*, then we have

HPz - onll = ||Qz - QZOH -0 as z— 20

If we choose € >0 such that || P, — P, || <1 for |z — zo| <e, then it follows
from Theorem 4.35 that

B(T, z) = B(T, z,) for |z— zy <e.

If T i1s Hermitian, then the upper and lower half-planes are connected
subsets of I'(T') (cf. Proposition 2); therefore, the defect index is constant
there. O
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If T is a Hermitian operator on a complex Hilbert space, then we define

v+ (T) = B(T,i), v_(T)=B(T, —i)

(of course, here i can be replaced by an arbitrary z € C for which Im z >0
and —i by an arbitrary z € C for which Im z < 0). The pair
(Y+(T), y_(T))=(v,,v_) 1s called the defect indices of T.

ReEMARK. We can reformulate the result of Theorem 5.21 in terms of this
definition: A4 symmetric operator is essentially self-adjoint if and only if its
defect indices are equal to (0, 0). A closed symmetric operator is self-adjoint if
and only if its defect indices are equal to (0, 0).

Let T be a symmetric operator on a complex Hilbert space. The Cayley
transform of T is defined by the equality

V=>G(-T)(-i-T)""= -@(i-T)i+7T)""

V 1s therefore a linear operator from R(—i— T) onto R(i— T).

Theorem 8.2. Let T be a symmetric operator on the complex Hilbert space H.
The Cayley transform of T is an isometric mapping of R(—1i— T) onto
R(i— T). The range R(I — V) is dense in H, and T=i(I+ V)I— V). In
particular, T is uniquely determined by V.

PrOOF. For every g=(—1—T)f € R(—i— T)=D(V) we have
IVell? = G- T) (=i~ T) ‘gl = |(i— T)fI)”
= AP+ UTA = W(=i= DI = | gl

Consequently, ¥ is isometric. It is clear that R(V)=R@G— T), since
(—=i— T)"! maps D(V)=R(—~i—T) onto D(T) and (i— T) maps D(T)
onto R(i— T'). We have

I—Vv=I+@G-T)i+T) '=[(+T)+(-T)]G(+T)"'=2i(i+T)",

I+ V=1-(G{-T)i+T) ' =2TG+T7T)"".

In particular, R(/ — V)= D(T) is dense, I — V is injective, and
T=i(I+V)I-V)"\ ]

REMARK. We could define a (generalized) Cayley transform
V, = (z-T)(z*-T)""

for every z & C such that Im z>0. Then V, is an isometric mapping of
R(z*—-T) onto R(z—T), and

T=z-z*V,)I-V,) "
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In what follows V' can be replaced by V,. We use z =1, as this saves us
from using unnecessary indices.

Theorem 8.3. An operator V on the complex Hilbert space H is the Cayley
transform of a symmetric operator T if and only if V has the following
properties:
(1) V is an isometric mapping of D(V') onto R(V),
(1) R(I—~ V) is dense in H.
The symmetric operator T is given by the equality T=i(I+ VI~ V).
Proor. If V is the Cayley transform of 7, then V' has properties (i) and (ii)
by Theorem 8.2. We also have then that T=i({/+ V)(I — V)" '. Let V now
be an operator with properties (i) and (ii). Then I — V is injective, since the
equality Vg =g implies that

=<8 f>—<8f>=0 foral feD(V),
i.e., that g€R(I— V)*, and thus g=0. Therefore, we can define an
operator 7" by the equality

T =iI+V)I-V) "

By assumption, D(T)= R(I— V) is dense. For all f=(— V)f, and g=
(I—V)g, from D(T)= R(I— V) we have

(Tfg) = —KUI+V)I=V)" ' g> = =K+ V)f;, I~ V)g,)
= —i{{fi, g +<Vf1, g0 —<{fis Vg1 —<Vf, Vgo)
= —i{{Vfy, Vg +<{Vf, 80> —{fi, V&) —< Sy g1}
= K(I=WV)f,, I+ V)gpy =if, I+ V)(I-V)'g>
=<f Tg>.
Consequently, 7" is symmetric.

It remains to prove that V is the Cayley transform of 7. This im-
mediately follows from

(i~T)=i-iI+V)I-V) "' =i[(I-V)-I+V)](I-V)"
= =2AV(I-V) !,
(=i=T)= —i[(I-V)+(I+V)]I-V)""' = =2(1-V)"". ]

Theorem 8.4. Let T be a symmetric operator on a complex Hilbert space, and
let V denote its Cayley transform.
(a) The following statements are equivalent:

(1) T is closed,

(i) V is closed,
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(i) D(V)=R(1+ T) is closed,
(iv) R(V)=R({i—T) is closed.
(b) T is self-adjoint if and only if V is unitary.

PROOF.
(a) (i) is equivalent to (iii) and to (iv): T is closed if and only if (*i—
T)~ ! is closed. The bounded operator (+i— T)~! is closed if and
only if its domain D((i— T) )=RG—T)=R(V) or D(—i—
T) " H=RG+ T)=D(V) is closed (Theorem 5.6).
(11) is equivalent to (ii1): The bounded operator V is closed if and only
if its domain is closed.
(b) T is self-adjoint if and only if RG— T)=R(—i— T)=H, i.e., if and
only if D(V)= R(V)= H. This is equivalent to the statement that V is
unitary. .

For the construction of symmetric or self-adjoint extensions of a sym-
metric operator the following theorem is essential. The proof of this
theorem is obvious.

Theorem 8.5. Let T, and T, be symmetric operators on a complex Hilbert
space, and let V| and V, denote their Cayley transforms. Then T, C T, if and
only if V,CV,.

Consequently, we can obtain all symmetric extensions of a symmetric
operator T if we determine all those extensions V' of the Cayley transform
V of T which possess property (1) of Theorem 8.3 (since V' has property (ii),
V' automatically does, too) and we calculate the corresponding symmetric
operators T’ =i(I+ V')(I— V')~ ! (Theorems 8.5 and 8.3). We can obtain
all self-adjoint extensions (provided that such exist) if we determine all
unitary extensions V'’ (Theorems 8.5 and 8.4b). In particular, 7 has
self-adjoint extensions if and only if ¥ has unitary extensions. The follow-
ing theorem makes it possible to explicitly construct the extensions V' of
V. Here we assume, without loss of generality, that T is closed.

Theorem 8.6. Let T be a closed symmetric operator on a complex Hilbert

space, and let V denote its Cayley transform.

(a) V' is the Cayley transform of a closed symmetric extension T’ of T if and
only if the following holds: There exist closed subspaces F_ of R(i— *
and F, of R(—i— T)" and an isometric mapping V of F, onto F_ for
which

D(V)=R(—-i—T')=R(-1—T)®DF,.
V'(f+g) = Vf+ Vg for fER(-i—T),g€F,,
R(V)=R(i—-T')=R(i-T)DF_.

The spaces F_ and F, have the same dimension.
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(b) The operator V' in part (a) is unitary (i.e., T’ is self-adjoint) if and only
if F_.=R(Gi—T)" and F, =R(—i—T)".

(c) T possesses self-adjoint extensions if and only if its defect indices are
equal.

PROOF.

(a) If V' has the given form, then V' is obviously an isometric mapping of
R(—1—T)®F, onto Ri-T)®F_. Consequently, V' satisfies
assumption (i) of Theorem 8.3. Since R(/— V) is dense, R(I — V') is
also dense, so that V' also satisfies (ii) of Theorem 8.3. Therefore, V' is
the Cayley transform of a symmetric extension 7" of T. Since V is an
isomorphism of F, onto F_, we have dim F, =dim F_. If V' is the
Cayley transform of a symmetric extension T’ of T, then put F_
RGi—T)©RG(—T), F,=R(—i—T)OR(—i—T), and V= Viig,-

(b) V'’ 1s unitary if and only if D(V)=H=R(V’), i.e., if and only if
F,=R(—-i—T)* and F_=R(Gi— T)" .

(c) By (a) and (b) the operator V' possesses a unitary extension if and only
if there exists an isometric mapping V of F?(—l— T)* onto RGi— T)* .
This happens if and only if dim R(—i— T)* =dim R(i— T)" . ]

Theorem 8.7. Let T be a symmetric operator on a complex Hilbert space. The
operator T is essentially self-adjoint if and only if T has exactly one
self-adjoint extension.

(For the real case, compare Exercise 8.4.)

ProOF. If T is essentially self-adjoint, then T is the only self-adjoint
extension of 7" by Theorem 5.31(c). We show: If T is not essentially
self-adjoint, i.e., if T is not self-adjoint, then T has either no or infinitely
many self-adjoint extensions. If the defect indices of T are different, then T
(and thus T) has no self-adjoint extension. If the defect indices are equal
(>0, as T i1s not self-adjoint), then there are infinitely many unitary
mappings V : R(—i— T)*—>R(3i— T)* (proof!), and therefore infinitely
many self-adjoint extensions. .

Now we are in a position to define certain classes of symmetric opera-
tors that have self-adjoint extensions.

Theorem 8.8. Let T be a symmetric operator on a complex Hilbert space.
(@) If T (T)NR#=D, then T has self-adjoint extensions.

(b) If T is semibounded, then T has self-adjoint extensions.

(The statements of this theorem have already been proved in another way
in Sections 5.4 and 5.5.)

PrOOF.

(@) I(T) is connected, since I{T)N R#=J. Then y_(T)=+v_(T) by Theo-
rem 8.1.

(b) Let T be bounded, for example, from below, and let ¢ be a lower
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bound of T. Then

IA=TD)f|| > ALAT=NHNAIT > (e =MIIA

for A<c and all f€ D(T), f+#0. Consequently, in this case we also
have I(T)N R#* . Ll

Let H be a complex Hilbert space. A mapping K of H onto itself is
called a conjugation if
(a) K(af+ bg)=a*Kf+ b*Kg for f,g€H, a, bEC,
(b) K2=1. (8.1
(c) <Kf, Kg>=<g,f> for f,g€EH.
An operator T on H is said to be K-real if
(@) KD(T)Yc D(T),
(b) TKf=KTf for fe&D(T). (8.2)

Theorem 8.9. Let H be a complex Hilbert space, and let K be a conjugation
on H. If T is a K-real symmetric operator on H, then T possesses self-adjoint
extensions.

ProOF. It follows from (8.1(b)) and (8.2(a)) that D(T) D> KD(T)> K*D(T)
= D(T). Consequently, KD(T)=D(T). If f € Ri— T)*, then

(Kf, (=i=T)Kg) = Kf, K(i—T)g) =<(i—T)g, f> =0
for all g € D(T). Therefore, Kf € R(—i— T)*. We can show similarly that
if fER(—i—T)*, then Kf € R(i— T)*. As K*=1, we have R(—i— T)*
= KR(@i— T)*. Since {e, : a € A} is an orthonormal basis of R({i— T)* if
and only if {Ke, : « €A} is an orthonormal basis of R(—i— T)*, it
follows that dim R(—i— T)* =dim R(Gi— T)*. O

ExXAMPLE 1. The formula
Kf(x) = f(x)*, f € Ly(M)

defines a conjugation (the natural conjugation) on L,(M). The conditions
given by (8.1) are obviously satisfied.

(8.3) Let G CR™ be open and let T be defined on Ly(G) by the equalities
D(T) =C{*(G), and Tf= —Af+ qf for feD(T)

(here A=27_,(9 2/ asz) denotes the Laplace differential form). Assume that
the function q is real-valued and measurable on G and belongs to L, 1,.(G)
(i.e., it is square integrable over every compact subset of G). Then T is
obviously symmetric and K-real. Consequently, T has self-adjoint extensions
by Theorem 8.9.

(8.4) Let K(.,.) : MX M—R, be a Hermitian Carleman kernel. Then the
operator Ty o from Section 6.2 is symmetric and K-real. Ty  therefore
possesses self-adjoint extensions.
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EXAMPLE 2. The formula

Kf(x) = f(—x)*

defines a conjugation on L,(R™) and on L,{x ER™ : —q,<x;<a}.
(8.5) Let T be defined on L,{R) or on Ly(—a, a) by the formulae
D(T) = Cs°(R) or D(T) =Cg(—a,a)
Tf = llf' for fe€D(T).

Then we obviously have Kf € D(T) and

TRI(x) = 1 4= (= x)* = (= 2)* = = (KP)(x) = KTY(x)

for all f € D(T). Hence T is K-real, and thus possesses self-adjoint exten-
sions.
(In Section 6.4 we could prove this only for the case of L,(R).)

ExaMpPLE 3. The formula

K(fi, ) = (Ji f) for (f, f) € Li(M) © Ly(M)
defines a conjugation on L,(M)® L,(M). The operator T defined by

D(T) =Cg°(M) & Cg°(M),
T(fl’fz) = (f2,9 ~fl,) for (fl, fz) € D(T)

1s symmetric, since

(T(fu ) (81 8)) = [fi*g) dx — [ fi*g, dx
= — [frgidx + [ ften dx = (i o), T(g1 £

for all {f, f), (g, g2) € D(T). Moreover, T is obviously K-real. Therefore,
T possesses self-adjoint extensions.

Theorem 8.10. Let T be a closed symmetric operator on the complex Hilbert
space H with equal finite defect indices (m, m). If T, and T, are self-adjoint
extensions of T, then (z—T,)™'—(z— T,)" ' is of rank at most m for every
z€p(T\) N o(T,). (Therefore, it is in B,(H) for all p >0.)

ProoF. Every z € o(T,) N p(T,) obviously belongs to I(T); consequently,
R(z — T)* is m-dimensional. Since (z—T))" f=(z—-T) f=-T)"Y%
for f&€ R(z—~T), we have

(z - Tl)~l —(z— Tz)—] = ((Z_ Tl)_]“‘(z_ Tz)_l)P,
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where P denotes the projection onto R(z — T)*. Hence, dim R((z — T,)~"
—(z=-T) H<m. O

EXERCISES

8.1. For every self-adjoint operator T on a complex Hilbert space there exists a
conjugation K for which T is K-real.
Hint: Use a spectral representation of 7 (Theorem 7.18) and the natural
conjugation on @, Ly(R, p,).

8.2. Let K denote the natural conjugation on Ly(M). If T is a K-real self-adjoint
operator on Ly(M) and (z— T)~ ! is a Carleman operator for all z € p(T)
(cf. Exercise 6.12) with kernel k,(x, y), then k,(x, y)=k,(y, x) almost every-
where in M X M.

8.2 Construction of self-adjoint extensions

In this section we wish to give the explicit construction of the self-adjoint
extensions of a symmetric operator with equal defect indices. For a closed
symmetric operator T on the complex Hilbert space H we set

N, =N(i—T*) =R(—i—T)*,
N_ =N(—i—T*)=R(i—-T)".

Theorem 8.11 (The first formula of von Neumann). Let T be a closed
symmetric operator on a complex Hilbert space. Then

D(T*) =D(T) + N, + N_ (direct sum),

T*(fo+g,+g.) = Tfy+ig, —ig_ for f,€D(T), g, EN,,g_EN_.
ProoF. Since N, c D(T*) and N_ c D(T*), we obviously have D(T)+
N, +N_cD(T*). We show that we have equality here, ie., every
fE€D(T*) can be written in the form f=f,+g, +g_ with f,€ D(T),
g, €N,,and g_€ N_. To this end, let f € D(T*). Then by the projection
theorem we can decompose (—i— T*)f into its components in N, and in
Nt =R(-i-T),

(=i=-Tf=(-i—-Tfo+g (-i—-T)fhER(-i—T),gEN,.

Since T*f,= Tf, and T*g =ig, we then have (with g, =ig/2)

TS~ fo=8.) = T~ Thh+58 = ~if +ify— 2 g
= —i(f-fo) +ig, = —i(f—fo—g84)
If we setg_=f—fo—g,, theng_EN_and f=f,+g, +g_.
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It remains to prove that the sum is direct, i.e., that the relations
O=fo+g,+g_./,€D(T) g, EN,,andg_€EN_ imply fy=g,=g_=0.
It follows from the equality 0= f,+ g, + g_ that

0=T*(fo+g,+g_)=Tf,+ig, —ig_.
We obtain from this that

(i-T7)fp= —i(g, +g.) +i(g,—g_) = —2ig_
and
("i‘ T)fo = 2ig . ;
consequently, g_ EN_NRG—T)={0}, g, EN. NAR(—1—T)={0}.
Therefore, g_ = g_ =0, and thus f,= 0, also. O

Theorem 8.12 (The second formula of von Neumann). Let T be a closed

symmetric operator on a complex Hilbert space.

(a) T’ is a closed symmetric extension of T if and only if the following holds:
There are closed subspaces F, of N, and F_ of N_ and an isometric
mapping v of F, onto F_ such that

D(T") =D(T)+ {g+Vg:gEF,)
and
T'(fo+ g+ Vg) = Tfy+ig —iVg
= T*(f,+g+Vg) for f,eD(T),gEF,.
(b) T’ is self-adjoint if and only if F, =N, and F_=N_.
ProOOF. This theorem immediately follows from Theorem 8.6 if we show

that the operator T’ of Theorem 8.6 can be represented in the above form.
We have (with V' as in Theorem 8.6)

D(T)=R(I-V)={U—-V)DV)=({I—-V')D(V)+F.)
= (I-V)D(V)+(I-V)F,
=D(T)+ {g~ Vg:geF,).

The sum is direct, as { g — I7g 8EF, }CF,+F_CN,+N_. Since T'C
T*, we have moreover that

T'(fo+g— I7g) = T*(f,+g— I7g) = Tf, +ig + iVg
for all f,€ D(T) and g € F .. The assertion follows by taking V=—"V. O

As long as the subspaces N, and N_ are known, this theorem enables
us to determine all closed symmetric extensions (in particular, all self-
adjoint extensions) of a symmetric operator.
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Let T and T” be linear operators such that T C T’; then we say that T is
a finite-dimensional (m-dimensional) extension of T if the quotient space
D(T")/ D(T) is finite-dimensional (m-dimensional). We also say that T is a
finite-dimensional (m-dimensional) restriction of T'.

Theorem 8.13. Let T be a closed symmetric operator on a complex Hilbert

space, and let T’ be a symmetric extension of T.

(a) T’ is an m-dimensional extension if and only if F, (defined in Theorem
8.12) is m-dimensional.

(b) If T has defect indices (m, m), then a symmetric extension T' of T is
self-adjoint if and only if T’ is an m-dimensional extension of T.

PROOF.

(a) As D(T")=D(T)+ (I + 17) F, 1is a direct sum, we have
dim D(T")/ D(T)=dim(I + V)F,. Since VF,=F_cN_, F,cN,
and N_N N, = {0}, we obviously have dim(/+ V)F, =dim F,.

(b) T’ is an m-dimensional extension if and only if dim F, =dim F_=m.
Since F, C N, and F_ C N_, this holds if and only if F_ = N_ and
F_=N_. ]

An operator T on H is said to be maximal symmetric if we have T = A4
for every symmetric operator 4 such that T C A. As the closure of a
symmetric operator is symmetric, every maximal symmetric operator is
closed.

Theorem 8.14.

(a) A closed symmetric operator T is maximal symmetric if and only if at
least one of its defect indices is equal to 0.

(b) Every self-adjoint operator is maximal symmetric.

(c) Let T be a closed symmetric operator with equal finite defect indices.
Then every maximal symmetric extension of T is self-adjoint.

PROOF.

(a) By Theorem 8.12(a) we can construct proper symmetric extensions if
and only if both defect indices are different from zero.

(b) This follows from (a), since for every self-adjoint operator both defect
indices are equal to O.

(¢) An extension 7’ is maximal symmetric if and only if it has the form
given in Theorem 8.12(a) with F,. =N_ or F_ = N_. Dimensionality
arguments then show that F, =N, and F_=N_, so that T’ is
self-adjoint. |

ExaMpLE 1. Consider the operator T , of Section 6.4 (cf. Theorems 6.29
and 6.31) defined on L,(0, c0) by

D(T,5) = (fE€Wa (0. ) : /(0)=0) and Ty of = =/ for f & D(T, ).
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We have 7",?;,= Tt o= T,, where
1
D(T,) =W, (0, 0) and T,f= Tf, for feD(T)).

Then N, = N(i— T),) is the set of those solutions of the differential equa-
tion if —(f'/1)=0, hence of the differential equation f+ f' =0, that lie in
L,(0, o). As the solutions of this differential equation are given by
f(x)=ce™*, we have N, # {0}. The subspace N_ = N(—1— T)) is the set
of those solutions of the differential equation —f+ f'=0 that lie in
L,(0, o0). Consequently, N_ = {0}. Therefore, the defect indices of T, , are
different, and thus _T; possesses no self-adjoint extension.

ExampLE 2. Consider the operator T, , from Section 6.4 (cf. Theorem 6.31)
defined on Ly(a, b), — o0 <a <b < oo by the formulae

(T, o) = {fEW,, ((a, b) : f(a)=f(b)=0}

and
_ 1, —

We have T} ;=TT ,=T,, where

D(T,) =W, (a,b) and T,f= %f’ for feD(T)).

We also have
N, =NGi—-T),) =L(e,) with e (x) = exp(b— x),
and
N_=N(—i—T,) =L(e_) with e_(x) = exp(x —a).

The defect indices are therefore equal, and thus T—L(; has self-adjoint
extensions. We want to construct these extensions. It is obvious that
lle,||=]|le-]|, so that all unitary mappings of N, onto N_ are given by
formula

Vs(ce,) = ce®e_ forall ceC (0<d<2m).
Consequently, all self-adjoint extensions Sy of T , are given by
D(S;) =D(T, ) + L{e, +e%_},

Sy =Tif==f for f€D(S,), (0<8<2m).

It is usual and convenient to describe the domains of differential
operators as the restrictions of the maximal operators (here T,) with the
aid of boundary conditions.



8.2 Construction of self-adjoint extensions 241

(8.6) We have

D(S;) = {feD(T)) : f(a)=0(3)f(b)},

where O(9)=(1+ePe? %) 1?79+ ¢®). The mapping © : [0, 27)—>C is
bijective as a map from [0, 27) onto the unit circle.

ProoF. For every f= f,+ ce, + ce’e_ € D(S;) with f, € D( T, o) we have

f(a) _ ce (a) + ce’e_(a) _ eb—a 4 ¢i?
f(B)  ce (b)+cePe_(b) 1+t~
Consequently, f(a)=0(?) f(b). Now let f(a)= O(3) f(b); then we have
(f—ce,. —cee_)(a) = f(a) — c(e? ?+¢€?) =0,
(f—ce, —ce?e_)(b) = O(9) 'f(a) — c(1+e?e9)
= 0(3)"'f(a) - f(a)B(8) ™" =0
with ¢ = f(a)(e?~?+¢)~'. Hence f— ce — ce’e_ € D(T, ), and thus f €
D(S,). It is clear that O is a bijective map of [0, 27r) onto the unit circle. []

(8.7) The eigenvalues A, and the normalized eigenelements f, of Sy are
given by the formulae
A, = (a—b)"(a+2mn),
£,(x) = ¢, exp(ir,x), (nE€Z)
where a is chosen so that €* = O(9) and the c, are normalizing factors.

PROOF. A and f are an eigenvalue and a corresponding eigenelement of S,
if and only if

M=1s, and f(a) = O(3)f(5)

As all solutions of the equation Af=f’/i have the form f (x)=ce”f", we
obtain from the boundary condition that e* = (8 )e"*. Therefore, e**~?
= @(#) =¢' It follows from this that

A(a—b) = a modulo 2;
consequently,
A, = (a—b)"(a+2nm)
and
fi(x) = ¢, exp(iA,x) for neZ. |

In the reasoning of Section 8.1 K-real symmetric operators played an
important role; they possess self-adjoint extensions. Now we can show that
they also possess K-real self-adjoint extensions.



242 8 Self-adjoint extensions of symmetric operators

Theorem 8.15. Let T be a K-real symmetric operator on the complex Hilbert
space H. For every K-real self-adjoint extension T’ of T there exists an
orthonormal basis {e, : a« € A} of N, such that

V(S ) = Seke, for Slef < o

holds for the Cayley transform V' of T'. If {e, : « € A} is an arbitrary
orthonormal basis of N, then the unitary operator

V:N, >N_, 17(2 Cas) = 2 Ke, for e, < oo
induces a K-real self-adjoint extension of T in the sense of Theorem 8.12.

PROOF. If {e, : « € A} is an orthonormal basis of N, V is defined as in
the theorem, and 7' denotes the self-adjoint extension of 7T defined by V,
then

K(fo+2 ce,+ Ke,)) = Kfy+ 2 c¥(e, + Ke,) € D(T")
and

T’K(f0+ > e (e, + Kea)) = TKf, + >, c*(ie, —iKe,)
K( Tf,+ > c,(—iKe, + iea))
= KT'(fo+ 2 c,(e, + Ke,))

for all fy+ D, c (e, + Ke,) € D(T"). Consequently, T’ is K-real.

Let 7" now be a K-real self-adjoint extension of 7, and let V'’ be the
Cayley transform of 7".! With the aid of Zorn’s lemma we can show the
existence of a maximal orthonormal system {e, : « € A} in N, with the

property

V’(z caea) = > ¢ Ke, for Dlc < co.

Then the formulae
D(S) =D(T) + { T e (e, + Ke,) : e <o},

Sf=Tf for feD(S)
define a K-real symmetric extension of T (this can be proved as above). If
we assume that {e, : & € A} is not an orthonormal basis of N, then there
is a non-zero element f of R(—i— S)*. Then V'fER(G—S)*, Kf€
R(Gi— S)*, and KV'f € R(—i— S)*; consequently, f+ KV'f € R(—i— §)* .
If f+ KV'f=0, then the orthonormal system {¢e, : « € A} can be enlarged

by taking the element e =1i|| f]| ", since then Kf= — V’f and thus Ke= Ve,
If f+ KV'f+0, then we can choose e= || f+ KV'f||~'(f+ KV'f), since

V(f+KV'f)= Vf+ V'KV'f= V'f+ Kf = K(f+ KV'f).

1T am indebted to Dr. Jirgen Voigt for the following proof.
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Here we have used the fact that V'=(@G—T')(—-i—T)" !, Ki—T")=
(—i—THK, and K(—i~T) ' =@G-T) (- THK(-i—T) ! =
(i—T) 'K(—i—T)(—i—T) " '=(— T)" 'K, so that V'KV’ = K. There-
fore, in both cases we obtain a contradiction to the maximality of the
system {e, : a € A}. O

EXERCISES

8.3. Assume that T is a symmetric operator on a real Hilbert space H, the space H¢
is the complexification of H, and K is the conjugation defined in H¢ as in
Exercise 7.25.

(a) The complexification T¢ of T is symmetric and K-real; T therefore
possesses K-real self-adjoint extensions.

(b) The K-real self-adjoint extensions S of T¢ have the form S =(7")¢, where
the T’ are self-adjoint extensions of 7.

(c) Every symmetric operator on a real Hilbert space has self-adjoint exten-
sions.

8.4. A symmetric operator (on a real or complex Hilbert space) is essentially
self-adjoint if and only if it has a unique self-adjoint extension. (The complex
case was considered in Theorem 8.7.)

8.5. Let T be a symmetric operator. If 7" is maximal symmetric for some n €N,
n> 1, then T™ is essentially self-adjoint for mEN, m <n, and T"= T™.
Hint: First consider the complex case. T is self-adjoint by Theorem 5.22; the
assumption and the inclusion 7"C T” imply that T"= T"; D(T") is a core of
T™ for m <n; therefore, D(T™) is a core of T™, too.
8.6 (a) If T is a K-real operator, then T* is also K-real.
(b) If T’ is a symmetric extension of a K-real operator T, then 7" is K-real if
and only if XD(T")c D(T").
(c) Let T be a K-real symmetric operator, and let {e a€ A}, {f,: a €A} be
orthonormal bases of N_. The operators ¥, V, : N, —N_ defined by the
formulae

are equal (i.e., the K-real self-adjoint extensions induced by V, and V, are
equal) if and only if {e,, fz) is real for all a, 8 € A.

8.7. Let T be a symmetric K-real operator with defect (1, 1). Then every self-
adjoint extension of T is also K-real.
Hint: cf. Theorem 8.15.

8.3 Spectra of self-adjoint extensions of
a symmetric operator

In this section we study what can be said about the spectra of the
self-adjoint extensions of a given symmetric operator (with equal defect
indices).
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In what follows T will always be a closed symmetric operator. Let us set
n(T,A\)=dim NA—T). If A is an eigenvalue of T, then n(T, A) 1s the
multiplicity of A. If A is not an eigenvalue, then n(T, A)=0.

Theorem 8.16. If T' is an m-dimensional extension of T, then
dim(NA—-T)ONA-T)) < m.

If, in addition, n(T, A) < o0, then n(T', \)— n(T, \) <m.

PrOOF. It is obvious that N(A — T') C N(A — T”). The formula

(NA—-T)YONA-T))n D(T) = {0}
implies
(NA—T)SNA—T))+ D(T) cD(T).
Therefore,
dim(NQA — T)©O N — T)) < dim D(T")/D(T) = m.

If n(T, A) < oo, then the second assertion follows from this. ]

Let H,=N(z— T)* for every z €[K. The operator T obviously maps
N(z — T) into itself. We also have T(H,N D(T))C H,, since for all f&
H,ND(T) and gEN(z—T)

(g Tf) =<(Tg,f) =28 f) =0,

i.e., Tf € N(z — T)* = H,. Consequently, H, is a reducing subspace of T.
We denote by T, the restriction of T to H,, i.e.,

D(T,) =H,NnD(T) and T, f= Tf for feD(T,).

It is obvious that z — T, is injective (as we have excluded exactly the null
space). Being a restriction of a symmetric operator, 7, is Hermitian. D(7)
is dense in H,, since any f € H, that is orthogonal to I[XT,) 1s also
orthogonal to D(T)= D(T,)+ N(z — T). Therefore, T, is a symmetric oper-
ator on H,. The operator T, is closed.

In the following we call S(T) = K\ I(T) the spectral kernel of T. The set

SAT) = {zE[K : (z—T,)”" is unbounded or n(T, z)=oo}

is called the essential spectral kernel of T.

Theorem 8.17. Let T be a closed symmeiric operator.

(@) We have S,(T)cC S(T)cCR and S(T)cC o(T).

(b) If T’ is a closed symmetric extension of T, then S(T)cC S(T') and
S.T)cC S(T").

(c) If T’ is a finite-dimensional symmetric extension of T, then S,(T')
= S,(T).

(d) If T is self-adjoint, then S(T)=o(T) and S,(T)=0,(T).
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PRrROOF.
(a) If A€ S,(T), then dim NA— T) =00 or (A— TA) lis unbounded. It is

clear that in both cases A does not lie in I(T), i.e., A € §( T) It is also
evident that S(7)CR, since I(7T) contains the upper and lower
half-planes. (A — T') 1s not continuously invertible for A € S(T); there-
fore, S(T)C o(T).

(b) The inclusion I'(T")C I(T) is evident because of the definition of

(©)

I'(T). Hence, S(T)c S(T"’). We show that S,(T) c S,(T’). To this end,
let A€ S,(T'). If n(T’, \)= o0, then A € S,(T’). Consequently, we can
assume without loss of generality that n(7, A) <n(7’, A) < o0, i.e., that
(A— T,)~ ! is unbounded. Then there exists a sequence (f,) in D(T,) for
which || f,||=1 and (A — T,)f,—0. The sequence (f,) contains no con-
vergent subsequence, since f, —f would imply || f||=1 and T,f, —M,
1e., f € D(T,) (as T, 1s closed) and (A — 7,)f=0; this would contradict
the injectivity of A— 7,. Let' P now denote the orthogonal projection
onto the finite-dimensional subspace N(A — T"), and let g, = (I — P)f,.
Since P is compact, there exist a subsequence ( f,,k) of (f)and an he H
for which Pf, —h. The sequence (g, ) with g, =(/— P)f, is therefore
not convergent, and

(A= TY)g, = A—T")f, — (A= T")Pf, = (A= T)f, —0.

Hence, A\ — 73) ! is unbounded, and thus A € S,(T").

It is sufficient to prove that S,(7')cC S,(T), since we already have
S.(T)C S,(T’). Assume that A& S,(T). Then we have to prove that
A& S,(T"). 1t follows from n(T, A) < oo by Theorem 8.16 that n(T’, A)
<n(T,A\)+ m < co. The operator A\— T;,) " is continuous and closed;
therefore, RAA— T)=RA— T,)=D((A— T;) ") is closed. Since T" is a
finite-dimensional extension of T, there are finitely many elements
fi» -+ ., fy such that

RA—T) =R\—T)+L{f, ..., 5}

Therefore, DA — T3) " '= R\ — T})=R(\— T’) is closed by Theorem
34, and thus the closed operator (A\— T3})~! is continuous. Hence,
ANES(T).

(d) The equality S(T)=o(T) follows from the characterization of the

spectral points of a self-adjoint operator given in Theorem 5.24. We
show that S,(T)=o0,(T). Let A€ S,(T). If n(T, A\)= o0, then A€ 0,(T).
If A\— T,)~'is not continuous, then we show that A is an accumulation
point of the spectrum of 7. If this were not the case, then there would
be an € >0 for which (A — €, A+ €)N o(T) C {A}, and with the spectral
family £ of T we would then have

IA=TIIP = IA=T)f P = [ A= dIEDS? > )2
[t—A| >¢
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for all f€ NA—T)" N D(T)=R(E({A\}))* N D(T), which contradicts
the discontinuity of (A — 7,)'. Hence we have A € (T in this case,
also, and thus S,(T') C 0,(T).

Assume that A€ o,(7T). If A is an eigenvalue of infinite multiplicity,
then A€ S,(T). If A is an accumulation point of o(T), then there is a
sequence (f,) for which

fe R(E(A +%)— EQ)+ E(A—)— E(A—%)) A= 1.

We have f, € REE(A))" N D(T)=H, N D(T) and (A — T,)f, =
(A — T)f,—0; consequently, (A\— T,)" ' is not continuous, so that A €
Se(T). O

Theorem 8.18. Let T be a closed symmetric operator on a complex Hilbert
space with equal finite defect indices. Then all self-adjoint extensions of T
have the same essential spectrum. If some self-adjoint extension of T has a
pure discrete spectrum, then all self-adjoint extensions of T do, too.

PROOF. The first assertion immediately follows from Theorem 8.17(c) and
(d). The second assertion follows from the fact that the spectrum is discrete
if and only if the essential spectrum is empty. |

Theorem 8.19. Let T be a closed symmetric operator on a complex Hilbert
space with equal finite defect indices (m, m) and assume that

IA=T)1 > cllfll forall feDT)

with some A ER and ¢ > 0. Then every self-adjoint extension T’ of T has the
Jollowing property: o(T"YN(A—c, A+ ¢) contains only isolated eigenvalues
with total multiplicity < m.

PROOF. By the first proposition after Theorem 7.24 we only have to prove
that dim R(E(A+c—)— E(A—c)) <m for the spectral family FE of T".
Assume that dim R(E(A + ¢ —)— E(A — ¢)) >m. Since

dim D(T")/D(T) = m and R(EA+c—)—EMA—c)) cD(T),

there exists an f€ R(EAA+c—)— EA—c))N D(T), f+#0. For this f we
have

1/2
Al < Ia=={ [ P aEoe) <.

A—t|<c

which 1s a contradiction. ]

Corollary 1. Let T be a closed symmetric operator on a complex Hilbert
space with finite defect indices (m, m), and let T, and T, be self-adjoint
extensions of T. If o(T))N(a, b)y=, then o(T,)N (a, b) consists of only
isolated eigenvalues of total multiplicity <m.
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PROOF. If —o0o <a <b < o0, then T satisfies the assumptions of Theorem
8.19 with A=(a+ b)/2 and ¢ = (b — a) /2, since for all f € D(T)

=T = IA=T) P = [ A= P AIEDOSP > S
A=t >c
where E, is the spectral family of 7. The assertion therefore follows by
taking T'=T,. If (a, b) is unbounded, then Theorem 8.19 can be applied
to every bounded subinterval (a’, ") C (a, b). O

Corollary 2. If T is a closed symmetric operator on a complex Hilbert space,
bounded from below with lower bound y and finite defect indices (m, m), and
T’ is a self-adjoint extension of T, then o(T")N(— o0, Y) consists of only
isolated eigenvalues with total multiplicity <m.

PROOF. Theorem 8.19 can be applied with any A <y and ¢ =y —A, since

A= > <L A(T=NHUA7 = (r=NIif
for all f € D(T), f+#0. 0O

EXERCISE

8.8. Let T be a closed symmetric operator with equal finite defect indices (m, m),
and let T, and T, be self-adjoint extensions of T with spectral families E, and
E2. Then

dim R(E,(b—)— Ex(a)) < m+ dim R(E(b—)— E,(a)).
Hint: Use Exercise 7.37.

8.4 Second order ordinary differential operators

In this section we would like to apply the results of Sections 8.1 to 8.3 to
second order ordinary differential operators. This way we obtain part of
the theory of Sturm-Lioville operators developed by Weyl, Titchmarsh,
and Kodaira. For further results and examples we refer the reader to
Hellwig [15] and Jérgens- Rellich [20].

Let (a, b) be a bounded or unbounded interval in R, and let r : (a, b)—
R be a measurable and almost everywhere positive locally integrable
function (i.e., let it be integrable over every compact subinterval of (a, b)).
In the following we consider the Hilbert space L,(a, b, r). This is the space
of (equivalence classes of) measurable functions f defined on (a, b) for
which [%| f(x)|*r(x) dx < co. The scalar product on Ly(a, b, r) is

gy = f *f(x)*g(x)r(x) dx.

We denote the corresponding norm by || . ||. The formula U, : Ly(a, b, r)



248 8 Self-adjoint extensions of symmetric operators

—Ly(a, b), U.f=r'"?f defines an isomorphism of L,(a, b, r) onto L,(a, b);
this shows, in particular, that L,(a, b, r) is a Hilbert space.
First we consider differential forms L of the type

l IAY4 : 4 : ’
Lf = ~ (= (oY +isf +i(sf) +af), (8:3)
where the coefficients p, g, r, s satisfy the following assumptions:

8.9 (@) p, q, r, and s are real-valued continuous functions defined on

(a, b); moreover, p and s are continuously differentiable.
(b) p(x)>0 and r(x) >0 for all x € (a, b).

L is said to be regular at a if a> — 0 and the coefficients p, g, r and s
can be continuously extended to [a, b) with p(a) > 0 and r(a) >0. Regular-
ity at b (b <o) can be defined in a corresponding way. L is said to be
regular if L is regular at a and b. L is said to be singular at a (singular at b,
singular) if L is not regular at a (at b, at a or b).

We now define operators on L,(a, b, r) with the aid of a differential
form L such as the one given by (8.8). The maximal operator T induced by
L is defined by the formulae

D(T) = {f€Ly(a, b, r): fis continuously differentiable,

f’ is absolutely continuous on (a, b), and Lf € L,(a, b, r)}2
and
Tf = Lf for feD(T).

The minimal operator T, induced by L is defined by the formulae

D(T,) = { fED(T): the support of f is compact and contained in (a, b))},
and
T,f = Tf for fe& D(T,).

Theorem 8.20. Let L be as in (8.8). The operator T, is symmetric. If s =0,
then T, has equal defect indices, i.e., T, has self-adjoint extensions.

ProoF. The Hermitian character of T, follows by integration by parts.
D(T,) 1s dense, because Cg°(a, b) C D(T,). Therefore, T, is symmetric. If
s =0, then T, 1s K-real for the natural conjugation on L,(a, b, r) (Kf=f*).
The assertion follows from this by Theorem 8.9. ]

If z€C and g : (a, b)—-C is a locally integrable function, then we say
that f : (a, b)—C is a solution of the equation (L — z)f= g if fis continu-
ously differentiable, f' is absolutely continuous, and (L — 2)f(x)= g(x)

2 Since f’ is absolutely continuous, pf’ is also absolutely continuous. Let (pf’)y be the
derivative of pf’ in the sense of Appendix AS.
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almost everywhere in (a, b). Every solution f of the homogeneous equation
(L —2)f=0 is obviously twice continuously differentiable, since (pf’) is
continuous in this case.

The solutions of the homogeneous equation (L —z)f=0 constitute a
two-dimensional (complex) vector space.’> Two solutions u,, u, constitute a
fundamental system (i.e., they are linearly independent) if the modified
Wronskian determinant

) (x)  uy(x)
u(x)  uy(x)

does not vanish for some (and then for all) x € (a, b).

If g : (a, b)—C is locally integrable and u,, u, is a fundamental system
for the equation (L — z)u =0, then the solutions 4 of the equation (L — z)A
= g are given by the formula

h(x) = eyu(x) + c(x) + (%) [ Wy, 5, 9) ™ (08 (1)r() dy

~u(x) [ Wy, u9) "y (3)2(2) () dy, (8.10)

W(u, uy, x) = p(x) det( ) = p(x)(u,(x)u5(x) — uj(x)uy(x))

where ¢ €(a, b) and ¢, c, € C.
For continuously differentiable functions f, g : (a, b))—>C we define

[/ &], = p(x)(f(x)*g(x) = f(x)*g'(x)) + 2is(x)f(x)*g(x)
for x €(a, b). If, in addition, f' and g’ are absolutely continuous, then
U Le(x) = (14())*8(0)) (x) dx =[ f, 8], — [ £], (8.1D)
for [a, B]C(a, b). It follows from this that for f, g& D(T) the limits

[/, gl,=lim,_,,.[f g]. and [f, g],=lim,_,_[f, g], exist. We have
£, Tg> —<Tf.g>=[fg],—[fg], foral f geD(T). (8.12)

Theorem 8.21. Let L, o(a, b, r) be the subspace of those functions in
Ly(a, b, r) that vanish almost everywhere near a and b. Then

R(T,) = {k Ly ofa br): [ *u(x)*k(x)r(x) dx =0

a

for every solution u of the equation Lu=0}.

PrOOF. We denote the subspace on the right hand side by R. For f € D(T,)
and for every solution u of the equation Lu =0 we obtain via integration

3 Concerning the results mentioned here about ordinary differential equations we refer to the
textbooks on this subject, for example, Knobloch-Kappel [23], Chapter 1.
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by parts that
fabu(x)*(Tof)(X)r(x) dx = j;b(Lu)(x)*f(x)r(x) dx = 0.

Therefore, R(T,) C R. Now let kK € R, and let [a, 8] be a compact subinter-
val of (a, b) with the property that k& vanishes outside [a, 8]. For ¢ €(a, a)
and ¢, = ¢, =0 let h be the solution of the equation Lk = k given by (8.10)
for z=0. Then A’ is absolutely continuous, and A(x) =0 for x €(a, a). For
every solution u of the equation Lu =0 and for every x, E(a, a), x €E(B, b)

[ k], =[w k], —[u R],
= [ {u(»)* k() = (Lu(y))*h(»)} (») dy = 0.
X0
As this holds for every solution u of the equation Lu =0, it follows that

h(x)=0 for all x (B, b) (if we choose the solution u for which u(x)=0
and ©'(x) =1). Therefore, h € D(T,) and Tyh = k. O

Theorem 8.22. We have T§ = T. The operator T, is essentially self-adjoint if
and only if T is symmetric. Then Ty=T.

PROOF. Integration by parts shows that T, and T are formal adjoints of
each other. To prove that T§ = T, it remains to prove that D(Tg) c D(T).
Let f € D(T¥). Then g = T¢f is locally integrable. Let 4 be a solution of the
equation Lh=g. Then

fab(f(x) — h(x))*(Tyk)(x)r(x) dy
= fa b(( TEf)(x) = (Lh)(x))*k(x)r(x) dx = 0
for all k€ D(T,). Hence, N(F) D R(T,) for the functional
Filooab,) > € 1o [7(J) = h(x)*1(x)r(x) dx.

Consequently, by Theorem 8.21 and Theorem 4.1 we have F=c F, + c,F,
with appropriate ¢, ¢, €C and

b
F @ L ola, b, r) - C, 1+—>f u(x)*l(x)r(x) dx for j=1,2,
a
where u,, u, is a fundamental system of the differential equation Lu=0.
This implies (compare with the proof of Theorem 6.29) that
f(x) = h(x) = c,u,(x) + c,uy(x) almost everywhere in (a, b).

Hence, f is a solution of the equation Lf=g. Since f € L,(a, b, r), it follows
that f € D(T'). The rest follows from Theorem 5.20. O
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Theorem 8.23. The defect index v, =y, (Ty) (vy_=7v_(Ty)) is equal to the
number of linearly independent solutions of the equation (L + i)u
=0 (L—1)u=0) that lie in Ly(a, b, r). If L is regular, then the defect
indices of T, are equal to (2, 2).

PROOF. We have R(i— Tyt =N(Gi+T) and R(—i— Tyt =N(—i+T).
Furthermore, N(xi1+ T) is equal to the set of those solutions of the
equation (L=*i)u=0 that lie in L,(a, b, r). If L is regular, then every
solution of the equation (L*+1)u=0 1s in L,(a, b, r). Consequently,
dim N(£1+T)=2. 0

Hence for the defect indices y, and y_ of T, there are only three
possible values: 0, 1, and 2. If the defect indices are (0, 0), then T,= T is
self-adjoint. If the defect indices are equal and different from zero, then
(Y4, 7-)=( v)=(, 1) or (2, 2). Consequently, by Theorem 8.13(b) every
v-dimensional symmetric extension of fo is self-adjoint.

Theorem 8.18 and Corollary 2 to Theorem 8.19 immediately imply

Theorem 8.24. Let L be a differential form such as in (8.8). All self-adjoint
extensions of T, have the same essential spectrum. If T, is semibounded, then
all self-adjoint extensions of T,y are semibounded.

Theorem 8.25. Let L be a regular differential form of the kind (8.8). Then we
have the following:

(a) For every f &€ D(T) the functions f and f' are continuously extendible to
[a, b). For f, g € D(T) we have

[f’ g]x =
PO (x)°8(x) — f(x)°8/ () + 2isf(x)*g(x) for all x €[, b]
(b) We have D(Ty)={f € D(T) : fla)=f'(a)=f(b)=f'(b) = 0}.

PRrROOF.

(a) If fe D(T) and g= Tf, then f can be represented in the form (8.10)
with a fundamental system u,, u, of the equation Lu=0. As the
functions #; and u are continuously extendible to [a, b], the same
follows also for f from this representation. The rest can be obtained
from the definitions of [., .], and [., .],.

(b) There exists a ¢ € D(T) such that ¢(a) =0, ¢’(a) =1 and ¢(x)=0 for x
near b (it is enough to choose ¢ twice continuously differentiable).
Then for every f € D( TO) it follows from part (a) that

0= <(P, 7_;of> —<T(P,f> =[(paf]b —[(p’f]a = —P(a)f(a)a

and thus f(a) = 0. If we now choose ¢ such that ¢(a)=1 and ¢’(a) =0,
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then we find that f'(a) =0, too. We can show similarly that f(b) = f'(b)
=0. Since T, C T, we therefore obtain that

D(T,) CDy = {f€D(T) : f(a)=f(a)=f(b)=f(b)=0}.

Let f0~ be defined by the formulae D(T,)=D, and Tof = Tf for
f € D(T,). Then by part (a)

fs Tgy —<{Tof. 8> =[fg],~[fg], =0

for all f € D(T}) and g€ I(T), i.e, Ty and T are formal adjoints of
each other. Hence, T, C T* = T, and thus Dy C D(T,). Od

We perform the construction of self-adjoint extensions only for the case
s =0. Hence, in the following we only consider Sturm-Liouville differential
forms

1f = (= (/Y +af). (8.13)

where p, ¢, and r satisfy the assumptions (8.9(a)) and (8.9(b)). In this case
T, always possesses self-adjoint extensions by Theorem 8.20.

We have (d/dx)W(u,, u,, x)=0 for any two solutions u,, u, of the
equation (L —z)u=0, as can be easily verified. Therefore, W(u,, u,, x) is
constant in (a, b). We briefly write W(u,, u,) for this value.

For any two continuously differentiable functions f, g : (¢, b)—C and
x €(a, b) we have now

[/ g], = p()(f(x)*g(x) — f(x)*g'(x)) = ~ W(f* g x). (8.14)

Corresponding assertions hold in the regular case for x=a and x=b,
respectively.

Theorem 8.26. Let L be a regular Sturm-Liouville differential form as in
(8.13).

(a) The formulae

f(a) cos a—f'(a) sina=0

f(b) cos B— f'(b) sin B=0 |’

T, pf=Tf for fe D(Ta,ﬂ)

D(T, ;) - {feomz

define a self-adjoint extension of T, for arbitrary a, 8 €[0, 7).

4 The boundary conditions occurring here are called “separated boundary conditions”, since
every boundary condition affects only one boundary point. There are also “mixed boundary
conditions” that define self-adjoint extensions of T, (cf. Exercises 8.10 and 8.11).
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(b) For every z € p(T, p) the resolvent R, =(z — ‘,‘,B)'l has the form

Rg(x) = Wi, 1) {(x) [ a()a()r(r) dy
+1,(5) [ ()8 0)r() dy .

where u, and w, are non-trivial solutions of the equation (L — z)u =0 that
satisfy the boundary condition at a and b, respectively (hence, for
example, u,(a) = sin a, u,(a) = cos a, u,(b) =sin B, and u,(b) = cos B).

(c) The operators T,  have pure discrete spectrum. Every eigenvalue is
simple.

PROOF.

(a) We can verify easily that T, , is symmetric. Hence, it is sufficient to
show that T, , is an (at least) two-dimensional extension of T To this
end, let us choose ¢, and ¢, from D(T) in such a way that we have

@,(a) =sin a, g,(a)=cos a, @,(x)=0 near b,

@, (b) =sin B, @, (b)=cos B, ¢,(x)=0 near a.
These elements obviously lie in D(T, ;) and are linearly independent
modulo D( TO) i.e., no non-trivial hnear combination lies in D( 7).

(b) The functions u, and u, are linearly independent, since otherwise u,
would fulfill the boundary conditions at a and b, and z would be an
eigenvalue of T, 5 which would contradict the relation z €p(T, p).
Therefore, W(u,, u,)*0. Let K be the integral operator given in the

theorem. If we define U, as at the beginning of this section, then
U KU, 'is an integral operator on L,(a, b) with kernel

W(u, ub)—1rl/z(x)ub(x)ua(y)r'/z(y) for x>y,
W, uy) "' 2(x)u,(x)uy(p)r/H(y) for x<p.

The function k& obviously belongs to L,[(a, b) X(a, b)], 1e., K is a
Hilbert-Schmidt operator. Hence, K belongs to B(Ly(a, b, r)). For all
g € Ly(a, b, r) we have

Kg(x) = e, () + Wty 1) ™ {1(0) [ ,(2)2()r(») dy
1) [ 1(2)e()r(y) (8.15)

with ¢ = W(u,, u,)" " [5u,(y)g(y)r(y) dy. Therefore, by (8.10) Kg is a
solution of the equation (z — L)u = g. We can infer from (8.15) that for
g €L, o(a, b, r) the function Kg is a multiple of u, in a neighborhood
of a and a multiple of u, in a neighborhood of 4. Consequently,
Kg € D(T, g). The operator K therefore coincides with R, on
L, o(a, b, r). Since L, ((a, b, r) is dense and since the operators K and
R, are continuous, it follows that K= R,.

k=]
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(¢) R, 1s a normal and injective Hilbert-Schmidt operator (cf. the proof of
part (b)). Consequently, there exist an orthonormal basis { f, : n € N}
in Ly(a, b, r) and a null-sequence (z,) for which z,#0 (n €N) and

Rf= 2 z{f,f>f, forall f€& Lya,b,r).

neN

It follows from this that

T, of = 2 (z2=27 )£, />f, forall feD(T, z).
neN
Consequently, o(7T, g)={z— z; ' :neN). As every solution of the
equation (A— T, z)u=0 is determined by the boundary condition at
one boundary point up to a constant factor, every eigenvalue is simple.
Hence, o(T,, z) = 0,(T, p). I

Let us now turn to the singular case (more precisely, the not necessarily
regular case).

Theorem 8.27 (The Weyl alternative). Let L be a Sturm- Liouville differen-
tial form defined on (a, b), and let ¢ €(a, b). Either every solution u of the
equation (L —z)u=0 lies in Ly(c, b, r) for every z&€C or for every z€C
there exists at least one solution u of the equation (L — z)u =0 for which
u Ly(c, b, r). In the second case, for every z € C\R there exists (up to a
factor) exactly one solution u of the equation (L — z)u=0 for which u&
Ly(c, b, r).

According to H. Weyl we say in the first case that we have the /imit
circle case (LCC) at b; 1n the second case we say that we have the /imit
point case (LPC) at b. The terminology can be explained from the original
construction of Weyl (cf. H. Weyl [56]; cf. also Hellwig [15] and Jorgens-
Rellich [20]). A corresponding theorem holds for the boundary point a.
The limit circle case at ¢ and limit point case at a are defined similarly.

PrOOF. In order to prove the alternative, it i1s sufficient to show the
following: If there exists a z, € C such that u € Ly(c, b, r) for every solution
u of the equation (L — z,)u =0, then this holds for all z€ C. Let v}, v, be a
fundamental system of the equation (L — zy)v=0. (We can assume, with-
out loss of generality, that W(v,, v,)=1.) We have (L —zp)u=(z — zp)u
for every solution u of the equation (L — z)u=0. It follows from this by
(8.10) that

u(x) = c,0)(x) + c,05(x)

=z [ “(04(x)05(») — 02(x) 0,(») Y u(¥)r(¥) .
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With v=|o||+ |0y}, c=max{|c,|, |c,|} and M =2|z— zo|*[20(y)’r(y) dy it
follows that

(P < 26%(x)" + 21z = z2fo(x) [ o(r)’r(¥) dy [ lu(x)Pr(y) dy

< 2¢%(x)” + Mo(x)* [ ju(y)Pr() dy.
As v € Ly(c, b, r), there exists a d €(c, b) such that
b
f o(x)2r(x) dx < 2M)7".
d

Consequently, for all x; €(d, b)
fnlu(x)lzr(x) dx < 2czlev(x)2r(x) dx
d d
M [ o(x) “lu()r(y) dy) d
M [ o) { [P () dy | dx

b X
< 2¢? 2 dx +2 2 dy,
fdv(x) r(x) dx 2fc lu(¥)Ir(y) dy
and thus

Xy 5 5 b D) d 2
fd lu(x)|r(x) dx < 4c fd o(x) r(x) dx +fc lu(y)|r(y) dy.

This implies that u € Ly(d, b, r), and thus u € L,(c, b, r), as well, since u is
continuous on (4, b).

Let us now assume that we have the limit point case at b, 1.e., that for
every z € C there exists (up to a constant factor) at most one solution u of
the equation (L — z)u =0 such that u € Ly(c, b, r). It remains to prove that
for every z € C\R there exists at least one solution with this property. For
this we consider the differential form L on the interval (¢, ). The form L
is obviously regular at ¢. Let T, and T be the minimal and the maximal
operators on L,(c, b, r) induced by L. It is sufficient to show that 7T is not
symmetric, since this implies that T, has positive defect indices, i.e., that
N(z — T)# {0} for every z€ C\R. In order to prove this we use two twice
continuously differentiable functions ¢,, ¢, : [c, b)—C for which

¢i(¢) = 1, ¢i(c) =0, ¢(x) =0 near b,
po(c) = 0, @i(c) = 1, @y(x) =0 near b,
Then ¢,, ¢, € D(T) and
(o, Tpy) =Ty, @) = "‘[‘Pl’ (Pz]c = p(c) # 0,

i.e., T is not symmetric. ]

Auxiliary theorem 8.28. Let L be a Sturm-Liouville differential form on
(a, b).
@) [, gl,=0 for f € D(T,) and g € D(T).
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(b) Let us have the limit circle case at a. If u is a solution of the equation
(L —2z2)u=0 for some z €C, the function u, is twice continuously dif-
ferentiable on (a, b), and we have uy(x)= u(x) near a and uy(x)=0 near
b, then uy € D(T)\ D(T,).

(c) If we have the limit point case at a, then [f, g],=0 for all f, g € D(T).

Corresponding assertions hold for b.

PROOF.
(a) Assume f &€ D( 7—"_0) and g & D(T). Then there is a g, € D(T) such that
8o(x) = g(x) near a and gy(x)=0 near b (proof!). Therefore,

(/8] =[f 8], = = {<f Teo) —<Tof, 80>} = 0.

(b) u, obviously lies in D(T). If v is a further solution of the equation
(L — z)u =0 such that W(u, v)#0, and v, is defined analogously to u,,
then we also have vf € D(T) and

g, 031 =[u,v*] = — W(u*, v*) = — W(u, v)* #0.
0 "0 Jq a

Thus, u, & D( 7_"0) by part (a).

(¢> We may assume without loss of generality that L is regular at b
(otherwise we consider L on (a, ¢) with some ¢ €(a, b)). Then the
defect indices of T, are (1, 1) by Theorems 8.27 and 8.23. Let u,, u, be
linearly independent solutions of the equation Lu =0, and let v,, v, be
twice continuously differentiable functions for which v;(x) = u(x) near
b and v;(x)=0 near a. By part (b) the elements v,, v, belong to D(T)
and are linearly independent modulo D(Tj). Consequently, D(T)=
D(T,) + L{v,, v,}. This implies that for arbitrary f, g € D(T) there are
elements f,, g, € D(-i:o) that coincide with f and g, respectively, in a
neighborhood of a. It follows by part (a) that [ f, g],=[/fo &), =0. [

We are now in a position to give self-adjoint extensions of T, in the
singular case, as well.

Theorem 8.29. Let L be a Sturm- Liouville differential form (8.13). Moreover,
let \ER, and let v and w be real solutions of the equation (L —N)u =0.
(a) The operator T, ,, defined by the formulae

[v,f]a=0 if we have the LCC at a

D(T = eD(T): ’
(T, ) {f (T) [w, f],=0 if we have the LCC at b

T, f=Tf for feDT,,)

define a self-adjoint extension of T,.

3 If we have the limit point case at @ and/or b, then the index v and /or w has no significance.
Cf. also footnote 4.
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(b) For z € C\R the resolvent R,=(z—T, )" " is of the form
R.g(x) = Wl )" {1,(x) [ w,(18()r(y) dy
a

+i,(2) [ 14,(2)g()r(y) dy |

where u, and u, are the solutions of the equation (L — z)u =0, uniquely
determined up to a factor by the conditions

[v, u,] =0 if we have the LCC at a, respectively

u, € Ly(a, c, r) if we have the LPC at a,
[w, ub] , = 0 if we have the LCC at b, respectively

u, € Ly(c, b, r) if we have the LPC at b.

(¢) If we have the limit circle case at both a and b, then T, , has a pure
discrete spectrum.
(d) All eigenvalues of T, ,, are simple.

PROOF.
(a) If we have the limit point case at both boundary points, then

{f, Tg) —<Tf.g) =[fg],—[fg], =0 foral f g&D(T)

by Auxiliary theorem 8.28. Consequently, T is symmetric and thus
self-adjoint by Theorem 8.22. This is the assertion in this case.

If we have the limit circle case at a and the limit point case at b, then
the defect indices are (1, 1), as immediately follows from Theorem 8.27
(the Weyl alternative). If v, is a twice continuously differentiable
function for which vy(x)=ov(x) near a and vy(x)=0 near b, then
vy € D(T)\ D(T,) by Auxiliary theorem 8.28(b). Moreover, we obvi-
ously have D(T,) + L{vo} C D(T, ,). If u is a solution of the equation
(L—MA)u=0 that is linearly independent of v and if u, is defined
analogously to v,, then uy & D(T, , ). Therefore T, , is a proper restric-
tion of 7, and thus D(T, ,)=D(Ty)+ L{v,} (since T is a two-dimen-
sional extension of Tj). With the aid of this representation of D(T, ,,)
we can immediately see that 7,  is symmetric. Hence, T, , is a
one-dimensional symmetric extension of 7";, and thus it 1s self-adjoint.

If we have the limit circle case at both boundary points, then the
defect indices are (2, 2). We can show in an entirely analogous way as
in the case just treated that T, , is a two-dimensional symmetric
extension of T,. Consequently, T, ,, is self-adjoint.
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(b) If we have the limit point case at a (respectively at b), then u,
(respectively u,) is determined up to a factor. If we have the limit circle
case at a and u,, u, is a fundamental system of the equation (L — z)u =
0, then because of the equality [v, cu, + du,], = c[v, u,}, + d[v, u,},,
there is at least one non-trivial linear combination u, = cu, + du, for
which [v, 4], = 0. On the other hand, we do not have [v, u,], =[v, u,],
= (), since otherwise there would exist at least one non-trivial solution
of the equation (7, ,, — z)f=0, which contradicts the relation z € C\R
Co(T, ,).- We can handle the boundary point b in a similar way.

Let K, be the restriction, to L, o(a, b, r), of the integral operator
given in the formulation of our theorem. As in Theorem 8.26(b), we
can show that K, coincides with the restriction of R, to L, o(a, b, r). If
K is the maximal integral operator defined by the formula in our
theorem, then K is a closed operator (as U KU, ~' is a Carleman
operator on Ly(a, b)). Since K|, is continuous and densely defined, K is
also continuous, and K = R,.

(c¢) This can be proved in exactly the same way as in Theorem 8.26(c),
because u,, u, € Ly(a, b, r).

(d) If we have the limit point case at at least one boundary point, then the
assertion is clear, since the space of solutions of the equation (A — T)u
=0 1s at most one-dimensional (Theorem 8.27). Let us now assume
that we have the limit circle case at both boundary points. Assume that
A is an eigenvalue of multiplicity 2 (the multiplicity cannot be greater),
and let u;, u, be linearly independent eigenelements. Let «, , and u, ,
be twice continuously differentiable functions for which

U, (x) = u(x) near a,u; (x) =0 near b,
u, ,(x) = 0 near a, u; ,(x) = u(x) near b

for j=1, 2. These are four elements from D(7, ,) that are linearly
independent modulo D(T,). This is a contradiction to

dim D(T, ,,)/ D(T) =2. O

EXERCISES

8.9. Let L be a regular differential form of the form (8.8). The formulae D(T))=
{(feDT): f(a)=f(b)=0} and T, f= Tf for f € D(T)) define a self-adjoint
extension of T,

8.10. Let Lf (x)=f"(x) + q(x) for x €(0, 1). Assume that g is continuously extend-
ible to [0, 1].
(a) The operator Ty defined by the formulae
D(T;) = {f€D(T) : f(0)=3f (1), f(0)=f"(D)},
Tﬂf = Tf for f e D( Tﬂ)
is a self-adjoint extension of T, for every 4 €C such that |#|=1 (the
boundary conditions are mixed).
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(b) Prove, with the aid of (a) (for the case g =0) that the eigenvalues are in
general not simple in the case of mixed boundary conditions.

8.11. Let L be a Sturm-Liouville differential form with limit circle case at a and b.
(a) If A is real, and v, w are real linearly independent solutions of the
equation (L — y)u=0, then the formulae D(T, ,)= D(To) + L{v, w},
To, wyf=Tf for fE€ (T, ,, define a self-adjoint extension of T,
(b) We have D(T, .)={f€D(T): [0, fl, ~ [0, fla=[w, fl, ~ [w, fl, =0}
(these are mixed boundary conditions).

8.12. The representation of R, given in Theorem 8.29(b) also holds for z€RN
o(T,, )-

8.13. (a) Let L be a Sturm-Liouville differential form on (a, b) such that
(g(x)/r(x)) >y for x>x, If g&Ly(xq, b, r) for g(x)= f% p(s)~'ds,
then we have the limit point case at b.
Hint: Consider that solution u of the equation (L — y)u =0 for which
u(xg)= ' (xo)=1.

(b) Let L be a Sturm-Liouville differential form on (0, 1) such that p(x)=

r(x)=1 and g(x) > cx~? with ¢ > 3/4. Then we have the limit point case
at 0.

8.14. Let L be a differential form of the form (8.8) with p=1.
(a) Consider the unitary operator U defined on L,(a, b, r) by the formula

(Uf )x)=exp(—i f ¢s(#) d1) f(x). Then

IR ACRICOROIEO)

(b) T, has equal defect indices.

ULU ~'g(x) =

8.15. (a) The self-adjoint extensions of 7|, given in Theorem 8.26 and Theorem
8.29 are K-real (Kf= f*).
(b) The operators T, from Exercise 8.10 are not K-real for ¢ €R.
(c) If we have the limit point case at at least one boundary point, then
Theorem 8.29 provides all K-real self-adjoint extensions of 7. (These are
all self-adjoint extensions of 7, by Exercise 8.7.)

8.5 Analytic vectors and tensor products of
self-adjoint operators

With the aid of the results of Section 8.1 we can also prove the criterion of
Nelson for the essential self-adjointness of symmetric operators. For this
we need the notion of analytic vectors.

Let S be a symmetric operator on the Hilbert space H. Introduce the
notation C*(S)= N ,D(S"). An element f € C*(S) is called an aralytic
vector of S if there exists a #(f) > 0 such that

SILI
S LLSTl < oo for o] <u(f)

n=0 1
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Theorem 8.30. If S is a self-adjoint operator and f is an analytic vector of S,
then

z zSp __ z" n
f € D(e*s) and ef_Z",'{!"Sf
n=0

for every z €K such that |z| <t(f).
ProoF. Let E denote the spectral family of S. Then

([ jep anp@ )" =] [ e ape
=f § ndE(s)j1

§ i f_ALs" dE(s)f"

n=0
7l

o0

Z

for every M >0 and z € K such that |z] <#(f). Letting M tend to oo, we
obtain that f € D(e*S). Furthermore,

=" eraner= [ 3 Elan)y

0 pn=0

S MLV Ry

—Oon=m+1
m Zn [o o] Zn
. L gne “ _gon
’Agnw 2 n!Sf ,Eo n!Sf’

n=0

since

'fw S (n)

— O n=m+1

l lim f S (”) 2 dE(s )f!

M— o0 Mp= m+]

o0 n

z M
= i 2 [T s"dE
Ml_r’n°° n=§+1 n! f“Ms (S)f‘
o I o
< 2 I—’;lr ) s" dE(s)fl
n=m+1 o

= > 'Z' IS™|| =0 as m— c0. []

n=m+1



8.5 Analytic vectors and tensor products of self-adjoint operators 261

Theorem 8.31 (Nelson). Let T be a symmetric operator on the Hilbert space
H. Assume that the set of analytic vectors of T is dense. Then T is essentially
self-adjoint.

PROOF.

(a) First we consider the complex case. Introduce the notations A=H®H
and T=T®(~T) (i.e., D(T)=D(T)® D(T) and T(f, g)=(Tf, — Tg)
for (f, g) € D(T)) If (v4, Y-) denote the defect indices of T, then the
defect indices of T are (v4+7v_, Y&+ 7-) Therefore, T possesses
self-adjoint extensions. We can also see from the defect indices of T
that T 1s essentially self-adjoint if and only if T is essentially self-
adjoint. Hence, it is enough to prove that T is essentially self-adjoint.

The set of analytic vectors of T is dense: If f and g are analytic
vectors of T, then (f, g) is an analytic vector of 7. Consequently, it is
sufficient to show the following (where we write T instead of T): If T
is a symmetric operator with equal defect indices and a dense set of
analytic vectors, then T is essentially self-adjoint.

Let S be a self-adjoint extension of 7. If f is an analytic vector of T,
then f is also an analytic vector of S. Because the formula ||S" e"5f|| =
1e*SS™f|| = 1|S"fll = | T"f||, the element €*%f is also an analytic vector of
S for every s €R, and #(e*5f) = t(f). Then for every s €R, z € C such
that |z — 5| <#(f) and for every g € H we have by Theorem 8.30 that

f e D(ei(z—s)S) — D(eizS)
and

F(z) = (g, e*5f) = (g, &C795"5f)

§ u<g,sn qu>

n=0 I’l

Consequently, F is holomorphic in {z €C : ||Im z| <¢(f)}.
If gERG{— T)*=N(—i— T*), then (T*)"g=(—1)"g for all nEN,.
Therefore, {T"f, g> =(—1)"{f, g>. This implies for all n €N, that

F(n)(o) = <g7 (IS)nf> = <g7 (IT)nf> = (_— 1)n<g>f> = (_— l)nF(O)

Hence, for all s€R

(g "> = F(s) = e °F(0) = e (g f).

Since e is unitary, the function F is bounded. Consequently,
(g, f> =0 for every analytic vector f of T. Hence, R(i— T)* = {0}.
The equality R(—i— T)* = {0} follows similarly.

(b) Let H now be a real Hilbert space. Then the set of analytic vectors of
the complexification T is dense, namely it is equal to the complex
linear hull of the analytic vectors of T (observe that the set of analytic
vectors is a vector space). T is therefore essentially self-adjoint. Then
T is also essentially self-adjoint by Exercise 5.32(b). O

— 158
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Corollary. A closed symmetric operator T is self-adjoint if and only if the set
of analytic vectors of T is dense.

Proor. If the set of analytic vectors of T is dense, then T is essentially
self-adjoint by Theorem 8.31. As T is closed, it is self-adjoint.

Let T now be self-adjoint, and let £ denote the spectral family of T.
Then all elements of R(E(¢t)— E(—t)) are analytic vectors of T for every
t>0, since || T7f|| <t"||f|| for fER(E(t)— E(—1). As U, o R(E(!)—
E(—1)) is dense in H, the assertion follows. O

The above results enable us to prove the essential self-adjointness of
tensor products of operators. Let H, and H, be Hilbert spaces, and let us
consider the space H=H, ® H, (cf. Section 3.4). If T, and 7, are operators
on H, and H,, respectively, then we define the operator T, ® T, on H, ® H,
by the formulae

D(T,® T,) =D(T,) ® D(T>),
and

n n

ji=1 j=1
In order to prove that this is a linear operator, it is sufficient to prove that
this definition 1s independent of the representation of the elements from
D(T,)® D(T,) as linear combinations of simple tensors; the linearity then
follows directly from the definition. In order to prove this, we have to show
that Ej,,cjfj@g!. =0 implies: 2;?.=lcj T,[®T,g =Q. By (3.3). we .have
2i=16f;®g =0 if and only if this sum can be written as a finite linear
combination of elements of the form

n m n n
2 2 ajbkllbj® Ye — ( 2 aj‘!’j) ®( 2 kak)'
j=1 k=1 j=1 k=1
Then X7_,¢T,f,®T,g; is also a linear combination of elements of the
same form, and thus it is equal to zero.
In what follows we study, for two given operators T, and T, the
operators

A=T,®7T, and B=T,081L,+ 1,8 T,.
We have D(A)=D(B)= D(T,)® D(T,).

Theorem 8.32. Let H,, H,, T,, T,, A and B be as above.

(a) A is different from zero (i.e., there exists an f € D(A) such that Af#0) if
and only if T, and T, are different from zero. If A is different from zero,
then A is bounded if and only if T, and T, are bounded. Then ||A| =
174 1 T]l-

(b) If D(B)+# {0}, then B is bounded if and only if T, and T, are bounded.
Then || B|| < || T;|| + || |-
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(c) If T, and T, are densely defined, then A and B are also densely defined,
and A* D T¥Q TS and B* > T{Q L+ I,Q TF. If T, and T, are symmet-
ric, then A and B are symmetric.

PROOF.

(a) If T} and 7, are different from zero, then there are elements f, € D(T))
and f, € D(T),) for which T, f,#0 and T, f,+0. Hence A(f, ®f,)#0,
i.e., A #0. If one of the operators T, and T}, is zero, then A(f; ®f,)=
T, fi®T,f,=0 for all f, € D(T,) and f, € D(T,). Because of the equal-
ity D(A)=L{f,®f, : f,€ D(T)), f, € D(T,)}, it follows from this that
Af=0 for all f € D(A4), i.e., that 4 =0.

Assume now that 40 is bounded. Then for all f,€ D(T)), f, €
D(T,) such that || f,|]| =1/ f5|]| =1 we have

IT AT LN = 1T A® Tohll = 14/ @H)I < [I4]]. (8.16)

As T,#0, there is an f, € D(T,) such that ||f,]|=1 and T, f,#0.
Therefore, it follows that

IT AL < IT2hl7IA] forall fy € D(T)), Al = 1.

Consequently, 7, is bounded. We can prove in just the same way that
T, 1s bounded. The left side of (8.16) assumes values arbitrarily close to
I T4l 1 Toll; thus || T4|] || Tl < || 4]].

Now let T, and T, be bounded. We show that 4 is bounded and
|4]| <||T,|| || T,||. Because of the formula A =(T,® L,)({,®T,) it is
sufficient to prove that the operators 7, ® 1, and I,® T, are bounded
and | T\® L|| < ||T,|| and ||I,® T,|| < || T,||. We show the first inequal-
ity. To do this, we use the fact that according to (3.5) every element
fE€ D(T))® D(1,)=D(T,)® H, can be written in the form f=37_, f®
2 with orthonormal elements ¢,J=1,..., n For such an f we have

2

T, @) fII* = = 21 1T 4117
=

'21 T [®e
f

< TP 2 UAI17 = TP
j=1

(b) If T, and T, are bounded, then the boundedness of 7, ® I, and I, ® T,
follows as in (a). Therefore, ||B|| < ||T,||+||T,||. If T, is unbounded
and D(T)) is different from zero, then there exist a sequence (f,) from
D(T,) for which || f,||=1 and ||T,f,|| > and a g€ D(T,) for which
| glf= 1. Then

1B(£, @)l > T, f, B gl = If; ® Togll = IT\ full = I T8l > o0

as n—oo. Hence, B is unbounded. The same follows if 7, is un-
bounded and D(T)) is different from zero.
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(©)

We can easily verify that 4 and T} ® T (respectively B and T ® I, +
I,® T}) are formal adjoints of each other. This implies that A* >
TFQTy and B*O T ®1,+1,®T%. The last assertion immediately
follows from this. .

Theorem 8.33. Let T, and T, be essentially self-adjoint operators on H, and
H,, respectively. Then the operators A=T,®T, and B=T,81,+ 1, T,
are essentially self-adjoint on H= H; ® H,.

ProoFr.

(a)

First we assume that 7, and T, are self-adjoint. Then 4 and B are
symmetric according to Theorem 8.32(c). We construct total sets of
analytic vectors for 4 and B. As the linear combinations of analytic
vectors are again analytic vectors, the assertion follows from this by
Theorem 8.31.

First we consider the operator A. Let M; and M, be the sets of
analytic vectors of T? and T/, respectively. We show that all f,®f,
such that f; € M; are analytic vectors of 4. If

2 ||T2"f||<oo for j=12 and 0 <1t <xt,

then

o0

PORPLTATAY

n=0

= 3 LT @ T
n=0 """

= 3 LTI T
n=0
00 ©  4n 1/2
n n 2

< {RZO T 12 EO;;!Iszlel }
= { 2 ”'1",‘ T2"fvf1> 2 Tznfz’f2>}

n=0

- 1/2

< ||f1||‘/2uf2||'/2{ 2 AT 2 ,||T2"fz||} < o

for 0 <z <t,. Consequently, f, ®f, is an analytic vector of 4. As the M,
are dense subsets of H; (j=1, 2), the set of these analytic vectors is
total in Hl® H,.

Now we consider B. Let M, and M, now be the sets of analytic
vectors of T; and T, respectively. Assume that for f, € M, we have

2’—,|Tj'y;||<oo for j=1,2 and 0 <1< 1,
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Then
o0 tn n
2 7|I(T1®12+11®T2)f1®le!
n=0 "**
d tn < h k n—k
< ngom kgo(k)Tlfl®T2 i
oo tn n n'
< L A Tk Tn k
3 0 2 G rr | AT
- § S kT
=Y W IR R TR
o0 n—k
= kZO{ k‘ Hkalll 2 k)' l|T2n~kf2”}
= { > k—llT"fIHH ZO IIT”‘sz}
< o0

for 0 <t <1, Consequently, f, ® f, is an analytic vector of B. The set of
these analytic vectors is total in H, ® H,.

(b) Let T, and T, now be essentially self-adjoint, i.e., let T, and T, be
self-adjoint. The operators 4 and B are symmetric, and thus closable.
We can verify easily that

A=T,QT,DT,®T,,
B=T,QL+1,QT,> T,®L,+ 1, T,.

The essential self-adjointness of 4 and B now follows from part (a) of
the proof. ]

Theorem 834, Let T, and T, be self-adjoint on H, and H, with spectral
families E, and E,, respectively. Then

(i1 ®f E(1)(8,®8)) = f_ S Ef(t—9)g1> Al fy, Ex(5)82)
for the spectral family E of B=T,® I,+ I,® T, and for all f,, g, €
H, 12, 8, € Hy.

PrOOF. The formulae F,(¢) = E,(¢) ® I, and Fy(1) =1, ® E,(t), t € R define

spectral families on H= H, ® H,. We show this for F,:

(a) Because of the formulae F¥=(E,®L)*DE}f® I,=E, ® I, we have
F}=F,. It is obvious that F,(t)F,(s)f= F(s)F (O f= F(t)f for fe
Hl ® H, and ¢ <s. Due to continuity arguments (cf Theorem 8.32(a))
this holds for all f € H,&® H,. In particular, F (D= F|(2), ie., all F\(1)
are orthogonal projections.
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(b) We have F\(0)F\(s)= F,(s)F ,(t)= F,(¢) for t <s by part (a); this proves
that F, is increasing.
(c) For f=f,®f, we have

IF(t+ ) f = F()fll = I(Ey(t+ )~ E() il [fol >0 ase—0+.

This proves the right continuity of F,(¢£)f for all fe H, ® H,
(cf. Theorem 4.23(b)).

(d) For f=f,®f, we have F,(/)f=E,()f,®f,—>0 as t—~o0 and
F((t)f—f as t—o0. This implies the corresponding assertion for all
fEH,®H, (cf. Theorem 4.23(b)).

The spectral families F; and F, commute, since

F(O)Fy(s)f = E|(0)fi ® Ex(s)f, = F,(s)F\ (1) f

for all f=f,®f,. This then holds for all f € H,®H,. Consequently, the
equality

G(t+1is) = F|(1)F(s), s,tER

defines a complex spectral family on H, ® H,. We obviously have G(t +1s)
= E,(1) ® E,(s). We show that

B = G(u) = f(Rez+Im 2) dG(z),

where u is_the function defined by the formulae u : C»R, u(z)=Re z +
Im:z. As B and G(u) are self-adjoint (v is real-valued), it is enough to
prove that B C G(u). Tt will follow from this that B C G(u), and thus
B= G(u) For f=f,&f, € D(T,)® D(T,) we have

J1u@P A6 fI? < 2 [{(Re 2 +(Im 2)?} d|G(2) fI1
= 2 [Re 2 dIGEfIP+ [ m 27 ) 6() 1P

= 2{ [ 2 QEAPILE+ [ AIEL)LIPIAIR)
= 2{“ Tlf1”2||f2“2+ ||f1”2||T2f2“2} < 0.
Consequently, f € D( @(u)) and

Gu)f = f(Re z+Im z) dG(z) f = fRe z dG(z)f+fImz dG(z)f
= ([1aB )@ L+18([s dB0)1) = 7.

If weAconsider linear combinations of such elements, then it follows that
B C G(u). _
Now we can give the spectral family £ of B= G(u). We have

E(t) = G({zeC:Rez+Im:z<t}) = G(X{zEC:Rez+Imz<t})'
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E(.) is obviously a spectral family. For every f € H, &® H, we have
JEAE@D S = [(Re z+1m 2) 4| G(z) /]
Consequently, D(E(id)) = D(G(u)) = D(B). For all f € D(B)

ft dE(1)f = fu(z) dG(z)f = BY.

Hence, E'(id) = E, 1.e., E is the spectral family of B.
By Fubini’s theorem we have for all f| ® f, € H; ® H, that

IEOABRIP=[ dICEHOHI
- _Z [ NG LI dIEs) AP
- f_ww||E1(t =) A 4[| Ex(s) ]I

The assertion follows from this by means of the polarization identity.  []

Theorem 8.35. Let T, and T, be self-adjoint operators on complex Hilbert
spaces, and let B=T,Q81,+ [,® T,. Then

exp(itB ) = exp(itT,) @ exp(itT,).

Proor. For all simple tensors f ® g such that f € D(T)) and g€ D(T,) we
have f® g € D(B), and thus

d = .= o
5 [exp(ltB )(f®g)] = 1B exp(itB )(f ® g).
Hence, u(r) =exp(itB)(f ® g) is a solution of the initial value problem
d =
-a;u(t) = 1Bu(t), u(0) = f®g.

On the other hand, it is easy to prove that
u(r) = [exp(itT)) f] ® g + f @[ exp(itT,)g]

is also a solution of this initial value problem. The solution is uniquely
determined by the Corollary to Theorem 7.38. This proves the assertion. []

EXERCISES

8.16. Let T be a self-adjoint multiplication operator on Ly(R, p) (respectively on
@ ,calR, p,)). Give a dense set of analytic vectors of T.

8.17. There are essentially self-adjoint operators whose sets of analytic vectors are
not dense.
Hint: Let 7 be defined by the equalities D(7)= C§°(R), Tf=(1/1) f' + qf,
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8.18.

8.19.

8.20.

8.21.

8.22.
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where ¢(x) =0 for x <0, and g(x) =1 for x > 0. If f is an analytic vector of T,
then f(0)=0. If the set of analytic vectors of T were dense, then the same
would hold for the operator T, C T with D(Ty) = { f € Cs°(R) : f(0) =0}; the
defect indices of T, are equal to (1, 1).

Let T, and T, be the operators of multiplication by the variables on

Dacala(R, p,) and on B4 5Ly(R, op), respectively.

(@) Ty ® T, is the operator of multiplication by x;x, on @,ca gesl(R?
Pa X 0'.3)

(b) /®IL,+1,®T, is the operator of multiplication by x,+x, on
D,ca peslR, p, X 0p).

(c) Prove Theorem 8.34 with the aid of (b) and the spectral representation
theorem.

(a) If T\® T, is different from zero, then T, ® T, is symmetric if and only if
there exists a ¢ €K, ¢ 50 for which ¢7, and ¢ ~'T, are symmetric.

() T\®L,+ I,® T, is symmetric if and only if there exists a ¢ €R for which
T,—icl; and T,+icl, are symmetric; we have T\®L+ 1, ®T,=
(T, —icl)® I, + 1, ®(T, +icly). (If H, and H, are real Hilbert spaces,
then T'® I, + 1, ® T, is symmetric if and only if 7| and 7, are symmet-
ric.)

Let T, and T, be self-adjoint. Then for B=T,® I, + I,® T, we have

U(E) ={AERA=A1+A2,AJEO(7;)},
0,(B) = {AER: A=A +Ay, \, €E0,(T))}.

The multiplicity n(A) of an eigenvalue A of B is equal to 2 4, =an(A)n2(Ar),
where n;(\)) is the multiplicity of the eigenvalue A; of T

Assume that T,, T, and B are as in Exercise 8.20, T, has a pure point
spectrum, and P, denotes the projection onto N(7T,— s). Then

En)= 3 E@-9)8P,

s€0,(73)

where E and E; denote the spectral families of B and T}, respectively.

Let T, and T, be self-adjoint operators with spectral families £; and FE,. If
I (1) Eo(s)= Ey(s)E,(¢) for all ¢, s €ER, then the operators T, + T, and T,T,
are essentially self-adjoint.

Hint: For all bounded intervals J, and J, the set R(E(J,) Ex(J,)) consists of
analytic vectors of T, + T, and T, T,.



Perturbation theory for
self-adjoint operators

Here we will deal almost exclusively with the perturbation theory for
self-adjoint and essentially self-adjoint operators. Essentially two questions
arise:

(9.1) Let T be a self-adjoint or essentially self-adjoint operator on the
Hilbert space H. Let V be a symmetric operator, a perturbation. Is T+ V
also self-adjoint or essentially self-adjoint?

(9.2) Let T be a self-adjoint operator and assume that we know certain
properties of its spectrum. Can we say anything about the spectral properties
of T+ V (or T+ V)?

We already answered question (9.1) in Section 5.3. Now we turn our
attention to question (9.2). We shall study the question of whether 7 and
T+ V have the same essential spectrum and whether the semi-bounded-
ness of T implies that of T+ V. Moreover, we obtain results concerning
the perturbation of the discrete spectrum and concerning the continuous
dependence, on the given operator, of the spectrum and the spectral
family. Further results of this kind are also included in Section 7.5. For the
absolutely continuous spectrum, see also Chapter 11.

9.1 Relatively bounded perturbations

First we consider the case where the unperturbed operator T is bounded
from below.

Theorem 9.1. Let T be self-adjoint and bounded from below with lower bound
Yr. Let V be symmetric and T-bounded with T-bound <1. Then T+ V is

269
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self-adjoint and bounded from below. If
VAl < allfll + BITSfI| forall feD(T)

with some b < 1, then

Y = vr-maX{ lfb,a+b|vrl}

is a lower bound of T+ V.

ProOOF. By Corollary 2 to Theorem 7.22 it is sufficient to show that
(— o0, v) is contained in p(7+ V), i.e., that the operator T+ V—A=
(T —A)+ V is bijective for every A <y. By Theorem 5.11, this is surely the
case if ||VR(A, T)|| < 1. We obtain from the spectral theorem that
IVRQ, T)|| < allR(A, T)|| + bITRQA, T)|

<a(yy—N"'+b sup{|t|(t——)\)”1 : t>yT}

= a(yp—A)""+ b max{1, lys|(yy =N}

= max{a(yT—)\)wl + b, a(yT—)\)”

+ b'YTKYT")\)_l}-

The last expression is obviously less than 1 for A <y. O

Theorem 9.2. Let T be self-adjoint and bounded from below, and let V' be
symmetric and T-bounded. If T + uV is closed for all p €[0, 1], then T+ V is
self-adjoint and bounded from below.

PrROOF. The operator T+ V is self-adjoint by Theorem 5.27. For every
p €0, 1] the operator V is relatively bounded with respect to T+ uV, i.e.,
there exist a, > 0 and b, > 0 for which

IVl < a, |l fIl + BlI(T + pV)f]l.
Consequently, for |[p—p'|<(2b,)~"

VA < a, i fll+ b,(I(T+ V)l +] " — pl VA
< a )l fll + bII(T+wV)f|| + 31V,
and thus
NV < 2a,llfIl + 28,I(T+ ' V)f]l.

The segment [0, 1] is covered by the open intervals (,u—(2b”)“1, u+
(2b,)7", p€[0, 1]. Consequently, there are finitely many u,, ..., p, for
which the corresponding intervals cover the whole interval [0, 1]. The
operator V is therefore (T + pV)-bounded for all p &[0, 1] with relative
bound b=max{2b, :j=1, ..., n}. If we choose m &N such that b/m <
1 holds, then by successive applications of Theorem 9.1 we obtain the
semi-boundedness of T+ (1/m)V, T+2(1/m)V, ..., T+ V. O
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Theorem 9.1 also enables us to prove the following useful inequalities.

Theorem 9.3 (Heinz). Assume that T is self-adjoint, non-negative, S is
symmetric, D(T) C D(S), and ||Sf|| < || If|| for all f € D(T). Then

IS, SO <KL Tf) forall f € D(T).

PROOF. Theorem 9.1 applies with V' = «S for every x €(—1, 1) if we take
a=0, b=|«k|, and y;=0. Then y=0. Consequently, T+ «S is self-adjoint
and non-negative for every k €(—1, 1). For k— =1 we get

g E;+§;§;i } forall feD(T),

and thus

LTf) 2 KS S| forall f & D(T). O

Theorem 9.4. Let S and T be self-adjoint and non-negative.

(@) D(T)cD(S) and ||Sf|| < ||Tf|| for all f€ D(T) imply D(T'?
c D(S?) and |S'?f|| < ||T'?|| for all f € D(T'?).

(b) D(T)c D(S) implies D(T'/?)c D(S'/?). The equality D(T)= D(S) im-
plies D(T'/*) = D(S '/?).

PROOF.
(a) It follows from Theorem 9.3 that

ISP = <f, S < L Tf> = | TVH|? forall feD(T).

Let f € D(T'/?). Since D(T) is a core of T'/% there is a sequence (f,)
from D(T) for which f,—f and T''/%,— T'/%. Then (S'/%,) is also a
Cauchy sequence. Therefore, f€ D(S'/?) and §'*f=Ilim__ S'?%,.
Consequently,

ISV = lim ||SY/3,]| < lim || T3, = | T/,

(b) Because of the inclusion D(T") C D(S), the operator S is 7-bounded by
Theorem 5.9, i.e., there exists a ¢ > 0 such that

ISAIL < eI+ ITA < VZ (AP + (1 TAP)
<V2 (|| I3+ 24 T +IITAHY? = V2 ¢||(1+ T)f)-

By part (a), D(({ + T)'/?) is therefore contained in D(S'/?). We can
immediately infer from the spectral theorem that D(T'/%) = D((I +
T)'/?). Consequently, D(T'/?) c D(S'/?). If D(T)= D(S), then it also
follows that D(S /%) c D(T'/?), and thus that D(S'/%)=D(T'/%. O

Now we prove a result concerning the continuous dependence, on the
given operator, of thc spectrum and the essential spectrum.
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Theorem 9.5. Let T and T, (n€N) be self-adjoint, and assume that
D(T)= D(T,). Assume, furthermore, that there are null-sequences (a,) and
(b,) from R for which

(T =Tl <allfll + b TSN Jorall feD(T).
Then o(T)=hlm, , o(T,) and 6 (T)=1lim,_, o,(T,).

nR—00

PrOOF. We have to prove that A € 6,(T) (respectively A € o(T)) if and only

if there is a sequence (A,) for which A, € 0,(T,) (respectively A, € o(T,))

and A,—A. There is no loss of generality in considering only the point

A=0. Let E and E, denote the spectral families of T and T,.

(a) If 0€o(T), then there is a sequence (f,) from D(T) for which || f,|| =1
and Tf,—0. Then

d0, o(T,)) < || TS|l < I TLI + (T = T,)f,l|

T+ TL N + a,ll fo]l >0 as n— o0.

Therefore, d(0, 0(T,))—0, i.e., 0€lim,_,_o(T,).
If 06 o(T), then T is bijective. Since

NN

(T=T,+NT 7Y < a,IT~V +b, + A | T,

by Theorem 5.11 T,—A is also bijective for |A|<2||T~!)~! and
sufficiently large n €N. Hence, 0 €&1lim,, ,_o(T,).

(b) Assume that 0 € 0,(T). Then dim R(E(e) — E(—¢€))= oo for every ¢ >
0, by Theorem 7.24. If n, €N is such that a,+ b,e <e for all n >n,,
then it follows for all n > n, and f € R(E(e) — E(—¢)), f# 0 that

1T < WIFIL+ (T = TS| < €l fll + a,ll f1I + b, TS|
< 2¢|| f]]-
It follows from this that dim R(E,(2¢) — E,(—2¢)) = o0, since otherwise
there would exist an
f € R(E,(2¢) = E,(=2¢))" N R(E(¢e) ~ E(~¢)), f+0;
for this f we would have

2¢[l £l < ITA < 2¢|l f])-

By the proposition preceding Theorem 7.25 we have o,(7,)N[— 2¢, 2¢]
+ for every n>n, As ¢>0 was arbitrary, it follows that 0 €
limn—mooe( Tn)‘

Let us assume that 0 & g,(T), i.e., that there exists an € >0 such that
dim R(E(e)~ E(—¢€)) < 0. If ny €N is such that a, <e/3 and b, <1/3
for all n>n,, then

ITA > WA = I(T = TOf > I TN — el £l — 1T
= N TfIl = 5€ll Sl > 3ell f]
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for all n >ny and f € R(E(e) — E(—¢€))™*, f#0. It follows from this that
dim R(E,(e/3)— E,(—€/3)) < o0, since otherwise there would exist an

fE€R(E,(3€) — E,(—3€)) N R(E(e)~ E(~€))™, f#0;
for this f we would have
sl fll > NS > sell f1l
Consequently, (—¢/3,¢/3)no,(T,)=< for all n>n; and thus 0&
lim, , o.(T)). ]

Corollary. Assume that T is self-adjoint, V is symmetric and T-bounded, and
Q denotes the set of those real p. for which T+ pV is self-adjoint. Then the
set-valued functions pt+>o(T + uV) and pr>o,(T + pV') are continuous on 2
(i.e., if o 1, €Q, and p,—p,, then o(T + poV)=lm,  o(T+ p,V) and
o (T+ pyV)=1lim (TH+ p,V)).

PrROOF. V is (T + poV)-bounded for every p, € Q. Therefore,
1T+ V) = (T4, V)]SI = 1o = ml I VS]
< | o = malall fIl + [ 8o = ma|BII(T + o VS|

Consequently, the operators 7'+ u,V and T+ p, V satisfy the assumptions
of Theorem 9.5. O

n—» 00

n-——>0008

EXERCISES

9.1. The converse of Theorem 9.4(a) does not hold. If we consider the operators
induced by the matrices

~-f1 1 _q4f1 O
= 3(1 1) and T 4(0 3)
on C? (with the usual scalar product), then S < T, but not $? < T2
9.2. Let the assumptions of Theorem 9.5 be satisfied. Assume that a, B ERNp(T)
and a<B. Then a, B €p(T,) for large n and ||[(E(B)— E,(a))—(E(B)—

E(a))l|—0 as n—co.
Hint: The second resolvent identity, Exercise 7.20, and Theorem 9.5.

9.2 Relatively compact perturbations and
the essential spectrum

By Theorem 7.24 the number A € R belongs to the essential spectrum of a
self-adjoint operator T if and only if there exists a sequence (f,) from D(7)
for which

£, 50, lim inf || f,]| # 0, A= T)f, - 0. (9.3)
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Such a sequence is called a singular sequence for T and A. With the aid of
this characterization, we can prove the following theorem.

Theorem 9.6. Let T, and T, be self-adjoint operators with the spectral

families E| and E,.

(a) If R(E(J))cD(T,) and (T, — T,)E\(J) is compact for every bounded
interval J, then a,(T,) Co,(T,).

(b) If the assumptions of (a) are satisfied and D(T,) C D(T,), then every
sequence that is singular for T, and X is also singular for T, and A.

PROOF.

(a) Assume that A€ o,(T)). As in the proof of Theorem 7.24 (part (i)
implies (i1)) we can show that there exists a singular sequence (f,) for
T, and A that is contained in R(E,(A+ 1) — E,(A— 1)) (cf. also part (b)
of this proof). As (f,) tends to O weakly and as (T, —T,) (E;A+1)—
E,(A— 1)) is compact, we have

(Ty— T)f, = (T, — TH(E,A+ 1) — E\(A—1))f, -0
as n— oo (cf. Theorem 6.3). We obtain from this that
(T =Nl < (T = TOAI+ (T, = A)A0 -0

as n— 0. Therefore, (f,) is a singular sequence for 7, and A, and thus
AE o (T5).

(b) Due to the inclusion D(T,)c D(T,), the operator T, is relatively
bounded with respect to 7 (cf. Theorem 5.9). Let (f,) be a singular
sequence for T} and A. Then

ol R (R AT:

(A+1, c0)

(- B0+ D+ E Q- D) = |

(—o0, A1}
<[Zm—mmwwmw
= ||A=T)fIP >0 (9.4)
and
N T,(I—E;A+ 1)+ E A= 1D)L|?

= + |7 AL E(D)f, 1P
(—oo, A—1]  Y(A+1, 0)

<[ + N+ = 1) dI Ey(0), 1P
(—o0, A—1] (A+1, o0)

< 2MP(I— E\A+ D+ E;(A = 1)f, |12

+2lA=T)fI?—>0 as n— . (9.5)
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Hence, ((E\(A+1)— E,(A—1))f,) is a singular sequence for T, and A
that is contained in R(E,(A+1)— E,(A—1)). As in part (a), it follows
that

A= TL)XEA+1)~EA=1))f, >0 as n— .

Since T, is bounded with respect to 7, we can derive from (9.4) and
(9.5) that

T,(I-EA+1)+EMA—-1))f,>0 as n— oo,
and thus
(A—=T,)f, >0 as n-—>oo.

Consequently, (f,) is a singular sequence for 7, and A. O

If in Theorem 9.6 we make the assumptions symmetrical with respect to
T, and T, then we obtain a criterion for the coincidence of the essential
spectra and for the coincidence of the singular sequences (in the following
we say that T, and T, have the same singular sequences if (f,) is a singular
sequence for T, and A if and only if () is a singular sequence for T, and
A). However, the result is not very useful in this form since too many
properties of T, and T, are explicitly assumed; usually only one of these
operators (the unperturbed one) is known accurately. In what follows we
give conditions that imply the assumptions of Theorem 9.6. First we need
some preparation.

Let H,, H,, and H; be Hilbert spaces. Let A be an operator from H, into
H,. An operator B from H, into Hj; is said to be A-compact if D(A) C D(B)
and B, as a mapping from (D(A4), || . ||4) into H,, is compact. If 4 is
bounded and D(A) = H,, then it is obvious that B is A-compact if and only
if B is compact (since the norms || . || and || . ||, are then equivalent).

Proposition. If A is an A,-bounded operator and B is A-compact, then B is
also A,-compact. If A is densely defined and closed, then B is A-compact if
and only if B is |A|-compact.

PrROOF. Any || . ||, -bounded set is also || . || 4~-bounded. Consequently,
every | . || 4-bounded set is mapped by B onto a relatively compact set.
The second assertion follows from the equalities D(4)= D(|A4|) and || . |,

=1 - Mla O

If B is an A-compact operator, then B, as an operator from
(D(A), || - || 4) into Hs, is bounded, i.e., B is A-bounded. In fact, much
more is true.

Theorem 9.7. Let A be an operator from H, into H,, and let B be an
A-compact operator from H, into H;. If A or B is closable, then B is
A-bounded with A-bound zero.
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PRrOOF. Let us assume that the 4-bound of B is positive. Then there exists
an € >0 with the property that for every n €N there is an f, € D(4) such
that || Bf,|| >n| f,|| + €||4f,]| (we can choose any positive number ¢ that is
less than the A4-bound of B). If we put g, = ||Bf,||"'f,, then ||Bg,||=1 and

e(l 8.1l + 11 4g,])) < nligall + €lldg,|| < ||Bg,| =1

for all n &N such that n >e. It follows from this that g,—0 and || g,|| , <
| 8all + 11481l <1/e.

First let B be closable. As B is A-compact, there exists a subsequence
(g,) of (g,) for which Bg, —h&H;. The formula [|Bg,||=1 implies
l4]| = 1. This is a contradiction because of g —0 and the closability of B.

Now let 4 be closable. Without loss of generality we can assume that
D(B)=D(A). By Theorem 6.2 the operator B can be extended to an
A- -compact operator Bon D(/T ). Consequently, we can assume without loss
of generality that 4 is closed. Since ||Ag,||<1/€, there exists a sub-
sequence (g, ) of (g,) such that Ag, She H, (cf. Theorem 4.25). Hence,

O, By=w—lim;_, (8, , 4g,) € G(4)= G(A), and thus h=0. It follows by
Theorem 6.3 that Bg, —0, which contradicts the equality || Bg, || =1. O

Corollary. Let B be closable. B is A-compact if and only if it is (4 + B)-
compact.

PrROOF. Let B be A-compact. Since D(A)C D(B), we have D(4 + B)
= D(A) C D(B). By Theorem 9.7 there is an a > 0 such that || Bf|| <a|| f]| +
|4f]| /2 for all f € D(A). Consequently, for all f € D(A4)

IAfIL < 2(14f 1| = | Bf Il + all fl) < 2(I(4 + B)f|| + al|f]}),

1.€., A is (4 + B)-bounded. The (4 + B)-compactness of B follows by the
above proposition. We can prove similarly the other direction. 0

Theorem 9.8. Let A be a closed operator from H, into H,, and let B be an

operator from H, into H;. Then the following assertions are equivalent.

(1) B is A-compact.

(i) f, € D(A), f,->0 and Af, >0 imply that Bf,—>0.
If A is self-adjoint on H, and E denotes its spectral family, then these
assertions are equivalent to

(i11) BE(V) is compact for every bounded interval J, and B is A-bounded with
A-bound zero.

PROOF. (i) implies (ii): If f,—0 and Af, >0, then

<f;v g>A = <f;v g> +<Afn: Ag> _>O

for all g€ D(4), ie., (f,) weakly tends to zero in the Hilbert space
(D(A), <., .)4). It follows from this by Theorem 6.3 that Bf, —0.

(i) implies (i): Let (f,) be a weak null-sequence in (D(A4), <., .>,), i.e.,
assume that {f,, g> + (4f,, h) -0 for all (g, h) € G(4). By Theorem 6.3 it
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is sufficient to show that (Bf,) tends to zero as n—oo. Since {f,, g> +
(Af,, h) =0 for all (g, h) € G(A)*, we have

<f;l7 g>+<Afn, h>——>0 for all (g, h)EHl®H2

It follows from this that f, % 0and 4 £, %0, and thus Bf,—0 (because of
(i1)).

(1) implies (iii): By Theorem 9.7 the operator B is A-bounded with
A-bound zero. Let (f,) be a bounded sequence in H,. Then the sequence
(AE(J)f,) is also bounded, because

HAE(L,? = fJ 2 A E@)f, |2 < | f]17 sup{s*: t€ J}.

Consequently, (E(J)f,) i1s a bounded sequence in (D(A4), <., .>,), and by
(1) there exists a subsequence (f,) for which (BE(J)f,) is convergent.
Hence, BE(J) is compact.

(i) implies (1): Let (f,) be a weak null-sequence from (D(A4), <., .D,),
i.e., assume that (f,, 8> +{Af,, h)—0 for all (g, k) € H;®D H, (cf. the “(ii)
implies (1)” part of the proof). Then f, 1>O, and thus B(E(N)— E(— N))f,
—0 for all N > 0. Since the 4-bound of B is equal to 0, for every ¢ >0
there is a C >0 such that

1Bl < 5141l + ClifIl forall f € D(A).

Therefore, for all » €N and sufficiently large N

I1B(I = E(N) + E(= N))f,|I < 51l4f,l + ClI(I = E(N) + E(— N))f, ||

£
2
€ C
< = — <
> IlAfl + NIIAan el|Af, 1],

and thus
lim sup || Bf,|| < € lim sup ||Af,]|.

n—»0o0 n—» 00

Since the sequence (Af,) is bounded and since ¢ >0 was arbitrary, it
follows that Bf,—0. Consequently, B is A-compact. O

Now we can prove an old result that is essentially due to H. Weyl.

Theorem 9.9. Let T be a self-adjoint operator on the Hilbert space H, and let
V be a symmetric T-compact operator. Then T+ V is self-adjoint, T and
T+ V have the same singular sequences, and o,(T)= o, (T+ V).

ProOFr. By Theorem 9.7 the operator V is T-bounded with 7-bound 0.
Therefore, T+ V is self-adjoint by Theorem 5.28. V is also (T + V)-
compact by the corollary to Theorem 9.7. Now it follows from Theorem
9.8 that Ty, =T and T,= T+ V satisfy the assumptions of Theorem 9.6(b),
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Just as T)=T+ V and T,=T do. Consequently, T and 7T+ V have the
same singular sequences, and ¢,(T'+ V)=0,(T). O

In applications (particularly to differential operators) it is important that
the assumptions of Theorem 9.9 can be somewhat weakened. First we
prove some preparatory theorems.

Theorem 9.10. Let T be a self-adjoint operator on H such that p(T)+ <&, and
let p > 0. An operator V is T?-compact (respectively TP-bounded) if and only
if V(z— T)* is compact (respectively bounded) for some (and then for all)
zep(T).

(The operators T? and (z — T)"? are defined with the aid of the spectral
theorem by the formulae 77 = [t dE(¢) and (z— T) P = [(z —1)"? dE(2),
where 7—1¢” and t—(z — )77 are chosen to be continuous on a(7T).)

PrOOF. We obviously have D(T?)=D((z— T)?); the TP-norm and the
(z— T) -norm are equivalent. Consequently, V is 7”-compact (7”-
bounded) if and only if it is (z — T’-compact ((z — T)’-bounded). Since
(z—T)? : D(TP)—H is continuous and continuously invertible, V : D(T?)
—H is compact (bounded) if and only if V(z—T)"? is compact
(bounded). O

Theorem 9.11. Let T be a self-adjoint operator with spectral family E, and let

V be a T-bounded operator. Then

(a) V is TP-bounded with TP-bound zero for all p > 1.

(b) If V is TP-compact for some p >0, then VE(J) is compact for every
bounded interval J.

(c) If VE(J) is compact for every bounded interval J, then V is T?-compact
Jor every p> 1.

(d) V is T-compact if and only if it is T*-compact and T-bounded with
T-bound zero.

PROOF.
(a) There are numbers a, b >0 such that ||Vf|| <a||f| + b||Tf|| for all
f€D(T). We have D(T?) c D(T) for p > 1, and thus

VAl < [IV(E(N) = E(= N))f|| + [|V(1 — E(N) + E(—N))f]|
< a|lfll + bN| fI| + all fI| + b T{I — E(N) + E(—= N))f||
< (2a+bN)| fll + N7 || THf|

for all f€D(T?) and N > 0. Since N can be chosen arbitrarily large,
the assertion follows from this.

(b) Let (f,) be a bounded sequence. Then (E(J)f,) is a bounded sequence
in (D(T?), ., .>7»). Since V is TP-compact, there exists a subsequence
(E(J)f,) for which (VE(J)f, ) is convergent. Hence, VE(J) is compact.



9.2 Relatively compact perturbations and the essential spectrum 279

(c) The operator
V(I+|T]) "(E(N)— E(—=N)) = V(E(N)= E(=N))(1+|T|)™*

is compact for every N >0, and

IV(1+|T)™"(I- E(N)+ E(—= N))|| < [V +|T) "1+ N)' 7.

Consequently, V(1 +|T)7? =lim,_ V(1 +|T|)"?(E(N)— E(—N)),
and thus V(1+|T|)"? is compact. V is therefore 7TP-compact by
Theorem 9.10 and the proposition preceding Theorem 9.7.

(d) This follows from Theorem 9.8 and parts (b) and (c) of this theorem. [

Theorem 9.12. Let T, and T, be self-adjoint operators and assume that

D(T)=D(T,). Put V=T,—T,.

(@) V is TZ-compact if and only if it is T3-compact.

(b) If V is TE-compact (or T3-compact), then (z—T\) >—(z— Ty 2 is
compact for every z € p(T)) N p(T,).

(c) If V is TE-compact, then for every T\-bounded operator W we have the
following: W is T2-compact if and only if it is T3-compact.

PrOOF. Write R, =(z — 7))~ for z € p(T,) N p(T,). Then the operators VR,

are bounded for j=1, 2. (If H is real and o(T,) U o(T,) =R, then H must

be complexified in order that we may have p(T)) N p(T,) #.)

(a) If V is T{-compact, then VR? is compact by Theorem 9.10. It follows
from the resolvent identity R, — R, = R, VR, = R,VR, that

R} = (R, + RyVR\)(R,+ R\VRy) = (I+ R,V)R}(I + VR,), (9.6)
and thus
VR} = (I+ VR,)VR}Y(I+ VR,). 9.7)

It follows from this that ¥R} is compact. Therefore, V is TZ-compact.
We can prove similarly the reverse direction.
(b) Let ¥ be TZ-compact. (9.6) implies that
R} — R} = RIVR,+ R,VRYI+ VR,)
=[(z* = T) 7 'W(z*— T\) 2 ]* + RyVRYI + VR,);

here we have used the equality

(fy (2*=Ty) "' V(z* = T)) ’g> = (RIVR,f, &>

for all f,g€ H. As V(z*— T,)~? and VR} are compact, the compact-
ness of R} — R} follows.

(c) Let W be TZ-compact. Then WR! is compact. It follows from (9.6)
that

WR; = (WR+ WR,VRY)(I+ VR)).
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As WR? and VR}? are compact, WR} is also compact, i.e., W is
TZ-compact. We can prove similarly the other direction. ]

Theorem 9.13. Let T be a self-adjoint operator on H, and denote its spectral
family by E. Assume that V is symmetric, D(TYC D(V), and T+ V is
self-adjoint. Assume, furthermore, that VE(J) is compact for every bounded
interval J (this condition can be replaced by the following: V is T?-compact
for some p>0). Then T and T+ V have the same singular sequences. In
particular, 6 (T)=0,(T+ V).

Proor. It follows from the assumptions that V' is T?-compact, and thus
also (T + V)?-compact by Theorem 9.12. Therefore VE'(J) is also compact
for every bounded interval J, where E’ denotes the spectral family of
T+ V. The assumptions of Theorem 9.6(b) are therefore satisfied for
T,=T, T,=T+V and for T)=T+V, T,=T. If V is T?-compact for
some p > 0, then the compactness of VE(J) follows from Theorem 9.11(b)
for every bounded interval J. ]

The assumptions of Theorem 9.13 do not guarantee that 7+ V is
semi-bounded in case T is semi-bounded.

ExamPLE 1. Let T be a semi-bounded self-adjoint operator with discrete
spectrum, i.e., assume that there exist an orthonormal basis {e, : n €N}
and a sequence (A,) for which A, — o0 and

D(T) = {seH: 3 NPite P <o,

neN

Tf = > A(le, fYe, for fe&D(T).
neN
Furthermore, write V= —2T. Then V is T-bounded and — T=T+V is
self-adjoint. Since the space R(E(J)) is finite-dimensional for every
bounded interval J, the operator VE(J) is compact. Consequently, all
assumptions of Theorem 9.13 are satisfied, T is bounded from below, and
T+ V is not bounded from below.

The following theorem studies the behavior of gaps in the essential
spectrum of T in the case of a non-negative T>-compact perturbation.

Theorem 9.14. Let T be a self-adjoint operator on H such that 6, (T)N (a, b)
= . Assume that the point b is not an accumulation point of those eigenval-
ues of T that belong to (a, b). Assume, furthermore, that V is symmetric,
non-negative, T?-compact and T-bounded with T-bound < 1. Then ¢ (T + V)
N(a, b)=3, and b is not an accumulation point of those eigenvalues of
T + V that belong to (a, b). (If V <0, then a similar result holds for the point

a.)
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Proor. We only have to prove the second assertion. We can assume,
without loss of generality, that (a, b)=(—1, 1). We use Theorem 7.25.

Since, by assumption, V is T-bounded with T-bound < 1, there exists a
¢ > 0 for which

VAl < c(Ifll + (T +sV)fl}) forall fE€D(T) and se[O0,1].

Let s, €[0, 1] be chosen such that 1 is not an accumulation point of
eigenvalues of 7'+ s,V belonging to (—1, 1). By assumption, this holds for
5o=0 in any event. Let E, denote the spectral family of T +s,V. Since
o (T+soV)N(—1, 1)=D (cf. Theorem 9.13), E(1 —)— Ey(0) 1s of finite
rank.

For all f&€ D(T) we have

VAL < el fll+ICT + 5oV )f 1) < 2ell(1+ [T+ soV -
It follows from this by Theorem 9.3 that

CHVE <2 (1 +|T+ sV |)f> for feD(T),
and thus

VFY < 2e(f, (1= T—sp¥)f> for € R(E(0) N D(T).

If s>s5, and s —5,<(1/4c), then T+ sV=(T+s,V)+(s—sy)V is self-
adjoint and

AT +sVYD = fAT+soV)f ) + (s = 50) S, VD
< AT +soV)f> +(1/4c)S, V)
< AT+ 5V + 3 (1= T =50V )f>

= 3 (T+seW)f> + 311 < 3IAIP
for f € R(E,(0)) N D(T). It is obvious that

HAT+sV)> 2 L (T+soV)f> = L fIP

for fE R(I— Ey(1—-))n D(T).

Since R(Ey(1 —)— E(0)) is finite-dimensional, Theorem 7.25 implies the
following: The interval (3, 1) contains at most finitely many points of the
spectrum of T+ sV, and thus 1 1s not an accumulation point of the
eigenvalues of T+ sV from (—1, 1).

If we choose m €N such that m > 4c, and p=1/m, then in this way we
can prove the assertion step by step for T+ pV, T+2uV, ..., T+ mpV =
T + V, starting with s,= 0. 0

REMARK. In Theorem 9.14 the 7-boundedness of V with T-bound <1 is
not necessary. Instead, it is enough to assume that V is T-bounded and
T+ sV is self-adjoint for all s €[0, 1]. For the proof see the technique used
in Theorem 9.2.
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EXERCISES

9.3. Let T, and T, be self-adjoint such that D(T')D> D(T,).
(a) If T, has a pure discrete spectrum, then so does 7.
(b) If (A"} and {A®} are the eigenvalues of T, and T, respectively (each
eigenvalue counted according to its multiplicity), then P\j(z)l > aP\j(l)l + b for
all j, with appropriate numbers a >0 and b > 0.
Hint: Use the equality (i— T,) ' =@G(—-Ty) (- T)i—-T,)~', the
boundedness of (i— T,)~ !(i— T}), and (7.3).

9.4. Let T be self-adjoint, and denote by E its spectral family. If V is T-bounded,
and VE(J) is compact for every bounded interval J, then V is f{(T)-compact
for every E-measurable function f such that limy, [t~ 'f(#)| = co.

9.5. For a normal operator A let us define the essential spectrum ¢,(A4) to be the set
of accumulation points of a(A4) plus the set of eigenvalues of infinite multiplic-
ity. (This definition extends the definition for self-adjoint operators.)

(@) AEo0,(A) if and only if there exists a sequence (f,) from D(A4) such that
lim inf,_, || £, >0, £, 20 and A —A)f,,—0 ((f,) is a singular sequence for
A and M),

(b) If 4, and A, are normal, D(4,)=D(A4,), and p(4,)Np(4,)+ S, and if
A, — A, is Af-compact for some p >0, then 0,(4,) C 6,.(A4;).

() Let T, and T, be normal. If o,(z— 7)) N =0,((z— T, ") for some
z€p(TY)Np(T,), then o (T)=0,Ty). If z=T) '—(z—T,) ! is com-
pact for some z €p(T,) N p(Ty), then a,(T)) = 0,(T,).

(d) With the aid of (c¢) and Theorem 8.10 prove that all self-adjoint extensions
of a symmetric operator with finite defect indices have the same essential
spectrum.

9.6. Let T be a self-adjoint operator such that (a, b)N o(T)=L or (a, b)N 6 ,(T) =
. If V >0 is symmetric, D(T)C D(V), T+ V is self-adjoint, and {f, Vf) <
—{f, Tf> +(a+ )| f|? for all f& E(a)D(T) with some n<b—a, then (a+
1, 0)No(T+ V)=D or (a+n, b)n o, (T+ V)=, respectively. This holds in
particular if V' is bounded, symmetric, and 0 <V <.

Hint: Use Theorem 7.25.

9.7. Let H be a Hilbert space, and let 4 be an unbounded linear functional on H.
(4 is a non-closable operator from H into K.) 4 is A-compact; however, the
A-bound of A equals 1. (In Theorem 9.7 the assumption that 4 or B are
closable cannot be dropped.)

9.3 Strong resolvent convergence

If T,(neN) and T are self-adjoint operators on the complex Hilbert space
H, then we say that the sequence (7,) converges to T in the sense of the
strong resolvent convergence if (z—T,)"'>(z— T)~! for some z €C\R.
Then this holds for all z € C\R on the basis of the following theorem.
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Theorem 9.15. Let T, (n €N) and T be self-adjoint operators on the complex
Hilbert space H. If (zo— T,)"! 5 (zo— T)~' for some z,EC\R, then
(z—-T)! j>(z ~ 1) ! for all z €C\R.

ProoF. If z €C and |z — z5| <[Im 2|, then by Theorem 5.14 we have

(z— Tn)_lf_ (z— T)—lf = kz (Zo_z)k[(zo_ Tn)_k_l_(zo_ T)_k_l]f
=0
for all f € H. Therefore,

N
1z=T,) f=(z=T)"'f|| < kZ 2o — 2/ I(zo— T,) *7'f
=0

— (2= T) 7'l +2 T |z — z[*|Im zo| %7 f]]
k>N

for every N €N. The second sum will be arbitrarily small if N is chosen
large enough. The first sum tends to 0 for fixed N as n— o0, since
(zo— T,) %' (zy— T)~*~1. Consequently, the assertion follows for all
z€C such that |z—zy| <|Im zy|. An iterative application of this step
provides the assertion for all z in the half-plane where z, lies. The limit

relation (z — T,) "' (z — T)~" implies that (z*— T,) "' 5 (z*— T)~" and
(as (z—T,) "and (z— T)~! are normal) that

z*=T,) 'l = z=T,) " fll = I(z=T) " 'fll = |(z* = T)"'f|I.
Therefore, for all fEe H

I(z*~T)~'f— (z*—T)"'f))?

= (z*=T,) 'fI? =2 Re{(z* = T,) " 'f, (z*= T)"'f> + |(z* = T) " 'f|?
S (Z*=T) P =2Rel(z*=T)"'f, (2*=T) ') + |(z* = T) " 'f|?
= Q.

Hence, the assertion holds for all z € C\R. O

Now we prove a few sufficient conditions for strong resolvent conver-
gence.

Theorem 9.16. Let T,(n €N) and T be self-adjoint operators on the complex

Hilbert space H. The sequence (T,) converges to T in the sense of the strong

resolvent convergence if one of the following assumptions is satisfied.

(1) There is a core Dy of T such that for every f € D, there exists an ny €N

with the properties that f € D(T,) for n > ny and T,f— Tf.

(ii) The operators T, and T are bounded and T, 5T

(i) D(T,)=D(T) for all n €N and there are null sequences (a,) and (b,)
such that '

I(T=THfIl < a,llfll + bl TfI| for all f & D(T).
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av) G(T)=lim,_,  G(T,), i.e., G(T) is the set of those elements (f, g) from
H® H for which there exists a sequence (f,) such that f,€ D(T,) and
(f,, T.f)—(f, 8) (graph convergence).

PROOF.
(1) We have

(i—T) f-G-17)"'f
= (i— Tn)_l(T,,'“ TY(1i— T)—lf—>0 as n-— oo

for all f € H such that (i— T) " !f € D,. As D, is a core of T, the set of
these f is dense in H. Therefore, (i — T,,)"—S>(i— T)~! by Theorem
4.23.

(i1) or (i1) implies (1); these cases are therefore also proved.

(iv) It obviously follows from the formula G(7)=lim, G(7,) that
GG—T)=1lim, , G(1i—T,). Let g€ H be arbitrary. Then there is an
f € D(T) such that g=(1— T)f. Furthermore, there is a sequence (f,)
for which f, € D(T), f,—f, and (i— T,)f,—-(G—T)f=g. Due to the
inequality ||(i— 7,) " '|| < 1 it follows from this that

IG-T,) 'g—G(—T)""gll < 1G—-T,) 'g— £l +1If,—(—T)"'g|
= G- T,) " '(g—G— TN + Il f, — £

— 0.

Therefore, i— T,) ' > G—T)~". O

Theorem 9.17. Let T, (n €N) and T be self-adjoint operators on the complex
. s .

Hilbert space H, and assume that i— T,)"' > ({i— T)~". Then u(T,) 5 w(T)

Jor every continuous bounded function defined on R.

PrOOF. First we assume that the limits lim,, u(7) exist, and lim,_, _ u(?)
=lim,_, u(?). These are the functions that can be considered as continu-
ous functions defined on the Alexandroff-compactification R of R. We
consider the space C(R) with the maximum norm. The polynomials in
(i—#)"'and (—i—¢)”! can be considered as elements of C(R) The set P
of these polynomials has the following properties: (i) the constant func-
tions lie in P, (ii) the elements of P separate the points of R (i.e., for
x,y € R such that x # y there exists a u € P for which u(x) #u(y)), and (ii1)
if u€ P, then u*€ P. By the complex form of the Stone-Weierstrass
theorem (cf. Hewitt-Stromberg 18], Theorem (7.34)) P is therefore dense n
C(R) Consequently, for every u € C(R) there exists a sequence (u,,) from
P such that max, g|u(?) — u,(#)] >0 as m—co.

Now let f€H and €>0 be given. Then there is an my, €N such that
|u(?) — u, (1) < (/3] f) for all r€R and m >myg. As u,(f) is a polynomial
in i—f)~"and (—i—#)"', we have

u,(7T,) 5 u,(T) as n-—>o0
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for all m €N. Consequently, there exists an ny € N such that

1t ( T ) = 4 (TS| <

for n > ny,.

W

Hence, it follows for n > n; that '
[u(T,)f — w(T)f|| < u(T,)f = w, (TNl + N (T,)f — 9, (TS |
+|u, (T)f — u(T)f|| <
since  [|u(T,) =y, (TN < (¢/3]1f1) and |[u(T)— u, (T)II < (/3] f1))-
Therefore, u(T,) — u(T).
Now let u be an arbitrary continuous and bounded function defined on

R. Let (¢,,) be a sequence of continuous functions with compact supports
that tends to 1 non-decreasing. Then

1@n(T) = FI? = [19n() = 1P AIE(DSP >0 as m— o
for every f € H. Because of ug,, € C(IIAR) we have

u(T,)9(T,) > u(T)@,(T) as n— oo
for every m €N, by the first part of the proof. For all n, meN

lu(T,)f — u(T)f|
< u(T)f = w(T)@,(T)f|| + |u(T,)@.(T)f — u(T,) e, (TSl
| u(T)@u(T)f = w(T) @ (T || + |u(T) @, (T)f — u(T)f||
< (TS = @ TN+ N1u(DINLf ~ (TS|
+ (TN N @u( TV = @u( TN + 1(T,) @, (T,)f — u(T), (T)S|.

The first two terms on the right side will be small for sufficiently large m
(observe that ||u(T,)|| <sup{lu(?)] : t €R}). The last two terms will be
small for fixed m if n is chosen sufficiently large. Consequently, the
assertion is proved. ]

Now we can prove, in particular, that the unitary group induced by a
self-adjoint operator depends on this operator continuously in the strong
sense.

Theorem 9.18. Let T, (n €N) and T be self-adjoint operators on the complex

Hilbert space H. Assume that (1~ Tn)“'—s>(i -T)" L

(a) €T 5T forall tER.

(b) If T, >y and T >+ for some y ER, then we also have e~ T e T Jor
all t>0.

ProoF.
(a) The function s+>e'® is continuous and bounded on R. The assertion
therefore follows from Theorem 9.17.
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(b) With u(s)=e™ " for s >y and u(s)=e™* for s <y we have u(T)=¢"7
and u(T,)=e """, As, on the other hand, u is continuous and bounded,
Theorem 9.17 can be applied again. |

Now we shall investigate the influence of the strong resolvent conver-
gence on the spectral family.

Theorem 9.19. Let T, (n €N) and T be self-adjoint operators on the complex
Hilbert space H, and assume that (i— T,)™! -i>(i — T) L IfE, and E are the
spectral families of T, and T, respectively, then, as n— oo,

E, (1) E(2)

. forall t€R suchthat E(t) = E(t—).
E,(1—)— E(1)

PrOOF. Assume that E(f)= E(t—). Let (¢,) respectively (y,,) be non-
decreasing respectively non-increasing sequences of continuous functions

SUCh that (pm(s)_>X(——oo, t)(s)’ ¢m(s)_>X(—oo, l](s)’ I(pm(s)l < 1’ and |4/m(s)l < 1
for all s €R. Then for all fE H

(@m(T,) — E(t=))fI?

= fl(pm(s) - X(—oo, t)(s)l2 d”En(S)f”2 I O as m-— 0

(Lebesgue’s theorem). Therefore,

Pu(T) > E,(1-).
It follows similarly that

‘Pm( Tn) _S> En(t)’
and (because E(f)= E(t—))

0, (T)> E(f) and v, (T)=> E(¢).

Hence, for every f& H and every € >0 there are continuous functions
P < X(=oo,rp AN ¥ > X(_ o 4 fOr Which

(D) = o(T)]| < 5

we can choose p=g¢, and ¢=y, with a sufficiently large m, By
Theorem 9.17 there is an ny € N such that

le(T)f = @(T,)f || <
INAT)f =T )f] <

We therefore have

IW(T,)f — o(T)f] <3

forall n > n,.

Wi L m

forall n > n,.

Wi m
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Since
1/2
1B = (D= { [ m,(5) ~ 2P IR
1/2
< { 1o - oo)F AIEW?
= IW(D)f — o(D)fIl < 3
and

IE(t=)f = o( Tl < 1ELDf = (T < IW(T)f = o(TfIl < 3%,
we obtain that
IE(DS = E(0)f]
< NEDS = (T + Ilo(T)f = (TSIl + | 9(T,)f = E ()
AT = (TSIl + l9(T)f = (Tl + le(T,)f — (T

<e forall n > n,

N

It follows similarly that

|E()f— E(t—)f|| <e forall n > n,
L]

It is worth noting that the results of Theorems 9.5 and 9.19 are not
comparable. It is clear that o(7T)=lm,_, o(T,) does not imply E(r)=
s—hm,  FE(1).

Conversely, from E,,(t)—s> E(¢) (for all t€R) we cannot infer o(7,)—
o(T), as the following example shows.

n—o0

ExAaMPLE 1. Let H be a separable infinite dimensional Hilbert space, and
let {e, : mEN} be an orthonormal basis of H. For every n €N let T, be
the orthogonal projection onto L{e, : 1 <m <n}. Then T,,i)I as n—oo.
The spectral family E, of T, is given by the equality

0 for <0,
E(t)=11—-T, for 0<t<],
1 for > 1.

Therefore, E,,(t)—s> E(¢) for all t €R, where E denotes the spectral family
of 1, i.e.,

=10 for <],
E(?) {I for t>1.

On the other hand, o(7,)= {0, 1} for all n €N, while o(f)= {1} (cf. Exer-
cise 7.41).
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EXERCISE

9.8. Let H be a real Hilbert space, and let T and T,(n€N) be self-adjoint
operators. Assume that one of the assumptions (i)-(iv) of Theorem 9.16 is
fulfilled.

(a) For the spectral families E, and E of 7, and T, respectively, we have
E,,(t)—s> E(¢) for every t €R such that F is continuous at ¢.

(b) If there exists a YER such that 7 >y and T, >y for all n€N, then
e~ T e~ T forall ¢ > 0.
Hint: Complexify.



Differential operators on L,(R™)

10.1 The Fourier transformation on L,(R™)
In what follows we shall use so-called multiindices. A multiindex (of m

components) is an m-tuple a =(«y, . . ., «,) of non-negative integers o, €
No /=1, 2, ..., m. The absolute value of « is defined by the formula

m
o] = 2 a.
j=1

We set, for every x € R™,

Correspondingly, we write

o= I (Fay) = v -2

. -
j=1\1 9% j=1 X7

The space of rapidly decreasing functions (the Schwartz space) S(R™) 1s
the vector space of arbitrarily many times continuously differentiable
functions f : R”—C for which we have the following: For every multiin-
dex « and for every p €N, there exists a ¢,, > 0 such that

|x|?] D°f(x)| <¢,, forall xé&R™

It is obvious that this assumption can also be formulated in the following
way: For every multiindex « and for arbitrary p, g €N, there exists a
Capq 2 0 such that

(1+[x])] DY (x)| < ¢ (1+]x])77 forall x € R™
289
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This formulation shows that S(R™) ¢ L,(R™) for all p €[], oo} In particu-
lar, for all f € S(R™) we can define the Fourier transformation F, by the
integral

(Fof)(x) = @m) ™" [e1(y) dp,!
where

m
Xy = >, xy, for x,yeR".
j=1

Theorem 10.1. We have F,S(R™)C S(R™). For every f€ S(R™) and every
multiindex «

D*Fyf = (—1)*F,M,f, M,F,f= F, D,
where (M f)(x) = x°f (x).

PROOF. It is easy to see that the function

(Fof)x) = @m) ™" [e7f(y) dy

is arbitrarily many times continuously differentiable. The differentiation
can be done under the integral sign, i.e.,

D(Ff)(x) = 2m) " (= 1) [ [y (y)] dy.

It follows from this for any multiindex B that
xE(DF,f)(x) = 2m) "2 (= D)1 (D) yof ()] dy

= @m) "= D" [e DE[ yof ()] dy.

Since DAM_f is in S(R™), too, x#(D*F,f)(x) is bounded for all « and .
Therefore, F, f € S(R™), and

MD°F, f = (- 1) F,D*M,f.
Both formulae follow from this. J
Theorem 10.2. The function ¥ : R™— R defined by the equality
¥Hx) = exp(—%|x|2) forall x € R™
is in S(R™). We have Fy9 = 9.

1If no domain of integration is indicated, then the integral always is to be taken over R™.
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ProOOF. The reader can easily verify that ¢ € S(R™). To prove that F,9 = ¥,
we first consider the case m=1. In this case we obviously have the first
order differential equation

?'(x) + x¥(x) = 0.

It follows from this by Theorem 10.1 that
(Fgd) + M Fyd = —iF M9 — iFd' = —iFy (M 3+ 3') =0,
i.e., Fy¥ satisfies the same differential equation as ¢. Due to the equalities
(Fy8)(0) = (27)~ "2 f 3(x) dx = 1 = §(0)

we obtain that F,i# = ¢. The result can be derived for an arbitrary m by
taking products. |

Theorem 10.3. The Fourier transformation F, is a bijective linear mapping of
S(R™) onto itself. We have

(F&'g)(x) = @m) ™" [eg(y) dy, g€ S(R™).
Moreover, (Fy f)(x)=(Fy 'f)(— x) for every f € S(R™), and we have Fq=1I.
PrOOF. For all f, g € S(R™)

JeDFo)()e™ dy = (2m) "2 [ g(y)e [e=f(2) dz dy
= (2m) " [ f(z) [ 7" g(y) dy dz
= [1(2)(Fog)(z— x) dz

= [(Fog)(2) f(z + x) dz.
With g (x) = g(ex) we have for g € S(R™) and € > 0 that

(Fog)(x) = @m) " [eg(e) dy
= (2m) "% [T/ 5g(y) dy

-—m x .
= < "(Fog)( 2 );
therefore,

[8@NFof)0)e™ dy = [8((Fof)2)e™ dy

= [(Fog)(2) f(z+x) dz
e“’"f(Fog)(—z)f(z+x) dz
= [(Fog)(z) f(ez + %) dz.
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If we replace here g by the function 4 from Theorem 10.2, then it follows
for €0 (as Fy? =3 and 3#(0)=1) that

@m) ™" [ (Fof)(y) dy = $(O)2m) """ [ (Fof)(») dy

= lim (2m) "/ [ &8()) (Fof)(») dy

e—0

= lim (2m) ™" [ 9(y)f (& + x) dy

= 2m) " (x) [ (y) dy = f(x).

It follows from this that F; is injective and F, ' has the given form.
Moreover, for all f € S(R™)

(F3f)(x) = @m)™""2 [e= ™ (Fof)(v) dy = f(~x),

and thus Fyf(x)=f(x), i.e., Fg=1. Since R(Fy) D R(Fy)=R(I)=S(R™),
the mapping F, is surjective. O

In what follows we consider F, as an operator on L,(R™) such that
D(F,y)= S(R™).

Theorem 10.4. We have || Fyf||=||f|| and || Fy 'f|l=||f|| for all f € S(R™)
(here || .|| denotes the norm in L,(R™). F, and F; ' possess uniquely
determined extensions F and F belonging to B(Ly,(R™)). The operators F and
F are unitary, and F=F*=F~\. We have F*=1. The operator F is called
the Fourier transformation on L,(R™).

Prook. For f, g € S(R™) we have

f8> = [FOo(Fy ' Fog)(x) dx

- f(x)*(zw)""{ I e‘xy[ [e(2) dz} dy} dx

= fen | ferr dx}*{ Je () dz | dy = <Fof. Fog).

In particular, || F, f]| =1/ f]l, and thus ||F, 'f||=|f||- Since S(R™) is dense
in L,(R™) (as Cg°(R™) C S(R™)), there exist uniquely determined exten-
sions F and F of F, and F; ! from B(L,(R™)). We obviously have

LEFIl = || =l £1| for all f€ Lz(R'") If f, g€ Ly(R™) and (f), (g,) are
sequences from S(R™) such that f,—f and g,— g, then

(Ff,g> = lim (Fyf, g, = lim <f,, F5'g,> = <{f, Fg),
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ie., F*= F. Moreover,
FEf = Jim FFGY, = Jim Fog = Jim f, = J

1.€., FF=1. We can prove similarly that FF=1. Therefore, F= F~! and
thus F is unitary. From Fg = I|ggm it follows that F4=1. O

The mappings F, and FhQ_l can be extended to L;(R™) in a natural way.
These extensions F, and F, are defined for f € L,(R™) by the formulae,

(Fif)(x) = 2m) ™" [e7f(y) dy
(Fif)x) = @m)~""2 [21(y) dy.

It is easy to see that F,f and f‘l f are continuous functions such that
((FLf)0) < 2m) ™2 fl}; and |[(F, f)(x)| < 2m)~"/%|| ]|, for all x € R™.

Theorem 10.5. The mappings F, and F ; of Ly(R™) into the space C_(R™) of
continuous bounded functions defined on R™ are injective. For f € L{(R™)N
L,(R™) we have

(FLf)(x) = (Ff)(x) and (F,f)(x)=(F~}f)(x)

almost everywhere in R™.

Proor. Take an f from L(R™) for which F, f=0 (i.e., (F, f)(x)=0 for all
x €ER™). We have to prove that f=0. It follows from the equality F, f=0
that

JI@(Fpg)(x) dx = @m) ™" [ [e7 () f(x) dy dx
= () (Fif)(») dy = 0

for all g€ S(R™). Since F,g runs over the whole space S(R™),

f f(x)h(x) dx =0

for all A€ S(R™). Then this holds also for all continuous functions A
defined on R™ and having compact support. Define K(n)= {x € R™ : |x]|
<n} for n €N, let x, be the characteristic function of K(n), and define

_ SO for f(x) 70,
sgnf(x)—-{o for f(x)=0.

Then x, sgnf is measurable, |x,(x)sgn f(x)| <1, and there exists a
sequence (A;) of continuous functions with supports in K(n) such that
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h(x)—sgn f(x) almost everywhere in K(n). We can assume without loss of
generahty that |h, (x)| <1 for all x € K(n) (since we can replace hi(x) by
()| by(x)| ™! for those x € K(n) for which |A,(x)| > 1). Consequently,

f |f(x)| dx = _lim f f(x)h*(x) dx = 0.
K(n) J=>0 Y K(n)

Therefore, f(x) =0 almost everywhere in K(n). As this holds for all n €N,
we have f(x)=0 almost everywhere. F, is then injective. The injectivity of
F, can be proved similarly.

If f€ Li(R™)N Ly(R™) and f, = x,f, then f,—f in L,(R™) and in L(R™).
For every n €N there exists a ¢, € C§°(K(n)) such that

1

S J) = @) ax < o,

and thus

1/2
[, 1609 = (s < {VK) [ 11,000 ox
K(n) K(n)

1 1/2
(3
n
where V(K(n)) denotes the volume of K(n). Consequently, ¢,—fin L,(R™)
and in L,(R™). Therefore,

(FLf)(x) = lim 2m) ™" [e™0,(y) dy

and

(F)(x) = Lim.2m) ™" [e72g,(y) dy.

Here “li.m.= limit in mean” stands for the limit in L,(R™). Hence, (Ff)(x)
=(F, f)(x) almost everywhere. We can prove in a similar way that

(F~Y)(x)=(F,f)(x) almost everywhere. 0

Theorem 10.6. For all f € L,(R™)
(FN(x) = Lim 2m)~ "2 [ SETW 8.
A similar formula holds for F .

Proor. The functions x,f belong to L, (R™)N L,(R™), and x,.f—f in
L,(R™). Therefore, F(x,f)— Ff in L,(R™). Since by Theorem 10.5

(F(x,/))(x) = (2W)-—m/2f e f(y) dy, almosteverywherein R™,
K(n)

the assertion follows. |
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For f, g € L,(R™) the convolution f » g is defined by the integral

(f*g)(x) = @m) " [f(x~y)g(») dy.

The integral exists for all x € R™, because f(x —.)E L,(R™) and g( .)€
L,(R™) imply f(x —.)g( .)€ L,(R™). (For the convolution of L;-functions,
see Exercise 10.1.) Moreover,

(f+&)(x) = 2m) " [f(x=y)g(») dy
= 2m)" [e(x=2)f(») d = (g * )(x).

Theorem 10.7 (The convolution theorem). For f, g € L,(R™)
(@) Fi(Ff - Fe)=F(F~f - Flg)=fxg.
(b) The following assertions are equivalent:
(1) Ff - Fg € Ly(R™),
(i) F7Yf - FTlg€ L(R™),
(i) f * g € Ly(R™).
In this case

fxg=F '(Ff- Fg) = F(F™'f- F'g).
PROQF.
(@) Fy(Ff - Fg)(x)=<(Ff)*, h(x,.)) with
h(x,p) = (2m)~ "™ (Fg)(y)

= Q7) "lim. [ e Y 9g(z) dz

n—>00Q K(n)

= (m ™", | e V(4 x) dz = m)" " (Fe)(0),

where g (z) = g(z + x). Moreover, let us set f_(x)=f(— x). Then 1t is
obvious that (Ff)* = Ff* , and thus

F\(Ff - Fg)(x) = Qm) "X Ff, Fg,> = Qm)” "2 f*, g.>

= @m) ™" [f(=2)g(z+ x) dz = (f * £)(x).

We can prove analogously that F\(F~'f - F~lg)= [ * g.

(b) If Ff - Fg€ L,(R™), then in the formula f * g= F,(Ff - Fg) we can
replace the operator 17“] by F~! and obtain that f * g € L,(R™) and
fxg=F \Ff- Fg). If fxg€&L,(R™), then with h,=Ff - Fg€
L,(R™) and h, = F(f * g) € L,(R™) we have

(Fh)(x) = (f*g)(x) = (F~'hy)(x) almost everywhere.
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We show that h,(x) = h,(x) almost everywhere, and thus Ff - Fg=h,

€ L,(R™). To prove this it is sufficient to prove that [(h,(x)—

hy(x))p(x) dx =0 for all ¢ € S(R™) (cf. the proof of Theorem 10.5).
This follows from the equalities

[ mx)e(x) dx = [m()(Fy 'Fop)(x) dx
= [(Fih)(x)(Fop)(x) dx

= [(F~h,)(x)(Fe@)(x) dx
= ((F~'h)*, Fo) = (Fh}, Fo) = (h} @)

= fhz(x)(p(x) dx.
The equivalence of (i) and (ii) and the second equality follow from the
formula F(h)=(F ~'h)_. O
EXERCISES

10.1.

10.2.
10.3.

10.4.

10.

The convolution (f * g)(x)=Q2n)""/2 { f(x—y)g(y) dy is defined almost
everywhere for all f, g€ L,(R™), and is a function from L;(R™). We have

Fi(f+g)=(F\f) - (F.8)
If f and F, f are from L,(R™), then f= F\(F,f).

(a) For f€ L,(R™) and a €R™ let f, be defined by the equality f,(x)=
S (x + a). Then (Ff,)(x) = e™(Ff )(x).

(b) Let f € L,(R™) and let (Ff )(x)s=0 almost everywhere in R™. Then the set
{f, : a€R™} is total in Ly(R™) (Wiener’s theorem).
Hint: If gL {f, : a€ER™}, then F\(Ff - Fg)=0.

(c) Let & be as in Theorem 10.2. Then the set {4, : a €R™} is total in
L,(R™).

We have (F, f)(x)—0 as |x|—co for every f € L(R™) (Riemann-Lebesque).
Hint: S(R™) is dense in L;(R™), and f,—f in L,(R™) implies F,f,—F,f
uniformly in R”.

2 Sobolev spaces and differential operators
on L,(R™) with constant coefficients

In what follows, for all s > 0 define

and

k(x) = (1+|xP)*? for xeR"

Ly (R™) = { fEL(R™) : kfe L(R™)}.
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L, (R™) is obviously a dense subspace of L,(R™). The equality

&0 = [fx)*8()k(x) dx for [, g €Ly (R)
defines a scalar product on L, (R™). We denote the corresponding norm
by || . [l The space (L, (R™), <., .) ) is a separable Hilbert space, since
U, : L (R™) ->L,(R™), Uf = kf

is an isomorphism of L, (R™) onto Ly(R™).
The Sobolev space of order s is defined by the equality

W2,S(Rm) = {fELZ(Rm) : FfELZ,s(Rm)} = F—ILZ,S(Rm)‘
W;, (R™) is therefore a dense subspace of L,(R™), and the equality
(S, 805 = (Ff, Fg)y for f,ge W, (R™)

defines a scalar product of W, (R™). We denote the corresponding norm
by || . ||, Since F is an isomorphism of W, (R™) onto L, ((R™), the space
W, ((R™) is also a separable Hilbert space.

First we show that the functions from W, (R™) are differentiable in a

certain weak sense.

Theorem 10.8.

@) Let s> 1, w,= (81, 8 -, 8,) (Mg)(x) = x(x) and f, (x)=
fx+ew) for j=1,2,...,m. Then for all feW, (R™) and j=
1,2,...,m

1 o

in Ly(R™). If fe S(R™), then this limit equals D% with a=
(61, 8195 - - - 5 8,,). We write D°f for this limit in case f € W, (R™), as
well.

(b) If a is a multiindex and |a| <s, then the derivative D can be computed
by iteration. The order of differentiation is irrelevant.

(¢) If s€ENy, then || . ||, is equivalent to the norms

1/2 1/2
||fns,o={ s IID"fllz} s = {Hf||2+ S ||D“f||2} .

(o) < [¢]=s

PROOF.
(a) For all xeR"™

F3 (= D)) = (e = DN

1 ix € s/2
(e = 1) < byl < (1+]2D)72
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and

1 ix;e

i_e(e “—1)>x as €—0.

It follows from this that F(1/i€)(f; . —f)— M, Ff, and thus
(1/ie)(f, . —f) > F'MFf as e > 0.

By Theorem 10.1 this limit is equal to D for all f € S(R™).

(b) If |a|=1, then it is obvious that F D= x“Ffe L, ,_,;(R™). Conse-
quently, D% € W, _,(R™). If s > 2, then by part (a) we can therefore
differentiate further. The commutativity of the order of differentiation
follows from the equality D*f= F ~'M_F¥.

() We have || f|2= ||k, FYIf%,

IfI50= 2 IMFfI> and |If|,

la| <s

= || Ff|* + l 2 | MEf|.

al=3s

Since

1+ 2 |’Cm|2 < C1(1+|x|2)s <G, 2 Ixalz
la|=s fal<s

< C3(1+ max sz”’) < C3(1+ > |x"‘|2)
m laf=s
with appropriate constants C,, C,, and C; (that depend only on m and
]

s), all three norms are equivalent.

Theorem 10.9. Suppose f € W, (R™) and o is a multiindex such that |a| <s.

(a) We have <D°f, g) ={f, D) for all g € W, |(R").
(b) The element D°f € L,(R™) is uniquely determined by the equality

(DY, g> ={f,D%> forall ge& Cz°(R").

PROOF.
(@) If g€ W, (R™), then Fg€ L, ,(R™), and thus Fg belongs to the
domain of the operator of multiplication by x*. Therefore,
(D, g> = (F DY, Fg) = (M, Ff, Fg) = {Ff, M ,Fg)

= (Ff, F D%g) = {f, D).

(b) By part (a) we have (D%, g)>=(f, D%)> for every ge& C{R")
C W, (R™). If £, is a further element from Ly(R™) such that {f,, g)> =

(f, D°g>, then {f —D?%, g> =0 for all g€ Cs°(R™). Therefore, f, =
D?f, since C§°(R™) is dense in L,(R™). ]

Theorem 10.10.
(a) For every s >0 the set Cs°(R™) is dense in S(R™) with respect to the

norm || . ||,
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(b) For every s > 0 the set Cs°(R™) is dense in W, (R™) with respect to the

norm || . ||,

PROOF.

(a) Suppose r€N, and r >s. We show that Cs5°(R™) is dense in S(R™)
with respect to || . ||, o; since || . ||, <C|| . ||, o the assertion follows

from this. In order to prove the former statement, let 3 € Cs°(R) be
such that #(¢f)=1 for t< 1, #(t)=0 for t>2 and 0<P(r) < 1 for all
t €R. For every n€N let 4, € Cs°(R™) be defined by the equality
3,(x) =3(n"!|x]) for all x € R™. If f € S(R™) and we define f, =9 ,f €
Cs°(R™) for all n €N, then ||D%, — D%||—0 as n—co for every multi-
index a. It follows from this that || f, — f||, ¢(—0 as n—o0.

(b) Because of part (a) we only have to show that S(R™) is dense in
W, ((R™). Since F 1s an isomorphism of W, (R™) onto L, ((R™) that
maps S(R™) onto itself, it is sufficient to prove that S(R™) is dense in
L, ((R™). This is surely true, as Cg°(R™) is dense in L, (R™) (we can
prove this the same way as we did the corresponding assertion for
L,(R™), cf. Section 2.2, Example 8). O

An m-variable polynomial P of degree r has the form
P(X) = 2 ca‘xa’
|a| <7

where ¢, €C and ¢, #0 for at least one a such that |a|=r. If P is a
polynomial of degree r, then the formula

PD) = 3 D' = 3 a(—i) 1T 2

ja|<r |a) <r Jj=1 axjo'l’

defines a differential form of order r. We always assume that r %0, i.e., we
only consider non-trivial differential operators. In what follows let P be a
(fixed) polynomial. The equalities

D(T,) =C°(R™), T,f = P(D)f for f € C&(R™)

define a differential operator on L,(R™) with constant coefficients. If we
denote by M, the operator of multiplication by the function g, then the
following theorem holds.

Theorem 10.11. _

(@) T, is closable. For T=T, we have T=F 'MpF. T is called the
maximal differential operator with constant coefficients induced by P. The
operator T§ is equal to the maximal differential operator induced by the
conjugate polynomial P*.

(b) We have o(T)={P(x): xER™} and A\—T) '= F—IM(;\__P)—xF for
A Ep(T). The operator T has no eigenvalues.
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(©) If 1+ |P))~ '€ Ly(R™), then \— T)~ ' is a Carleman operator for every
AEp(T), and

A=1)"'(x) = @m) " [In(x=2) 1 (») dy
with
h, = F (A= P)™") € L(R™).

PRrOOF.
(a) First we define 7, by the equalities

D(T,) =S(R™), T,f= P(D)f for fe&S(R™.

Then T,C T, and T, = F ~'M, | F, where M p,1 denotes the restriction
of M, to S(R™) (cf. Theorem 10.1). Since M, | (as a restriction of a
closed operator) is closable, the operator T that is unitarily equivalent
to Mp | is also closable. Therefore, T, is closable, also. Now we show

that 7,= 7, and Mp = Mp. It will follow from this that
T=Ty=T,=F 'Mp F= F"'M, \F = F"'M,F.

T,=T,: Since T,cT,, we have T, C T,. Consequently, it is
sufficient to prove that D(T,) = S(R™) C D(T,). For every f € S(R™) let
us construct, as in the proof of Theorem 10.10(a), a sequence (f,) from
Cs°(R™) such that ||D%, — D%||—0 for all «. It follows from this that
I, — fll=0 and || T, f, — T, f||->0. Consequently, f € D(T,), and thus
D(T)) C D(Ty). L

Mp = Mp: For this it is sufficient to prove that M, = M, where
M, o denotes the restriction of M, to Cg°(R™). In order to prove this
we have to show the following: For every f&€ D(M,)={f¢€
L,(R™) : Pf € L,(R™)} there exists a sequence (f,) from Cg°(R™) such
that f,— f and M,f,— Mf. This can also be proved the same way as in
Section 2.2, Example 8 (cf. also the proof of Theorem 10.10(b)).

Tinally, T¥=T¥=T*=F Y (My)*F=F ~'Mp+F. (cf. Section 5.1,
cxample 1, (5.1)).

(b) Since T and M, are unitarily equivalent,

o(T) = o(M,p) = { P(x) : x ER™}.
For Aep(T)
A=T)"'=(\~F 'M,F)"'
=[F'A\=Mp)F]"' = F7'\A—M,)"'F.

Because of the assumption r >0, the set {x € R™ : P(x)=s} is a null
set for every s €C (proof!). By Section 5.2, Example 1, (5.14) the
operator M, therefore has no eigenvalue. Then the same holds for 7.
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(c) Assume that (1+]|P])7' € L,(R™) and A€p(T), ie., there is an 7 >0
such that ]A— P(x)|>n for all x€R™. For all x€R™ such that
| P(x)| > 2|A| + 1 we have the estimate

A= P(x)| > |P(x)] = | = (51 P(x)] = N]) + 3| P(x)]

> 3+ 3|P(x)| = 3(1+]P(x)).
Consequently,
A= P07 < 2(1+|P(x)))

for x € R”™ suchthat (1+|P(x)|)”" <T@+~

Since, besides, |]A — P(x)|"'<n~! for all x € R™, it follows that (A —
P)~ '€ Ly(R™). The convolution theorem (Theorem 10.7) therefore
implies that

A=T)"'f=F '[A=P) 'Ff] = hy *f,

where h, = F ~!((A\— P)™"). Since h, € L,(R™), the operator A — T)™!
1s a Carleman operator. |

REMARK. In Theorem 10.11(b) the closure is superfluous for m =1, as can
be easily seen. This is not true for m > 1, as the example of P(x,, x,)=
(1~— x;x,)> + x? shows; in this case we have { P(x) : x € R?} =(0, o).

Theorem 10.12. The following assertions are equivalent:
(1) All coefficients c, of P are real.

(1) T, is symmetric.

(i) T, is essentially self-adjoint.

(iv) T is self-adjoint.

The proof immediately follows from Theorem 10.11(a).

Theorem 10.13. Let T be a self-adjoint differential operator with constant
coefficients induced by P, and let E denote the spectral family of T.
(a) For all seR

E(s) = F_IMX{xEIR'":P(x)<s}F-
(b) If | P(x)|—> 0 as |x|—>co, then E(t) — E(s) is a Carleman operator for all
s, t € R such that s <t, and

(E(t) = E()f(x) = @)™ [, Lx=3)f(») &,

where e, = FﬁlX{xeRm < Py<) € L,(R™).
(¢) If P(x)—>o0 as |x|—> o0, then E(s) is a Carleman operator for all s € R.
The same holds for I — E(s) provided that P(x)— — oo as |x|— 0.
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PRrOOF.
(a) The first assertion is clear, since

F(S) = MX{xER"’ : P(x)<s) for seR

is the spectral family of Mp.
(b) We have

E(t) — E(s) = F~1MX{xER'":s<P(x)<t}F'

Since | P(x)|— oo as |x|— 00, the set {x ER™ : s <P(x) <t} is bounded.
Therefore, X erm:s<pm<n Delongs to Ly(R™). The assertion then
follows from Theorem 10.7.

(¢) If P(x)—>00 as |[x|—o0, then {x €R™ : P(x) <s} is compact, and thus
X{xER"’ : P(x)<s}E L2(Rm) If P(X)—) — oo as IX,—)OO, then X{xER"’ : P(x)>s}
€ L,(R™). The assertion follows from Theorem 10.7 in both cases. []

A polynomial P of degree r and the operators 7T, and T induced by P
are said to be elliptic if there exists a C > 0 such that

1+ |P(x)] > C(Q+|xP)”* = Ck(x) forall xe& R™

(Observe that we always have 1+ |P(x)]<C’k,(x) with an appropriate
choice of C’ > 0.) The principal part of P is given by

P(x)= > cx"

la|=r

Correspondingly, the principal part of P(D) is given by

P(D)= > ¢, D~

[xf=r

Theorem 10.14. Let P be a polynomial of degree r, and let T be the maximal
differential operator induced by P. Then the following statements are equi-
valent:
(1) P is elliptic.
(i1) The principal part of P vanishes only for x=0.
(iii) D(T)= W, (R™).
In this case the norms || .||, and || . ||, are equivalent.
PROOF. (i) implies (ii): Let us assume that there is an x, € R™, x,# 0 such
that P,(x,) =0. Then we also have P,(sx,) =0 for all s € R. Therefore,
Psxg)l = | 2 es®xg| < C(1+|sx)" 7,
lal<r

in contradiction with the ellipticity of P.
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(i) implies (i): Let n=min{|P(x)| : x€R™, |x|=1}. Then for all x
e R”

[P()] =|P(x)+ 2 x> |xlm — C(1+[xP) 7%
|a] <r
The ellipticity of P follows from this.
(1) implies (1i1)): We have

D(T) = F~'{f EL,(R™) : PfELy(R™))
= F“’{fELZ(R'”) : k,fELz(R"’)} =W, ,(R™).
Since
WA = AP+ | TP = ILEFI? + (| MpEfIP,

the equivalence of the norms || . || and || . ||, follows.
(1i1) implies (1): We obtain from the equality D(T)= W, ,(R™) that

D(M,) = FD(T) =L, ,(R™) =D(M,).

By Theorem 5.9 M, is relatively bounded with respect to M, therefore
with respect to M,p, as well (since D(MP) D(Mp) and ||Mp fl|=
| MpfI). The boundedness of M, (1+ M, ) , 1.e., the boundedness of the
function k,(1+|P|)~!, follows from this by Theorem 9.9. Consequently, P

is elliptic. N

Theorem 10.15. Let T be a self-adjoint elliptic differential operator with

constant coefficients on L,(R™).

(@) If m>1, then T is semibounded.

(b) If T is bounded from below, then E(t) is a Carleman operator for every
tER.

PROOF.

(a) Since T is self-adjoint, P is real-valued. As T is elliptic, |P(x)|-—>c0 as
|x]— 0. Consequently, |P(x)| >0 for all |x| > ¢, Because of the con-
tinuity of P it follows (due to the assumption m > 1) that P(x) >0 for
all [x|>¢, or P(x)<O0 for all |x|>cy; hence P(x)—>0o0 or P(x)— —
as |x|—>o0. The boundedness from below or from above follows from
this.

(b) If T is elliptic and bounded from below, then we obtain (as in the
proof of part (a)) that P(x)—>o0 as |x|—o0. The assertion follows by
Theorem 10.13. ]

Corollary. Let T be a self-adjoint differential operator on L,(R™) with
constant coefficients. Then

l. o(T)=R or o(T) =]y, ) or o(T)=(—c0, v].

2. If T is elliptic and m > 1, then o(T)=[y, o0) or o(T)=(— 00, Y].
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3. We always have H,(T)= {0}, H.(T)= LyR™), and o(T)=06,(T)=0.(T)
(¢f. also Exercise 10.7).

EXAMPLE 1. m= 1, P(x)= x, P(D)=(1/1)(d/dx). Then T is elliptic and not
semibounded; o(7T) = R.

ExampLE 2. m>1, P(x)=37_ x'=|x], P(D)=—Z27 (3%/0x})=—A.
Then 7 is elliptic and bounded from below; o(T) =0, ).

EXAMPLE 3. m=2, P(x)= x>+ x5, P(D)= —(0?/9x})+ (3*/0x3). Then T
is not elliptic but is bounded from below; o(T) =][0, o].

EXERCISES

10.5. Let f belong to W, (R™) with s >m/2. Then f is Lipschitz with exponent
8 €(0, 11N (0, s — (m/2)), i.e., there exists a C > 0 such that | f(x) —f(¥)| <
C|x—yl|® for all x, y € R™,

10.6. For r € Ny such that r <m the set C§°(R™\{0}) is dense in W, (R™).
Hint: If 4 € Cg°(R™) is such that #(x)=1 for |x|<1/2 and #(x)=0 for
|x| > 1 and §,(x) = #(nx), then 0J—w> 0; therefore, (1 — ﬁ”)f—w>fin the sense of
W, .(R™) (cf. Exercise 4.25).

10.7. If P is a non-constant polynomial, then M, and F~!M,F have a pure
absolutely continuous spectrum.

10.3 Relatively bounded and relatively compact
perturbations

In this section we first give conditions in order that an operator
M, : W, (R™)—L,(R™), f>qf be bounded or compact. For the sake of
simplicity, we only consider integers r; this is sufficient in most applica-
tions to differential operators. (Corresponding results for arbitrary r can be
found in M. Schechter [34], Chapter 6.)

Theorem 10.16. Let 0 <s <r (not necessarily integral). Then for every n >0
there exists a C, >0 such that

I/lls > Sl + Gl forall fe& W, (R7).

PrOOF. The assertion is equivalent to the inequality

Ay < 0llfllen + GlIAII forall feL, (R™).
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For all N >0 we have
1118 = [1f P+ [xP)° dx

< (1+ NZ)SfI MR dx+ (s Ny f

x|

| F)P(L+]x?)" dx
>N

< (L+ N3P+ (1L+ N3 112,

Due to the inequality s —r <0, the assertion follows from this if N is
chosen large enough. ]

A measurable function ¢ : R”—C is said to be locally square integrable
if 9q € Ly(R™) for every & € C°(R™). This holds if and only if |g|* is
integrable over every compact subset of R™. The set of locally square
integrable functions obviously constitutes a (complex) vector space. This
space will be denoted by L, ;,(R™). For every g € L, |,.(R™) let us define

o g

1/2
lg(»)? dy} forall x € R™
x-—-y|l<1

N, is obviously locally bounded, i.e., it is bounded on every compact
subset. N_ is even continuous (proof!).
For every measurable function g : R”—C and every p € R let us define

(the value oo is allowed)

1/2 ‘
1Iq(y)lzlx—yl"“"' dy} for p<m,?

M, (x) = {flx—y|<

N, (x) for p>m.
We denote by M, ;,.(R™) the vector space of measurable functions g : R™
—C for which M, (.) is a locally bounded function. M,(R™) denotes the

subspace of those g€ M, ,(R™) for which M, (.) is bounded. For
q € M,(R™) we set

M,,=sup{M, (x): xER"}.

9P

For all p,, p, ER such that p, <p, we have
Mp,, loc(Rm) C Mpz, loc( Rm) - L2, loc(Rm)’

M, (R™) c M, (R™); (10.1)
if g € M, (R™), then we obviously have
M,, <M,,. (10.2)

2 This definition goes back to F. Stummel [52] for p < 4.
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ExaMPLE 1. Every bounded measurable function belongs to M,(R™) for
every p > 0.

EXAMPLE 2. Assume a ER™, ¢ >0, and 0<§ <m/2. Assume, furthermore,
that the function g : R”—C is measurable and |g(x)| <c|x — a| ™% almost
everywhere in R™. Then g€ M, (R™) for all p>28. This is obvious for
p > m, since g is locally square integrable and g(x)—0 as |x|—o0. Now
suppose that 26 < p <m. Then

M (x) < [ + v —al"P|x—yP" dy
’ |x—y|< 1 Ix—y|<1
ly=—al<|x-y| |y=—a]>|x~y|
< cz{ |x —ylp=28-m dy}
= 2c2f lylP~?"mdy = C < o0.
i1

J

y=af®mdy+ [
y—al<1 |

x—y|<1

Of course, sums of such functions also belong to M,(R™).

Theorem 10.17. Assume that r EN and p < 2r.
(a) There is a constant C > 0 such that

lgfll < CM, IIfll, forall q €M, (R™) andall feEW,,(R™).

(b) For every q € M,(R™) and every m >0 there is a C, such that
lafll <allfll, + GISIl forall f € W, (R™).

ProoF. Take a % € C5°(R™) such that $(0) =1 and #(x) =0 for |x| > 1, and
let 4, € Cs°(R™) be defined by the equality

d(x) = #(s " 'x) for xER™ and s€(0,1].

Let 2, denote the unit sphere in R™. Then for all f € C§°(R™), s €(0, 1]
and w €Q,,

10) = 3,0/ = - [ 2 ) ) do = -
s s 3’
= (—1)f0ftr . ftzgﬁ(ﬂs(tlw)f(tlw)) dy ... dt,_, ds,

- (-1 f s-%l;(ﬂs(tlw)f(tlw)){ [roe [y an)

0

- [ s an
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With
= 1w, 0 <t <5

g(y) = g(tw) =

we therefore obtain by integration over the unit sphere §2,, that

| f(0)] < f flg(tw)|t’ 'dr dw

— 1!
- r—1 — r—m
c,fo z fgm|g(rw)|dwdt clflyl<s|y| |2(»)| dy,

where V), denotes the area of {},, and dw the area element on &, . Since

|g(¥)| < Cz( 2 DY ()| +s7" 2 ID"‘f(y)l) = 1 h(y),

la| <r o] <r
we obtain for all € > 0 that

SOF <Cf  rmmayf PP dy
Yyl &s

[yl <s

<Cotf P S DIOI+s S DY)
yi<1

|a| <7 la| <r

It follows similarly that for all s € R™

|f(x)P < C4S‘{f |x —yPr=emm X DY (y)P dy

[x—yl<1 la| <r

e[ P S YOI G |

lx-y|<1 la] <r

In order to estimate ||gf|| we distinguish between two different cases.

First assume that 2r >m. In this case, without loss of generality we can
assume on the basis of (10.1) and (10.2) that p >m. Furthermore, choose
€ =2r—m. Then

Jla(0)f ()P dx < € [ |a(x)P
A SO s S Py | o

[x—yl<1]a]<r —yI<1]al<r

<cormz, [{ S YOI+ S DYOIF) o

la| <r la| <r

Mg (SIS + s A0 )
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Now let 2r <m. Then p <m. Choose e=2r —p. We have

Jla@)f ()P dx < cps e |q(x>|2[ [y S DYOIR dy

lx—y]<1 ] < r

+s‘2’f x—=yPP~™ Y ID¥(y)dy} dx

lx—pi<l la| <r
2 2r— 2 -
< CeMy {s™ PSR+ 721 A3, )

In both cases we obtain assertion (a) for f € C§°(R™) provided that we
take, for example, s = 1.

Since by Theorem 10.16 for every u>0 there exists a C, 2> 0 such that

111 < BIfI7+ AP

assertion (b) follows for all f € Cf°(R™) in both cases provided that first s
and then p is chosen small enough.

If fe W, (R™), then there exists a sequence (f,) from Cg°(R™) for
which f,—f in the sense of W, ,(R™). Since the sequence (f,) then
converges to f also in L,(R™), there is a subsequence (f, ) that converges to
f almost everywhere. Then this holds for (¢f, ) and g¢f, as well. Since the
sequences (|| £, |I,) and (|| f, |I) are bounded, (||4f, ||) is also bounded and
Fatou’s lemma implies that gf € L,(R™) and

. . 1/2
97l < tim int { f1gC0f, (P x|
= lim inf{|q7, | < lim inf (] £, I, + C, £, )
=l fl, + Gl

We can prove assertion (a) for f € W, ,(R™) similarly. O

Using this result, we can now give conditions for the relative bounded-
ness and relative compactness of the perturbations of a closed operator T’
such that D(T) c W, (R™).

Theorem 10.18. Assume r EN and T is a closed operator on L,{R™) such that
D(T)c W, ,(R™). Let V be an operator on Ly(R™) such that

D(V) DW, (R"), V=3 ¢,DF for f€W, R

la] <7

Let the functions g, be measurable, and assume that q, is bounded for |a|=r,
Zioi=SuP{| g, (%) : x ER™}=¢, g, €M, (R™) with p, <2(r —|a|) for |a <r.

Then V is T-bounded. If | f||, <d||Tf|| + e|| f|| for all f € D(T), then the
T-bound of V is less than or equal to dc. If q,=0 for |a|=r, then the
T-bound of V is equal to 0.
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Proor. If M, is the operator of multiplication by k,=(1+]|. ) /2 on
L,(R™) and T,= F ~'M,_F, then T, is a self-adjoint operator on L,(R™) and
D(T,)=W, ,(IR’") By Theorem 5. 9 the operator T, is T-bounded, i.e., there
exist contants & and e such that || 7, f|| <d|| Tf|| + e[|f|| for all f€ D(T). Let

> ¢,D* and Vy= > q D%

|a|=r loe] <r
We obviously have

VAL < cllfll, = cll TSIl < cd|| TS| + cel f]I.

It is therefore sufficient to show that for every € >0 there exists a C, >0
such that

IVofll < ellfll, + CIfll forall fe W, (R).

Since D°f € W, ,_(R™) (because M, Ff € L, ,_,,(R™)), by Theorem 10.17
for every >0 there exists a C, >0 such that for all |a|<r and f€
W,, (R™)

19, D1l < DN, - 1oy + GIDFN < llfll, + Cll flljar
This gives, together with Theorem 10.16, the assertion. O

In order to prove the relative compactness of perturbations, we need the
following auxiliary results.

Theorem 10.19. Ler 0 <s <r (not necessarily integral). The mapping
P : WZ, r(Rm) '—)WZ,S(Rm)’ f}'—) (Pf
is compact for every @ € Cg°(R™).

PROOF. The operator ® is compact if and only if the operator X defined on
L,(R™) by the formula

Ut F-! @ F U,
K: L(R") - L, ,(R") » W, (R™) > W, (R") > L, (R™) - L,(R™)

is compact, since the four operators at the ends are unitary (cf. Section
10.2 for U, and U,). By Theorem 10.7 we obviously have for f € L,(R™)
that

(KF)(x) = [(L+1xP729(x =) (1+ P 7f () dy

with = (27)"™/2Fp € S(R™). The operator K is therefore an integral
operator with kernel

k(x,y) = (1+|xPYu(x = y) 1+ |y) ™% for x,y ER™.



310 10 Differential operators on L(R™)

Since y € S(R™), for every / €N there is a B, such that

|¥(x)| < B(1+ |x|)"’ forall x € R™.
For n €N let us set

k(x,y) for |y|<n,

k = = - .
Gy = {0 P x0) = k) = Rux0)

We shall prove the assertion by showing that for the operators K, and H,
induced by k, and 4, the following holds: K, is a Hilbert-Schmidt operator
and ||H,|| -0 as n—co.

For |y| <n and |x| > 2n we have

- -1
W(x=y) < B(1+|x=y)™" < B(1+5]x]) "
It follows from this that for /=m + 1 + s and an appropriate constant C

lY(x—y)| < CA+|x)™""'" for |y|<n andall x€R™

We therefore have

—m- —r/2
Ik, (x, y)| < {C(1+|x|) A+yP)~""* for |y|<n,
0 for |y|>n’

and thus k, € L,(R™ X R™), 1.e., K, 1s a Hilbert-Schmidt operator.
To estimate the norm of H,, we use the corollary to Theorem 6.24. We
have

fll W= +]yP) "2 dy < C(1+n) " [lg(x—p)ldy

yl=n
< C(14+n) " < C(1+|x|) (A +n) "

for |x| <n. Since € S(R™), we have

f||> =1+ 1) 2 dy < G [ +1x=y) ™" (1 +]) 7" dy
y|>n

N

Olf k) ) o

|~y <|x|/2

+ (1+1x=3) """ &
|x —p|>|x|/2
<C+|x) T [ +]x =y " dy
G (DT dy
ly|>x|/2

S Cs(1+|x]) 7" < Cs(1+x])) (A +n)"~"
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for | x| >n. Consequently, it follows for all x € R™ that

f|h,,(x,y)|dy < Ce(l+n) " "—>0 as n— oo.

Furthermore,

JA+IxD T =p)ldx < € [(1+|x)°(1+]x =y 777" dx
- C7{fIXI<2|y!+ IXI>2|yI(l+|Xl) (F+be=yh™ dx}
<c {2y faslr—y) T dx

+f(1+ |x|)s(l +%|x|)~m—s_] dx}
< Cy(1+1p]).

Hence, for all y € R” such that |y| >n (and thus for all y € R™)

f|h,,(x,y)|dx S G(l+y]y "< C(1+n)" "0 as n— .

It follows therefore from the Corollary to Theorem 6.24 that ||H, || <
Co(1+ny "—0asn—co. J

Theorem 10.20. Assume that s EN, g € M,(R™) for some p <2s and N S(X)—
0 as |x|— 0. Then the mapping

Q : Wy (R™) - Ly(R™), f>of
is compact.

ProOF. Let M, be the operator of multiplication by the function k,, and let
T,= F~'M, F. We have to prove the T,-compactness of Q. By Theorem
10 17(b) the operator Q 1is obviously T,-bounded with 7,-bound zero.
Therefore, by Theorem 9.11 it is enough to prove the Tf—compactness of
Q. This, in turn, is equivalent to the compactness of

Q : W, ,(R™) —L(R™), fqf.

We shall prove this in what follows.
If p > m, then set 7=p. Then

M, (x) =M, (x) =N,(x) >0 as |x|—> .

If p <m, then we choose a 7 for which p <7 <min(m, 2s). Then Holder’s
inequality with the exponents p =(m—p)/(tr —p) and p’=(m —p)/(m — 1)
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gives
M, (x) =fl l<l{Iq(y)l"/”}{Iq(y)l"/”'lx—))IT""} dy
Xy
1/p 1/p’
< {f lg(»))? dy} {f lg(P)P|x = ylp dy}
jx—yi<1 Ix=y|<1

2 2/p’
= N,(x)"M, (x)*/" >0 as |x]| - co.

Consequently, in each case we have found a 7 for which

7<2s and M, (x)—>0 as |x|— .

Now let ¢ € Cs°(R™) be such that g(x)=1 for |x| <1, ¢(x) =0 for |x| >2
and 0 <g@(x) <1 for all x €R™. Let the functions ¢, € Cs°(R™) be defined
by the equality @, (x) = ¢(n”'x) for nEN and x € R™. Then by Theorem
10.19 the operator

(I)n . W2,2S(Rm) _)WZ,S(Rm), fl—) (pnf

is compact for all » €N. Since the mapping O : W, (R™)—L(R™) is
bounded by Theorem 10.17, the compactness of

0, : W, 5(R™) -L(R™), f+ qo,f

follows. As M, (x)—0 when |x|—co, we obviously have M,
when n— o0. It follows from this for the operators

A, 1 Wy 5 (R™) SL(R™), frq(1-9,)f

that ||A4,||>0 (cf. Theorem 10.17). This implies that Q=Iim,  QO®,.
Hence, Q is compact. O

I—- (pn)q, 7-—>O

Theorem 10.21. Let r, T, and V be defined as in Theorem 10.18.
(@) If q, =0 for |a|=r and

Nqa(x)—>0 as |x|—> o0 for |a| <r,

then V is T-compact.
(b) If T is self-adjoint, D(T?) C W, (R™) for some p > 1 and s >r, and

g,(x)—>0  for |x|>c and |a|=r,
N, (x)—>0 for |x|>00 and |af<r,

then V is T'-compact for every t > 1.

Proor. The mappings

W2, r(Rm) _)WZ,r—{a[(Rm)> f’——) Doff
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are bounded, and by Theorem 10.20 the mappings
Wa, r-1a(R™) > Lo(R7), g+ 4,8
are compact for |a| <r. The compactness of the operators
Ve : Wo (R™) 5 L(R™), fr> ¢, D

follows from this for all « such that |a| <r. This gives the T-compactness
of V for part (a) of the assertion.
We can show the compactness of

V,: Wy (R™) SL(R™), f> q,D%

for |a|=r in an analogous way. Since D(T”)cC W, (R™), this gives the
T?-compactness of V. As V' is T-bounded by Theorem 10.18, we obtain the
T*-compactness of V for every ¢ > 1 by Theorem 9.11. This proves part (b).

[]

EXERCISES

10.8. (a) Assume that g€ L, ;,.(R™) for some p > 2 (i.e., g is measurable and |g}”
is integrable over every compact subset of R™). If p>2m/p for p >2
and p >m for p=2, then g€ M, | (R™).

(b) Prove a corresponding result for M,(R™).

10.9. Let T be defined by the equalities D(7)= W, »(R), Tf = — Af+ gf, where ¢
is a continuous real-valued function with compact support. If fg g(7) dz <0,
then 7 has at least one negative eigenvalue.

Hint: Theorem 6.33, 7.26(b) and 10.21(a).

10.10. Let 7 be a self-adjoint operator on L,(R™).

(@) If (T)c W, (R™) for some r>m/2, then A\—T) ! is a Carleman
operator for every A€ p(T). The operator E(b)— E(a) is a Carleman
operator for all a, b €R.

(b) If D(T™")c W, (R™) for some r >m/2, then E(b)— E(a) is a Carleman
operator for all a, bER.

10.4 Essentially self-adjoint Schrodinger operators

In this section we consider operators on L,(R™) that are induced by
differential forms

of = 2 (D, ~b)f +

with D;=(1/i)(d/dx;) and with real-valued functions b, C'(R™) and
g€ Ly 10(R™) (we have used the notation (D;— b)f=(D,— b)I(D;—
b)f1). The operator T defined on L,(R™) by

D(T) =Cg*(R™) and Tf=1f for feD(T) (10.3)
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is obviously symmetric. For f € D(T)
Tf = —Af—22 bDf + (> +idivhb+q)f (10.4)
j=1

with b=(b,, b,, ..., b,) and b>=37_ b’.

In non-relativistic quantum mechanics operators of this form occur as
Schradinger operators of systems consisting of finitely many charged par-
ticles in an electromagnetic field. For m =3 we encounter the Schrodinger
operator of one particle in an electric field with potential ¢ and a magnetic

field with the vector potential b = (b,, b,, b,),
3
7f = 3 (D, - b)f + df. (10.5)
=1

For m=3N the Schrodinger operator of a system of N charged particles has
this form: If in this case we write

3N —
R™ 3 x = (xl, X1, 2 X1,3 X2, 15« -+ 5 Xv—1,3 XN, b XN, 20 XN, 3);

where x; = (x; |, x; ,, X; ;) are the coordinates of the jth particle, then

N 3
Tf(x) = 3 3 (D= bu(x))f(x) + q(x)f(x) (10.6)

j=1 k=1
with
N -1 N
g(x) = 2 2 qjl(xj—xl) + 2 qj(xj) (10.7)
I=2 j=1 j=1
and
bjk= eb, for j=12,...,N and k=123,

where the factor ¢; depends on the charge of the jth particle. (Here we have
replaced by 1 all physical quantities that are irrelevant for the properties
studied here.)

Theorem 10.22. Let the operator T be defined as in (10.3). Assume that
by,...,b,EC Y(R™) are bounded with bounded derivatives, and q € M,(R™)
Jor some p<4. Then T is essentially self-adjoint and D(T)= W, »(R™). The
operator T (and thus also T) is bounded from below.

The proof can be obtained immediately from Theorems 5.28, 10.18, and
9.1 if we consider —A as the unperturbed operator (cf. the representation
(10.4) of T).

The operators under (10.5) and (10.6) satisfy the assumptions of Theo-
rem 10.22 in almost all physically realizable cases.

In this section we actually prove that under much more general assump-
tions these operators still remain essentially self-adjoint, while D(T) is then
generally no longer equal to W, ,(R™). The following theorem is due to
T. Ikebe and T. Kato [44] in a somewhat more general form. Our presenta-
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tion relies on a proof of C.G. Simader [51] for a somewhat more general
result.

For reN let W, , ,«(R™) denote the space of (equivalence classes of)
the functions f : R”—C for which df € W, ,(R™) for all ¢ € Cg°(R™). For
every fE W, , 1o(R™) and jE({1,2,...,m} there is exactly one f €
W, ,_1 10(R™) such that for all k>0

X = liT%Xk’i“le“(Jj',e —f) in the sense of L,(R™),
€—>

where f,  is defined as in Theorem 10.8 and x, denotes the characteristic
function of M, ={x ER™ : |x| <k} (on M, the function f; can be defined
by the equality x,f, =x,D,(%f) where ¢ € C°(R™) and #(x)=1 for x €
My; this definition of x,f; is independent of #). For f € W, (R™) we have
J;=D,f. Consequently, for f€ W, , (R™) we define D;f=f. If ¢ €&
Cs°(R™) is such that #(x) =1 for x € M, then

D;(9f)(x) = D;f(x) almost everywherein M,.

Since D;f € W, ,_;, 10(R™), we can define successively all derivatives D°f
for |a| <r; we have D% € Wa, s —ja), 10c(R™). The function Af belongs to
W, 1, 10(R™) provided that A€ C'(R™) and f € W, | 1,(R™). In particular,
the expression 27 ,(D,;—b5)%f is meaningful for b€ C'(R™) and f€
WZ, 2, loc(Rm)°

Theorem 10.23. Let the operator T be defined as in (10.3). Let b, b,, . . ., b,
€ CY(R™) and let q belong to M, ,.(R™) for some p <4. Moreover, assume
that q = q,+ q, with

g, € M, (R™) for some p<A4,
g,(x) > — C|x|* forsome C >0 andall x€ER™

Then T is essentially self-adjoint. We have
D(T) = {fEL(R")NW,, 2, 0e(R™) 1 7f EL,(R™)},
Tf= X (D,-6)f+4qf for feD(T).
j=1

For the proof we need the following auxiliary theorems.

Auxiliary theorem 10.24. If g € M,(R™), then |q|'/>€ M,(R™) for every
6> p/2. (A similar result holds for M, ,.(R™) and M, ,.(R™)).

PrOOF. If p > 2m, then it follows by the Schwarz inequality that
1/2
) lg(»)ldy < {Cf lg(») dy} <CVM,,
lx—y[<1 x—y|<1

for all x €R™, i.e., |q|'/>€ M,(R™) for ¢ >m, and thus for all 6 > p/2.
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If m<p<2mand 0>p/2>m/2, then
[ laW)llx =yl dy

fx—y|<1

1/2
< {f lg(»)I* dy [x =y dy} <CM,

lx—y|<1 [x—y|<1

because 20 —2m > — m.
If p<m and o > p/2, then it follows for e =0 —(p/2) >0 that

[ la)llx =yl dy
lx—y|<1

= |x = =2 g(p)l|x =y 7 D] dy

|x~yl<1
1/2
< |x —y|~™ dy lg(P)P|x =yl dy} <CM, .
{[x—yKl '/I‘x—yl<l “e
Consequently, the assertion is proved in each case. O
Auxiliary theorem 10.25. Let the functions b(j=1, 2, ..., m) and q, be the

same as in Theorem 10.23. For every n >0 there exists a C, > 0 such that

dalfif> <m -;1 I(D; = b) f1I* + C,IIfII?
for all f € Cg°(R™).

PrOOF. |g,|'/? belongs to M,(R™) for some o <2 by Auxiliary theorem
10.24. Take a ¢ € Cs°(R™) such that ¢(x)=1 for x Esupp f, and set
h=|grad Y| +|¢|. Set, furthermore, @ (x)=(|f(x)]*+ ¢€)'/? for every €>0.
Then by Theorem 10.17

daslf, £ =l <[ sl o] < gnwuf + Cyllo

<13 WD) dx + Cylgrad Ylg. + [¥le”

-4 § J @) RIS (x)* Dyf (x) = F(Df () dx
+ Gl kg P
=7 2 [o 1D~ b)) — S(DF~ 5f ) dx + G g

J=1

<0 X o HfPDS - bfP dx + ke

ji=1
<n 2 [ID) = )W dx + Cllhg,

The assertion follows by letting € tend to 0, because A(x) =1 for x € supp f.
[
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Auxiliary theorem 10.26. Let T be defined as in Theorem 10.23. For n€N
let

R, = {x€R":n<|x|<2n} and Q, = {xER"': %<|x|<3n}.
There exists a C > 0 such that for all f € C°(R™) and all n€N

i _ 2 2 2 2
El fR n|(Dj B)fI? dx < 2 fon|Tf| dx + Cn fo,.l fI? dx
and
> f (D, - 8) f? dx < 2 | Tf|? dx + Cn? f |2 dx.
j=1"]

x| <n fx| <2n jx| <2n

ProoF. Let n € Cs°(R™) be such that

| 1 for 1<|x|<2,

< < m =

0 <nlx) <1 forall x&R",u(x) 0 for |x|<3; and|x|>3.

Moreover, for all n €N set ,(x)=n(rn " 'x). Since 3, € Cg*(R™) and
supp m, CQ,, supp(grad 1,) CQ,\R,,

by Auxiliary theorem 10.25 we have for all f € C5°(R™) that
i, TFI? + . f1* > 2Re(n, Tf, m,f> = 2Re{Tf, naf )

= 2Re{ ﬁ {D; = b) f, (D; = b)(mif)> + {qn.f, mf>}

j=1

= 2Re{ Im(D; = 5 S +2 3} <my(D; = 8))f, (Dyma) £
=1 j=

J

+{qmafs m.f > +<gm,f, mf>}
>2{§ympﬁ@HW—QQWMq—@ﬂF
~4 3 1D~ 3 1D, e

— ClimfII” ~ C2n2||nJ||2}_
Since
1(D; = b, f11> = I(Dym,) f + n,(D; — b) f11?

< 2{1I(D;m,) F17 + [Im.(D; = b)) £11*},
and

% foral neN andall x e R",

ID;m, (x)] < G
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we can further estimate:

1

I, TFP + AP > 3 3 iD= 5)fIP = Con? J PGP dx

3 S [0, =B NI dx — o [ 1P d.

The first assertion follows from this immediately. The second assertion
can be proved analogously if we replace 7, by a function {, € C5°(R™)
such that {,(x)=1 for |x| <n and { (x)=0 for | x| > 2n. n

Auxiliary theorem 10.27. Let T be defined as in Theorem 10.23. For every
¥ € Cg°(R™) there is a C > 0 such that

IAQ@OI < CUITS+IANI} forall f € C5°(RT).

Proor. By (10.4) and Auxiliary theorem 10.26 we have for f €& C5°(R™)
that

IAGRF)I =} T(8f) +2 Z  Dy(9f) — (b7 +i div b+Q)0/”

J=1

= ‘1‘)Tf— (A%)f+2 § (b8 +D;3) D,f— (b*+i div b + q)t‘)jﬂ

< I9Tf|l + [I(A9) fIl +2) 2 (59 +D,9) DJ”

J=1

+11(b* +1i div b)df|| + || g9
< CAINTAI+IAY + Nadfl,

where C, depends on & (more precisely, on the supremum of |#|, |grad 9|,
|A®| and on the supremum of 5* and |divb| on supp &). If we set
go(x) = g(x) for x Esupp ¥ and g,(x) =0 for x & supp ¥, then g, obviously
belongs to M,(R™) for some p <4, and by Theorem 10.17 and by the

inequality IIgIIz lAgli+ 11 8l
1O = llgo(3NI < FHNAGHI + Gl

and thus
AN < CUITA+ 111} + 3 1A + Cyll fII-

The assertion follows from this. ]

ProoF oF THEOREM 10.23.
(a) First we prove the essential self-adjointness of 7. Take a ¢ € C5°(R™)

such that

1 for |x

<1
0<ex) <1 q)(x)={0 for lx:>2

N
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For every n €N let ¢,(x)= @(n "~ 'x), and let T, be defined similarly to
T provided that we replace the functions b; and g, by the functions

bj,n(x) = (p3n(x)bj(x)> ql,n(x) = (p3n(x)ql(x)'
Then it is obvious that for all n €N and f € Cs°(R™)

¢, If = @, T,f and T(@.f) = T.(a.f).

Now assume that g€ R({i— T)*. We have to show that g =0. Since the
operators T, are essentially self-adjoint by Theorem 10.22, for every
n €N there exists an f, € Cg°(R™) for which

. 1
le.g — (=T ) full < ~.

Then we have in particular that (cf. Theorem 5.18)

: 1
I < G=T) Al < llgagl +—

Therefore, the sequence (f,) is bounded. Auxiliary theorem 10.26
implies that

D, —b)f|*?dx < 2| |Tf]*dx + C,n? 2dx
2 [ 1D=8)1, J, 1) N
=2 |TfPdx+ Cn* [ |f dx
Jo “Ja
=2{ (i~ T,)f, — w8 + (pg —if,) dx
On

+c,n2fQ If,? dx

N

an"2+ 4/ |gg—ifP dx+Cn? [ |f,P dx
Qll Qll

< 4n7? + 8@l + Cn?|| £, |17

< Cy{1+n?||ggll*} < C5(1+ nflg,gll)’,
and thus (because |D;p,| < Kn~' with K'=sup {|grad ¢(x)| : x €R™})

=1l > (D;g,
) 1/2
dx}

10,810 ] "

m
Z%

3

{
Qn{

CS{%HW,,gu}-
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Consequently, because of the equality (g, (i— T,)X¢,f,)> ={g, (i— T)
(p.f,)> =0 we obtain the estimate

l9.81°> = <p,8, (i~ T,)f, +[ 9.8 —(G—T)f,]>

<K& wli= T+ gl

(g (- T)e,f,) +2 gml (D9, )(D; ~ b, ) f,— (Ae,)f >

]
+ —
- le.&ll

1/2 m
< ([ 16 ax) {2 $ 0m)0,-5,)s +Il(Aqo,,)f,,ll}

+Llig.gl
p ?,8

, . ) 1 1
<Col [ 1gPdx | leasl+ ULl |+ el

Since the left side tends to || g||* and the right side tends to 0 as n— oo,
it follows from this that g=0. Hence, R(i— T)* = {0}. We can prove
similarly that R(—i— T)* = {0}. The operator T is therefore essen-
tially self-adjoint.

(®) If fE€ LR™)N W5 10(R™) and S (D, —b)¥f +af € L(R™), then
fED(T*)=D(T) and

T*f = Tf = 3 (D,— b)'f + ¢,
j=1

because for every g € C¢°(R™)= D(T') with supp g {x ER™ : |x| <k}
and for any & € Cg°(R™) with #(x)=1 for |x| <k we have

(S Tg> = <. Te) = (2 (D= 4) () + g%, 8>
j=
=(Z (D~ 8)f+ d. 8.
j=

Now let f € D(T). There exists a sequence ( f,) from Cg°(R™) for which
f,—fand Tf — Tf. In particular, ( S, and (Tf,) are Cauchy sequences.
Then (A(df)) is also a Cauchy sequence for every ¢ € Cg°(R™) by
Auxiliary theorem 10.27. Since |||, < ||Ah|| + || 4| for h € C5°(R™), the
sequence (3f,) is also a Cauchy sequence in W, ,(R™). Let g be the
limit of the sequence (df,) in W, ,(R™). Since df,—df in Ly(R™), we
then have 19f= g€ Wz, 2(Rm).
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For an arbitrary r >0 let ¢ € C5°(R™) be such that #(x)=1 for
|x| <r. Then for all g€ C*({x €R™ : |x| <r})

(Tf,8> = <(T*.8> = <f, Tg)> = {3, T
= (2 (D= 6) () +q¥. 8>

RO PTG
j=
As the set of these g is dense in Ly({x €R™ : |x| <r}), it follows that
TS(x) = 2 (D,= b(0)) S () + 4(x)f (x)
j=

almost everywhere in {x €R™ : |x|<r}. Since r was arbitrary, this
m

equality holds almost everywhere in R™. In particular, 27_(D; - bj)"'f
+ gf belongs to L,(R™). |

REMARK. The operator T of Theorem 10.23 is still essentially self-adjoint if
qg=q,+ g, with

g, € M, (R™) for some p<4, ¢,EL; o (R™),

g,(x)> —C|x|* forsome C>0 andall xeR™

The above proof can then be employed without change if we first show
that the corresponding operators 7, are essentially self-adjoint. A proof is
given, for example, by C.G. Simader [51]. The reader can find further
references concerning this circle of problems there.

In order to apply the results of Section 9.2, it 1s useful to have criteria for
the T-compactness and the T2-compactness of a perturbation of 7. We
shall prove such a criterion now. If 4 and B are operators on L,(R™), then
we say that A is B-small at infinity if A is B-bounded and for every ¢ >0
there exists an r(e€) > 0 such that

1471 < (1 Bf I +11A11)
for all f € D(B) such that f(x)=0 for |x| <r(e).

Theorem 10.28. Let T be defined as in Theorem 10.23. If V is closed and
T-small at infinity, then V is T2-compact. If, in addition, the T-bound of V is
zero, then V is T-compact.

ProOOF. If V' is T-bounded with T-bound zero, then it is also T-bounded
with T-bound zero. Consequently, the second statement follows from the
first with the aid of Theorem 9.11d. It remains to prove the first statement.
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First step: The operator A defined by the formulae

D(A) =D(T) and Af = df for f € D(A)

is T-compact for every & € C°(R™).

Proof of the first step. 1t is sufficient to prove that 4 is T-compact. Let ¢
be an element of Cg°(R™) such that y(x)=1 for x Esupp ¥. The operator
B defined by the equalities

D(B) =D(T) and Bf = A(yf) for f &€ D(B)

is T-bounded by Auxiliary theorem 10.27. Since Af= A(yf) and since 4 is
A-compact by Theorem 10.21, the operator 4 is B-compact, and thus also
T-compact (cf. the proposition preceding Theorem 9.7).

Second step: The operator C defined by the equalities

D(C) =D(T) and Cf=dTf— T(9) for fe D(T)

is T-compact for every & € C&(R™).

Proof of the second step. Again, it is sufficient to show that C 1is
T-compact. Since C is a differential operator of the first order having
continuous coefficients with compact support, the B-compactness and thus
also the T-compactness of C follow as in the first step.

Third step: V is T>-compact. B

Proof of the third step. It is clear that V 1s also T-small at infinity. Let
€>0 be given, and let r(¢) be chosen according to the definition of
T-smallness at infinity. Moreover, let 4 be an element of Cg°(R™) such
that #(x)=1 for |x|<r(e) and 0<¥(x)<1 for all x ER™. Since V is
T-bounded by assumption, we have for all f&€ D(T) with appropriate
a, b > 0 that

IVAL < V@O + IV (1=3)£]I
< alldf)l + b T () + {IA=3)FI+IT[(A= ) f]II}
< a||8f]| + BISTS|| + (b + )| OTf — T ()|
+e{[(1=3)fl| + 11 = $) TS }.

If we replace here f by a sequence (f,) from D(T?) for which f 20 and
T, 50, then we also have Tf, ->0, and by steps 1 and 2 the first three
terms of the right side converge to zero. The fourth term is bounded by

e sup (J| f,]| + ||Tf II). Since € >0 was arbitrary, it follows that || Vf, || —0,
and thus ¥ is T'>-compact. O

EXERCISE

10.11. Let T be the self-adjoint Schrodinger operator from Theorem 10.23 for
m<3. Then (z—T)"! is a Carleman operator for every z €p(T). The
operator E(b)— E(a) i1s a Carleman operator for all a, b €R.

Hint: My(z — T)~! is a Carleman operator for % € C§o(R™).
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10.5 Spectra of Schrodinger operators

In this section we prove some properties of the spectra of self-adjoint
operators of the form considered in the previous section. The results can be
applied equally well to one particle and several particle Schrodinger
operators (Theorems 10.29(a), 10.30 and 10.33).

In what follows let T always have the form

D(T) =C(R™), Tf= 3 (D~ b)f +qf for feD(T)

j=1

(10.8)

where the coefficients satisfy the assumptions of Theorem 10.23. Therefore,
T is essentially self-adjoint. We denote by § the closure of T (that is, the
uniquely determined self-adjoint extension of 7°). Moreover, let the self-
adjoint operator S, be defined by (cf. Section 10.2)

D(Sy) =W, »,(R™) and S,f= —Af for f€D(S,), (10.9)
and let V' be defined by the formulae
D(V) =D(S) N W,,»,(R™),

m

Vfi=Sf—Sof = =23 b Df + (b>+idivb+q).
j=1

(10.10)

Theorem 10.29.

(@) If q_ € M(R™) for some p<4, then S is bounded from below (here
qg_(x)=max (—q(x), 0)). If ¢ > 0, then S is non-negative.

(b) If b*€ M,(R™), div b € M,(R™), g € M,(R™) for some p < 4, and

J

x~y|<

l(b“(y) +|div ()P +[g(¥)P) dy -0 as |x| > oo,

then V is relatively compact with respect to S,, and p,(S) =10, ).

PROOF.
(a) By Auxiliary theorem 10.25 with » =1 we have for all f € C5°(R™) that

m

f S = 2D =) fIP + {f, af

j=1

m

> 20 =BMIF = Lq- 1> > = CilAI™
=
This then holds for all f € D(S), since C{°(R™) is a core of S. If ¢ >0,
then g_ =0. The above estimate then gives that S > 0.
(b) We have b, € M,(R™) for some 6 <2 (j=1,2,...,m) by Auxiliary
theorem 10.24. Consequently, the assertion follows from Theorem
10.21 together with (10.10) and Theorem 10.11. .
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The spectrum of the operator S, 1s [0, «0); the operator S, has no
eigenvalue. We can actually prove for a large class of operators S of the
form given above (without magnetic field) that no eigenvalues lie in [0, o0).

Theorem 10.30. Assume that b; =0 for j=1,2, ..., m, g€ M (R™) for some
p<4, and

g(ax) = a Yq(x) for x € R"\ {0}

with some vy €(0, 2). If f is an eigenelement of S belonging to the eigenvalue
A, then

2f, =Af> +¥<{S, qf > = 0 (virial theorem).

The interval [0, o0) contains no eigenvalue of S. (For a somewhat more
general result we refer to J. Weidmann [55].)

PRrROOF. If fis an eigenelement of S belonging to the eigenvalue A, then
— Af(x) = M(x) = g(x) f(x). (10.11)
It follows from this for every a >0 using the notation f,(x)= f(ax) that
— Af,(x) = —a*(Af)(ax) = a*(M(ax) — g(ax) f(ax))
= a’\,(x) — a* " g(x) f,(x). (10.12)
It follows from (10.11) and (10.12) that
0=<{=Aff> =</, —Afp
= MAL> —Lah f) = NS f) + &7 £
= (1= @)X £, + (a7 = IKdf, f)-
For a1 we obtain by dividing by (a — 1) that

2—y__1

a
(a+ 1))\<f’j:z> = _aT<Qf’j;z>
By letting a tend to 1, it follows from this that

NAIP = @=L af>
Since —Af+ gf = Af, this implies

2f, —Af) = =2 f,af> + 2N fI? = =S, af>

(this is the virial theorem) and
YAISI? = Q=)L of =MD = Q=) o).
It follows from the last equality that A <0 provided that f=0. |

REMARK. The assumptions of Theorem 10.30 are satisfied in particular by
every Schrodinger operator without magnetic field with pure Coulomb
interaction (this also holds for many-particle operators).
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The operators of Theorem 10.29(b) also satisfy the assumptions of part
(a); the negative part of the spectrum therefore consists of at most
countably many eigenvalues of finite multiplicity that are bounded from
below and can only cluster at 0. The following theorem shows that in
many interesting cases there actually exist infinitely many negative eigen-
values.

Theorem 10.31. Let S be as in Theorem 10.29(b). Assume further that there
exist constants C >0, € >0 and r > 0 such that

g(x) < =C|x|7?* forall x€R™ with |x|>r,
and
p(1) = supp 5 [xP 7 (b%(x) +|div b(x)]) >0 for 1— oo.
Then S has infinitely many negative eigenvalues accumulating at zero.

Proor. We only have to prove that S has infinitely many negative
eigenvalues. According to Theorem 7.26(b) it is sufficient to find an
infinite-dimensional subspace M of D(S) with {f, Sf)> <0 for every non-
vanishing f€M. Let &€ Cg°(R™) such that ||#||=1 and supp ¥ C
{x ER™ : 1<|x|<2}. Then for the function 9,(x)=¢"/%}(¢ "'x) we have
|%|| =1 and supp &, C {x ER™ : t <|x| <2t}. Therefore it follows for ¢ >r
that

(B, $9,> = (B, g%, — AY, + (b*+i divb)d, ~2 > bDH>
j=1

< —Cr 2B |2 + 7 KS, —A¥> + 172 p(0)||9,|1?
+2¢ 71/ Dp ()2 (8, DY)
j=1

< —Ct7 e 4 1729, — A + 72 (1)

+2t 72 Dp(1)! /2 3 (B, D).
j=1

(Here we have used that |b,(x)| <t™'*«Zp(1)!/? for |x| >1, which follows
from the definition of p.) Therefore there exists a 7, > 0 such that

(3, 89> <0 for t3>

Let now f, =, , n €N,. These functions have mutually disjoint supports.
Therefore M= L{f, : n€N,} is infinite-dimensional and {f, Sf) <0 for
all fE€ M, f+#0. This implies the theorem. ' ]

Now we want to show that the smallest eigenvalue of a Schrodinger
operator (without magnetic field) is always simple, i.e., that the system has
a uniquely determined ground state. The proof is essentially taken from a
work of W. Faris [41]. We need some preparation.
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In the following for an element f& L,(R™) we write f>0 (f>0)
provided that f is real and f(x) >0 (f(x)>0) almost everywhere in R™.
Such elements are said to be non-negative (positive). A bounded operator
A on L,(R™) is said to be positivity preserving if f > 0 implies Af > 0. It is
said to be positivity improving if f > 0 and f#0 imply Af > 0.

Theorem 10.32. Let A € B(L,(R™)) be a real® positivity improving self-
adjoint operator. Assume that ||A|| is an eigenvalue of A. Then the multiplic-
ity of the eigenvalue ||A|| equals 1 and there is an f >0 that spans the
eigenspace N(||A| — A).

PROOF. Assume that f# 0 and Af=||4||f. Since A is real, we may assume
that f is real (otherwise we could replace f by Re f or Im f, because
ARe f) = A(f+ Kf)/2 = (Af + KAf)/2 = (||| f + K| 4] f)/2 =
|A|(Re f) and A(Im f)=||4||(Im f)). From the inequality = f<|f] it
follows that + Af < A|f|. Therefore, |Af| <A|f], and thus

L Af> < S 1AFD < <AL 415D
This implies that

LA IR = <f AF> < fl ALFD < 141 AP = 140 1A%
1.e., that

o Af> = S Al D
Let us define f, and f_ by the equalities

f+(x) = max{O,f(x)}, fo=f 1
Then | f|=f, + f_. Consequently,

S AfZY = 3{S), AlfD =S Af>) = 0.

Hence we have f_=0 or f_=0, since f, #0 and f_+0 imply that
Af_ >0, and thus that {f_, Af_)> #0. Consequently, we have proved that
f20o0r f<0. We can assume, without loss or generality, that f > 0. Since
f=|1A4|"'4f and f+0, it then follows that we even have f >0, because A4 is
positivity improving.

The theorem will be proved if we show that f spans the space N(||A4]| —
A). For every element g of N(||4|| — A) the functions Re g and Im g do not
change sign. Such an element can only be orthogonal to the positive
element f if g=0. Therefore, N(||4|| — A) = L(f). m

Theorem 10.33. Let S be defined as above with bj=0 U=L2,...,m),
gEM, 1o.(R™) and q_ € M,(R™) for some p<4. Then S is bounded from
below. If the lowest point of o(S) is an eigenvalue, then it is simple.

*Here “real” refers to the natural conjugation K on Ly(R™), (Kf)(x)=f(x)* (cf. Section
8.1, Example 1).
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ProoF. By Theorem 10.29(a) the operators S and S;— g_ are bounded
from below. The lower bound of S,— ¢g_ is, at the same time, a lower
bound of the operators S, and S— Q, used in steps 2 and 3. These
operators therefore have a common lower bound, so that Theorem 9.18(b)
can be applied.

First step: Let S, be defined as above. Then the operator exp(— £S,) is
order improving for all 7> 0.
Proof of the first step. With 9,(x) =exp(— t|x|?) for x € R™ we have

exp(—1Sp) = F~'M, F,

where M, denotes the operator of multiplication by ,. Hence, by the
convolution theorem (Theorem 10.7) the operator exp(— tSy) is equal to
the operator of convolution by the function F~'3. With &(x)=
exp(—|x|*/2) we obtain from Theorem 10.2 that

(F79)(x) = 2m)™"" [e=9,(y) dy

- (277)_'"/2fe"xy0(\/§7 y) dy

— -m/2 -m/2 . X
= 20" (2m) _[exp(l\/i;

z)ﬁ(z) dz

= @) (=) = o ) > 0

for all x €R™ and ¢ >0. Since the operator of convolution by a positive
function is obviously positivity improving, the assertion follows.

Second step: exp(—tS) is positivity preserving for all 7 > 0.
Proof of the second step. For every n€EN let g, be defined by the
equality
x), if x)| <n
(o) = [ 40 T 1)
0, if |q(x)|>n.

Let S, be the operator defined by g, instead of g. By Theorem 7.41
S,) =s— li x(—is —lQ)k
exp(—1S,) = s om [e Pl ™% o) exp( % n

for all £ > 0, where Q, denotes the operator of multiplication by g,. Since
every term on the right side is order preserving, it follows from this that
exp(—1S,) is also positivity preserving. Since by Theorem 9.16(i) (with
Dy= C*(R™)) we have (i—S,)"'>(i—~S)"!, it follows by Theorem
9.18(b) that

exp(——tS,,)—s>exp(—-tS) forall ¢ > 0.

Therefore, exp(— ¢S) is also positivity preserving for all z > 0.
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Third step: If f>0, f#0, g >0 and g+0, then there exists a 7 > 0 such
that {f, exp(—tS)g) > 0.

Proof of the third step. It is sufficient to prove that if f >0 and f+#0,
then

K(f) = {g€Ly(R"):g>0,{g exp(—tS)f>=0 forall >0}

contains only the zero element. The set K(f) is closed. It is mapped into
itself by exp(—sS) for s>0, since s,¢>0 and g& K(f) imply that
(exp(—sS)g, exp(—tS)f>=<(g, exp[—(s+)S]f)>=0. This then holds
for exp(sQ,), as well: It follows from f >0, g > 0, (g, exp(—tS)f) =0 and
exp(—tS)f >0 (cf step 2) that g(x)exp(—¢S)f])(x)=0 almost every-
where; we also have then that {exp(sQ,)g, exp(—tS)f) =0. Since

exp(=#(S—Q,)) = s — lim [exp(—éS) exp(%Qn)]k,

the operator exp(— (S — @Q,)) also maps the closed set K(f) into itself.
Since, moreover,

exp(— (S — Qn))—iexp(—— tS,) forall ¢ >0,

this follows also for exp(—1tS,). If g€ K(f), then we therefore have
(g, exp(—1tSy) f)> =0 for all ¢ > 0. Because exp(— 1S,) is positivity improv-
ing, it follows from this that g =0.

Fourth step: If A€R is smaller than the lower bound of S, then
(S — M) ! is positivity improving.

Proof of the fourth step. 1If v is the lower bound of S, then

e GV < e N for 1> 0.

Consequently, the following integrals exist. For all f, g € L,(R™)

[Teg ey de = [ g e di
0 0
= [T e dg (s> di
0 [A, o0)
=[ [Teeardla B0
[A, 0)¥0

A w)(s—x)“ d. (g, E(s)f> = <& (S=N) "'/
If f>0, f#0, g >0 and g#0, then the second and third steps imply that
{g,e "f>>0for all 1>0 and (g, e ">f) >0 for some ¢, > 0. Since the
function t—>{ g, e~"5f) is continuous on [0, o), it follows from this that
{g, (S—=N)"Y>>0. Therefore, (S —A)~! is positivity improving (if we had
(S —N) " 0 for some f > 0 such that f0, then there would be a g >0
such that g0 and g(x)=0 for all x with (S —A)"!f(x)#0; we would
therefore have (g, (S —A)"'f)> =0).
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Fifth step: The smallest eigenvalue of S is simple.
Proof of the fifth step. Since the lowest point y of o(S) is an eigenvalue,

(S =N "' =(y—A)"!is an eigenvalue of the positive operator (S —A)~".
This eigenvalue is simple by Theorem 10.32 and the fourth step. Conse-
quently, the assertion follows for S. O
EXERCISE

10.12. Let T be defined as in Theorem 10.23, and assume that g(x)->c0 as |x|->o0.
Then T has a pure discrete spectrum.
Hint: The identity operator is T-small at infinity and its 7-bound is equal
to 0. The compactness of (i— T)™! follows from this by Theorems 10.28,
9.11(d) and 9.10.

10.6 Dirac operators
In this section we consider the Hilbert space

Ly(R%)* = Ly(R®) @ Ly(R®) @ Ly(R?) @ Ly(R?).

The elements of this space are the 4-tuples f=(f,, f,, f5, f4) of elements
f; € Ly(R%), and the scalar product is defined by the equality

4
gy =3 [5(x)g(x) dx.

j=1
The elements of L,(R?* may also be considered as equivalence classes of
functions f : R®*—C*; then

8> = [(f(x), g(x) dx,

where (., .) is the usual scalar product in C* ((¢, n)=2j= &, for §,n €
C*; the corresponding norm in C* will be denoted by | . ). For any
continuously differentiable function f: R® —C*% f(x)= (f(x), f,(x),
£3(x), f4(x)) let us define

1{ d 0 ad 0
(DU = F A Sl Ao i) 7= 1,23

For an arbitrary function f : R*—C* and a 4 X 4 matrix-valued function y
we define yf by the equality

(Y)(x) = v(x) f(x) = (kgl Ylk(x)fk(x)a cee kgl Y4k(x)fk(x));

we use a similar definition if y is a constant matrix. The operator norm of
4 X 4 matrices corresponding to the norm | . | on C* will be denoted by | . |,

as well.
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The free Dirac operator (which describes the free electron in relativistic
quantum mechanics) is defined on L,(R%?* by the differential form

3

f(x) = 2 & Df(x) + Bf(x)

j=1
with the matrices

0 1 0 0 0
G : 0 1 0 0
. = f =1, 2, 3, =
% (oj 0) o F=lo 0 -1 o
0 0 0 -1
o, = ((1) (1)), 6, = (? _6), 0y = ((1) _(1)) (the Pauli matrices).

Here we have made all physical constants 1 again. Since the matrices a;
and B are Hermitian, the operator T}, defined by

D(T,) =C(R%* and T,f = 1f for f&D(T,)
is symmetric on L,(R%?* as a simple computation shows.
Theorem 10.34. The operator T, defined above is essentially self-adjoint. For
T=T, we have:
() D(T)=W, (R°)* and |Tf|=|fll, for fEDT)}

(i) o(T)=(~ o0, —1JU[I, o),
(1) T has no eigenvalue.

PROOF.
(i) Let T, be defined by

D(T)) =S(R®* and T,f=1f for fe&D(T).

It is clear that T, C T, (cf. the proof of Theorem 10.11(a)), and thus
T'=Ty=T,. On the other hand,

FT\F~'= M, |,

where
D(M, ) =S(R%?, Mp f = Pf,
and
[ 1 0 X3 x;—1x,]
0 1 x;+1x, — X3
P(x) = :
X4 X, —1x, -1 0
x, +1x, — X5 0 —1

¢ In what follows we also write || . ||, and || . ||, for the norms in W ,(R™)* and L, ,(R™)*,
respectively.
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(Here the Fourier transformation is applied to the elements of L%(R%)?*
component-wise.) Mp = M, where M, denotes the maximal operator of
multiplication by the matrix-valued function P (cf. the proof of Theorem
10.11(a)):

D(Mp) = {fEL(RY)*: PfE L(R?)*}, M,f= Pf.

The reader can easily verify that the eigenvalues p,(x) and the correspond-
ing orthogonal eigenelements é(x) of the matrix P(x) are given by the

formulae (observe that g; 0, + 0, 0,=2§,

0

i)

Pi(x) = py(x) = —ps(x) = —py(x) = (1+]xP)"?,

G
B 0 5 1
é(x)= 01x1+02x2+o3x3(1) ) é(x)= 01x1+02x2+o3x3(0) ’
L+ (1+]xp) 20 L+ (1+]xp)? M
01x1+02x2+a3x3(1)’ [_ 0,X, +02x2+o3x3(0)“
n1/2 0 nl1/2 1
5 . +(1+
83()6): 1+(1 +|)C| ) , 64(X)= 1 ( |)C| ) .
(o) (1)
0 { 1

J

The corresponding normalized eigenelements are

e(x) =[2+20xP+2(1+[xP)"2]°[2+ xR +2(1 + |xP)' 2] 5 ().

Consequently,

4
(Mpf)(x) = 2 pi(x)(e(x), f(x))e(x) forall fED(Mp).

j=1
It follows that

D(M,) = {fELz(R3)4 :

D(T)

Tf = F~'M,Ff for f€D(T),

and

4
_glly(x)zl(ej(x), f)P

172

€ Lz(R3)}

(FeL (R : (1+]. P)*fe (R} = L, (R,
F™'D(M,) = F~'L, (R} =w, |(R%)",

ITF| = I PEF) = 1(1+] . PY2EF = [ Efllay = I £

(i) If A> 1, then there is an x,€R> for which p,(x,)=A. Since p, is
continuous, for every €>0 there is a ball K, around x, such that
|p(x)—A| <e for all xEK. If n€ Ly(R% is such that n0 and
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n(x) =0 for x & K., then for f= ne, € L,(R%?*

IA=Mp)fIF = [\ = py(x)PIn(x)P dx < m|? = & fI1%

Since € >0 was arbitrary, A— M, is not continuously invertible. If
A < — 1, then we can prove this analogously if we use p; and e, instead
of p, and e,. Therefore, (— 00, —1JU[1, o0) C a(Mp)=o(T).

If now A€e(—1, 1), then

IA=MpFP = 3 A=) (), S ()P dx

4
> (=R 2 [g( S dx = (1= NP

for all f€ Ly(R** Consequently, A\— M, is continuously invertible.
Hence, (=1, 1) Cp(T) = p(M,), and thus o(7)=(—o0, —1JU[], o0).
(i11) If A — M) f=0, then we must have

(A=pi(x))(e(x), f(x)) = 0 almost everywhere (j=1,2,3, 4).

As the set of zeros of A — p;(x) is a null set (it is either empty, consists
of the origin, or is a sphere), we must have

(e(x), f(x)) = 0 almost everywhere (j=1,2,3,4).

It follows from this (as ¢(x) is a basis in C% that f(x)=0 almost
everywhere; therefore, f=0. Consequently, no A can be an eigenvalue
of M, (and hence of T). |

The Dirac operator of an electron in the electric field with potential g
has the form

S=T+0,

where O is the operator of multiplication by a function g : R*> >R and
Of = qf = (qf}, 9f,, 9f;, qf,)- Because of physical reasons, the Coulomb
potential g(x)=c(1/|x|) is particularly interesting. As this g does not
belong to MP(IR3) for p <2, the results of Section 10.3 cannot be applied to
it. The following auxiliary theorem enables us to treat such potentials. We
prove it with somewhat more generality than we need.

Auxiliary theorem 10.35. For f € C§°(R™) (m > 3) and for f € Cgo(R\.{0})
(m=1)

e 4 oy
[1x27 (01 dx < Z;fjg;:fﬁ?nggf(xn dx.
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For f € C(R\.(0})

2
0
[ ()P ax < 4f "“"‘”25 3o/ (P dx.

PrOOF. Let 2, denote the unit sphere in R™ and let dw,, be the area
element on §2,,. For m > 3 we have

SR dx = [T [ 1) do, dr

= lim Oor”‘"3f |f (re))? dw,, dr
Qm

e—0 V¢

BERT | m=2 2
- E_I_;%{ m_2€ fﬂmlf(ew)! dwm

S Oor"’_2 Refg f(rw)*-%—f(rw) dw,, dr}.

m—2J,

Here the first term vanishes as €—0, since the integral tends to f(0)f dw,,

as €—0. Therefore,
1/2
2 [1xl ‘lf(x)i{ > } dx

<= 2{ J12 (0P dx f 2 dx} .

The assertion follows from this for m > 3. The case m=1 can be proved
similarly though with certain simplifications. In the case m =2 a logarith-
mic term arises after the integration by parts; everything else goes as
above. ]

[1x721f (P dx <

Theorem 10.36. Assume that q= g, + q,, where q, and q, are measurable
Hermitian 4 X 4 matrix-valued functions such that

lq,(x)| < Tl_l and g,(.) €M, (R’) forsome p < 2.
Then Q is T-bounded with T-bound less than or equal to 2C. If C <1/2,
then S= T+ Q is essentially self-adjoint on CS*(R** and self-adjoint on
Wy, 1(R)*,
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PrOOF. By Auxiliary theorem 10.35

P <& [ S 1P ax <402 S 3 [l geo ax

k=1 j=1

WS> [ 1 (Fp)(x)P dx

k=1 j=1

= 4C2 [|Ix|(FN(x) dx < 4C?| M FY|? = 4C?| TFIP,

for all f € C{°(R?)*. The operator Q, induced by g, is therefore T-bounded
with T-bound < 2C. The operator Q, induced by g, has 7-bound 0, since
D(T) =W, (R** (cf. Theorem 10.18). Consequently, the T-bound of Q =
Q,+ O, is not greater than 2C. The remaining assertions follow from
Theorem 5.28. O

Theorem 10.37. Let g be as in Theorem 10.36. Assume, moreover, that
N,(x)—0 as |x|—>oc0. Then Q is T*-compact. If C<1/2, then o,(S)=
0,(T)=(—o0, —1JU[l, o). If, in addition, q <O, then the eigenvalues of S
in (—1, 1) can only accumulate at 1; if q >0, then the eigenvalues of S in
(=1, 1) can only accumulate at — 1.

PrOOF. We have T2= F ~'M}F. Therefore,
D(T?) = F~'D(Mz) = F 'L, (R)" =W, o(RY)".

Since |q| = |g, + g,] € M,(R®) for some p < 4, the operator Q is T>-compact
(cf. Theorem 10.21). (We can show in the same way that the operator Q,
induced by ¢, is T-compact.) The remaining assertions follow from Theo-
rems 9.13, 9.14 and 10.36. O

In analogy with the virial theorem (Theorem 10.30), we can now prove
yet the following result.

Theorem 10.38. Let q be as in Theorem 10.36 with some C < 1/2. Moreover,
assume that q(ax)= q(x)/a for all a>0 and x € R°\ {0}. Then S=T+ Q
has no eigenvalue in (— oo, — 1)U (1, o0). If q(x) is diagonal, then — 1 and 1
are not eigenvalues of S, either.
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Proor. If (A — §)f=0, then the function f,(x) = f (ax) obviously belongs to
D(S) and

3

(Sf)(x) = 2 & D;f (ax) + (B+ q(x))f (ax)

J=1

3
=a 3 a(Df)(@x) + (B+q(x) (@x)

3
= af 3 a(Df)(ax) +(B+ q(ax))f(ax)} + B(1-a)f (ax)

= a(Sf)(ax) + B(1 - a) f,(x)
= aMf(ax) + B(1—a) f,(x) = aAf(x) + B(1 - a) f,(x).

It follows from this that

0= {80 f0 =< S = A Lo — aXf, o) — (1= a){ [, Bf)
= (1—-a)}/, A=B)f)-

For a#1 we can divide by (1 — a). Taking the limit as a—1 gives

0=2C_f A=8)f

For A€(—~o0, —1)U(l, o0) the matrix A— 8 is strictly positive or
strictly negative; this equality is therefore possible only if f=0.

If A=1 and ¢ is diagonal, then it follows first that f;=f,=0. The
eigenvalue equality (1 — §)f=0 then gives

( X3 xl—ixz)(fl(x)) =0

X+ ix, — X3 fo(x)

This implies that f;=f,=0, and thus f=0. We can argue similarly if
A= —1. ]

To conclude this section, we give a general criterion for the essential
self-adjointness of Dirac operators (cf. also Exercise 10.13).

Theorem 10.39. Assume that q= q,+ q,, where g, and q, are measurable
Hermitian 4 X4 matrix-valued functions such that

1 1
<C-— —
lg,(x)|<C ] for some C< 5

IQZ( . )l = Mp, loc(R3) for some p< 2.
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Then S = T+ Q is essentially self-adjoint on C§(R>)?*. The closure S is given
by the formulae

D(S) = {fELz(R3)4ﬂ W;, 1,100(R3)4 tof+ ‘ZfELz(RB)4},
Sf=1f+qf for f€D(S).

PRrROOF. Let ¢, be as in the proof of Theorem 10.23, let 4, = @5,¢, and let
S, =T+ Q,, where Q, is the operator of multiplication by g,. The function
g, satisfies the assumption of Theorem 10.36 for every n € N; the operator
S, is therefore essentially self-adjoint on Cg°(R%).

The rest of the proof follows the proof of Theorem 10.23; however, it is
essentially simpler : Let g€ R(i— S)™. Since S, is essentially self-adjoint,
for every n €N there exists an f, such that

: 1
19ng = (=S LIl < -
Hence, || £,]| <|[G— S)f, || <|le.&ll +(1/n). It follows from this that
lp.8ll* = 9,8, (= S,) f, +[ 9.8 = (= S,) 1>

. 1
< Kg o,(i—S,) 01+ ~llgngll

3
< K8, (= S)@h1+ Cllzl 2 1S, Doyl + - g
2

1
< G(lgl LI+ 19.8l) »0 as n— oo

This implies that g=0. Consequently, R(i— §)= L,(R**. The equality
R(—1i— S)= L,(R*? follows analogously. The rest of the proof is analogous
to part (b) of the proof of Theorem 10.23. O

EXERCISE

10.13. (a) In the first part of Theorem 10.36 the assumption on g, can be replaced
by the assumption |g,(x)| < =Y. ,¢|x—a;|~! with N different points
a; € R,

(b) In the second part of Theorem 10.36, in Theorem 10.37, and in Theorem
10.39 the assumption on g, can be replaced by the assumption |g,(x)| <
SNaclx—a)™! with N different points ¢, €R® and 0 <¢; <4 for j=
I,...,N.

(¢) In Theorem 10.39 we can allow an infinite sum of the above form for
the bound of ¢, provided that the a; have no accumulation point.

Hint: If 4 € C°(R™), H(x)=1 for |x|<s/2, }(x)=0 for |x|>s, and
0 <#(x) < 1 for all x € R3, then there is a C > 0 such that

3
JH s dx <4f S DS+ Cf  fP dx

[xf<sj=1



Scattering theory

11.1 Wave operators

The theory of wave operators provides a useful means of studying the
absolutely continuous spectrum. We wish to present this theory briefly in
what follows. For any two self-adjoint operators 7', and T, on the complex
Hilbert space H we define £, (T, T,) by the equalities

D(Q. (T, T))) = {fEH: lim e T~ i!Tif exists},

t— * oo

Q. (T, T)f= lim €T ' for feDQ.(T, T))).
t—>*o0

It is obvious that Q_(T,, T,) are linear operators. Since e'‘T2e~1/Tt is
unitary for all 1 € R, the operators Q_ (T,, T,) are obviously isometric (as
mappings from D(2_.(T,, 7;)) into H).

Theorem 11.1. The subspaces D( . (T,, T,)) are closed and reduce T,. The
subspaces R(Q.(T,, T,)) are closed and reduce T,. We have R(.(T,, T)))
=D(Q.,(T,, Ty)) and Q. (T,, T) =Q.(T,, T,)"'. Moreover, for all s €R

Q.(T, T)) " = eiSTzﬂi(Tza T))
and
Q:(Tza TI)EI(S) = Ez(S)Q:(Tza Tl)s

where E, and E, are the spectral families of T, and T,, respectively. We have
Q. (T, T)u(T,) = u(TYQ.(T,, T,) for every bounded continuous function
u : R->R (“intertwining” property).

337
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PRrROOF. First we show that D(2, (T, T))) is closed. Let f € D(Q_ (T, T))).
We have to show that for every € >0 there exists a 7, € R such that

Ilei T, e_i’Tf— ei sT, e"”TfH <€

for all s, 7 > 1. In order to prove this, we take an f, € D(2 (T, T})) such
that || f— fo]| <e€/3. Since lim,__ €''72 e 77, exists, there is a 7, &R such
that

el T2 e=iTif — gisTa g=isTyp ) < %e
for all s, ¢ > ¢,. Consequently, for all s, t > ¢,
”ei 7T, e—itT,f__ ei sT, e—isT,f” < ”ei T, e—-itT,(f_fO)”

€T e TN fy = f)I] + [le T2 T TSy — €T e TR < e.

We can show in a similar way that D($2_(T,, T;)) is closed. As the
operators 2, (T,, T}) are isometric, the ranges R(Q,.(T,, T))) are also
closed.

Ifg=Q_ (T, T)f €RE. (T, T))) with some f &€ XQ_(T,, T,)), then

e T e Tg — £ = |l g — & e T 0

ast—o0,ie,g €D (T, T,) and & (T, ) g=f. If g€ QL (T, Ty))
and f=Q_(T,, T,)g, then we can show similarly that f&€ DQ (T, T;))
and g=Q_, (T, T,)f. Therefore, R (T, T,) =D . (T, T,)) and
Q. (T,, T,)=9.(T,, T,)"'. We can show analogously that R(Q_(T,, T}))
=D(Q_(T, T)) and Q_(Ty, T,))=Q_(T,, T))~".

If feD,(T,, T)) and g=8Q_(T,, T))f, then for every s €R

ei T, e—itT‘(eisTf) — eisT2 ei(l‘—s)T2 e—i(t-—-s)T,f__> eistg as ¢ — oo.

Consequently, ¢'*7'f € D(Q,(T,, T,)) for all s€R. By Theorem 7.39 the
operator T, is therefore reduced by D(R,(T,, T,)). We can prove this
assertion for D(Q_(T,, T,)) similarly. Since R(Q_.(T,, T,)) =
D . (T,, T,)), the operator T, is reduced by R(Q_.(T,, T)).

For every s €R the operator ¢'*7* maps the space D(Q,(T,, T,)) onto
itself (cf. Theorem 7.39). Since for all f€ D(Q_(T,, T})) and all s€R

Q+(T2, Tl) ei sTy' = lim ei tT, e—i(t—s)Tlf

{—>0o0

= T2 lim e~ 90T =i~ f = &isTQ (T, T,)f,

t— o0

it follows that Q_ (T,, T,) ' *T' =¢'*12Q (T, T,). A corresponding equality
holds for Q_(T,, T)).
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Forj=1,2,Imz>0,and all f, geH
_if e e TN df = —~i ooe”’{ e " d{f, E.(s }dt
~L (fre™'g) .L ] {f, EXs)g>
= —if { [T ar) adf, B (g

= [(z=9)7" &S, (5>
= (2= T) g
Similarly, for Im z <0
i[° enf e gy di = (f, (2= T) '),

— 00

Together with the representation (7.22) of the spectral family, it follows
therefore that (7, T)E,(s)= E)(s)Q.(T,, T,) for all s€R. The last
assertion follows from this, because u(7;) = [u(f) dE;(?). O

ReMARK. If f is an eigenelement of T for the eigenvalue A, then f &
D(22.,.(T,, T))) if and only if f is also an eigenelement of T, for the same
eigenvalue. The same holds for 2_(T,, T)).

Proor. If f € D(T,) and T, f= Af, then
el 172 e-itTy= eitT2 e—it}\f = eit}\ e—it}\f= f

for all t € R. Consequently, f € D(R2,(T,, T))). If f€ D, (T,, T))), then
for every s €R

e TNf — f| = [+ I Tag =i+ O _ &2 eI 0 a5 1> o0
(since e *9T2e =+ and el T2e ™1 converge to Q, (T, T,)f). Hence,
"N f = f forall s€R.
This implies that f € D(T,—A) = D(T,) and

(T,~N)f = lim — (¢ Vf— ) = 0,
i.e., that T2f=Af. D

In what follows we write M C  D(R (T,, T))) if M is a closed subspace
of D(R.(T),, T})) that reduces T,. If M C, D(R.(T,, T})) and P denotes
the orthogonal projection onto M, then we define

Wt(Tzs Tls P) = Qx(Tzs Tl)P°

These operators are called generalized wave operators. In particular, we
write W_ (T, T)) for W.(T,, T\, I) provided that D(Q_.(T,, T,)) =H. The
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operators W, (T,, T,) are called wave operators. In the sequel we say that
W, (T, T\, P) exists if R(P)C ;D .(T,, T))). (Some of the following
statements still hold when T, is not reduced by R(P).) The operators
W _(T,, T,, P) are obviously partially isometric with initial domain R(P)
and final domain R(W . (T,, T,, P)). Now we prove a few simple proper-
ties of the generalized wave operators.

Theorem 11.2. Assume that T, and T, are self-adjoint operators on the
complex Hilbert space H, M, C 1 D(§2 (T, T})), P, is the orthogonal projec-
tion onto My, and My =R(W (T, T\, P\)). Then My C 7 D(Q (T, T,)), and
with the notation W = W _(T,, T\, P|) we have
e, = w,_ e forall sER

and

T2W+ = W+T]P] ) W+T].
If P, is the orthogonal projection onto M,, then

T W* = W*T,P, D WiT,.

The operators T\|y, and T,|y, are unitarily equivalent. If M,CH.T),) or
M, C H,.(T)), then My C H.(T,) or M, C H,.(T,), respectively. A similar result
holds for W _(T,, T,, P)).

PrOOF. Since M, is closed and is contained in D(§2,(T,, T,)), the subspace
M,=Q_(T,, T,)M, is also closed. By Theorem 11.1
e*TW, = e*T:Q (T, TP, = Q. (Ty, T)) TP,
= Q,(T, T))P, 11 = W e°h

for all s €R. In particular, e *7g €M, forallg= W, f €M, and all sER,
ie, M, reduces T,(cf. Theorem 7.39). The equality ¢ *":W =W, "
implies that

eisT2P2 — eisT2W+ Wﬁ- = W+ eiSTlW’:_ —_ W+ eisTlPth.

The restrictions of ¢ *7' and €'°7> to M, and M,, respectively, hence are
unitarily equivalent. This then follows also for their infintesimal genera-
tors, i.e., T,P,= W _T,P,W*, and thus

w,=T,PW, =W, TPW\W, =W, T,PLD>W,.T,
By taking adjoints, we obtain via Theorem 4.19 that
Wi, = wiT3 c (LW )*c (W, T)* = Tt Wy = T\W%.

On the basis of what we have proved so far, T,|,, and T|,, are unitarily
equivalent. If M, C H.(T,) or M, C H,.(T)), then T,|,, has a pure continu-
ous or a pure absolutely continuous spectrum, correspondingly. Then this
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also holds for the operator T,|y,, unitarily equivalent to Ty, ie, M,
C H,(T,) or M, C H,.(T,), respectively. ]

Theorem 11.3. Assume that T, and T, are self-adjoint operators on the
complex Hilbert space H, M, C 7,D (Ty, T))), P, is the orthogonal projec-
tion onto M,, M,=R(W _(T,, T\, P))), and P, is the orthogonal projection
onto M,. Then with the notation W, = W (T,, T\, P,) we have, as t— 0,
that

e Ty, —e TP 550, (11.1)
¢ Te W, P, (11.2)
e Te i Tap 5 (11.3)

(W, —I)e ' Tip, 350, (11.4)

(W* —I)e TP, 250, (11.5)
e Tw, e TSP, (11.6)
e Tt e~ p (11.7)
(I-P,) e TP, 350, (11.8)

We have W (T, T,, P,)=W _(T,, T,, P)*. Similar results hold for W_ =
W_(T, T, P)asts— oo

PrOOF. (11.1) follows from the definition of W, by multiplication by
e~ 72, (11.2) follows from (11.1) by multiplication by & ‘7', If we multiply
(11.2) by W* from the right, then we obtain (11.3). Relation (11.4) follows
from (11.1), because e ''T:W, =W, e =W, P e =
W, e TP, If we multiply (11.4) by W*, then (11.5) follows, because
Wrw, e 'Mp, =P, e TP, =e TP, Relations (11.6) and (11.7)
follow from (11.4) and (11.5), respectively, by multiplication by & ‘7.
Finally, (11.8) follows from the equalities

(1 — P,) e’“T’PlfH = ”ei ’Tz(l" P,) e-i’T'Plf”
= [|[(I-P,) T2 e™ TP, f|| — |(I- P,)W, f| = 0.

The equlaity W (T, T,, P,)= W _(T,, T,, P))* follows from (11.3). .

The following chain rule is useful in many investigations.

Theorem 11.4. Assume that T, T,, and T, are self-adjoint operators on the
complex Hilbert space H, M, C 1 D( (T, T))), M, C7,D(Q (T, T))), P; is
the orthogonal projection onto M; (j=1,2), and R(W (T, T\, P,)) CM,.
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Then MyCc D2 . (T5, T))) and

Wi(Ty T, P)) = W (T5 Ty, P)) W (T, T, P)).
A similar result holds for W _.

Proor. For f €M,

ei 1T, e—i:T!f —_ (ei 1T, e-ith)(ei T, e—itT,)f
— ei tT, C““TZQ*_(TZ, Tl)f

+ei 1T, e-—isz[ei tT, C_—i’Tff~Q+(T2, Tl)f]
- Q. (T, T,)Q (T, T))f as t— oo,
since @_(T,, T)f=W (T, T,, P))f €M, and

eT2e” Nf ~Q (T, T)) f—0.
Consequently, M; c D(Q,(T;, T))) and

Qu(T5 T)f = QT3 TYQ (T, T)) f for fEM,
Because of the inclusion & (T,, T))M; C M, we have

W+(T3, T, Pl) = Q+(T3, Tl)Pl = (SZ+(T3, T2)9+(T2, Tl)Pl
=Q+(T3, T2)P29+(T2, T)) P,

= W+(T3’ TZ’ PZ) W+(T2’ Tl’ Pl)' D
Theorem 11.5. Assume that T, and T, are self-adjoint operators on the
complex Hilbert space H, M, and M, are closed subspaces, P, and P, are the
orthogonal projections onto My and M, respectively. If M, C r D(Q (T, T))),
M, C7,DQ (T, Ty), RIW (T5, Ty, P)))CM, and R(W (T, Ty, P))
C M,, then

W+(T1, T, Pz) = W+(T2, T, Pl)*
and

R( W+(T2’ Tl’ Pl)) =M2a R( W+(Tl’ TZ’ PZ)) =Ml'

ProoOF. We obviously have W (T, T\, P\)= P, and W _(T,, T,, P,)= P,.
It therefore follows from Theorem 11.4 that

W+(T1, 75, Pz)W+(T2a T,, P) = P,

W+(T2, T, Pl) W+(Tla T, Pz) = P,.

Because of the formulae R(W _(T,, T,, P,)) CM; and P, =
W (T, T,, P)Y*W (T, T,, P,)) it follows that

W+(T1, T,, Pz) = P1W+(T1a T, Pz)

W+(T2a Tla Pl)* W+(T2’ Tl’ PI)W+(T1’ TZ’ PZ)
= W+(T2, T, Pl)*PZ'
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Because W_(T,, T,, P)* is a partial isometry with initial domain
R(W (T,, T, P,)) C M,, we have

W+(Tl’ TZ’ PZ) = W+(T2> T]a Pl)*PZ = W+(T2’ T]’ Pl)*’

The equality R(W (T, T,, P,))=M, follows from the fact that
w. (T, T, P)=W_(T,, T, Py)* is a partial isometry with final domain
M,. The equality R(W (T, T,, P,))= M, follows from W (T}, T,, P,) =
W . (T,, T, P))* correspondingly. [

On the basis of the remark after the end of Theorem 11.1, an eigenele-
ment f of T, belongs to D(8(T,, T,)) only if f is also an eigenelement of
T, for the same eigenvalue. Consequently, it is unrealistic to expect that an
eigenelement belongs to D(§2,.(7,, T,)). We shall therefore always assume
in the sequel that M; Cc H.(T). If M, c H.(T)) N D2, (T,, T})) and P, is the
orthogonal projection onto M,, then R(W _(T,, T,, P,)) Cc H.(T,) by Theo-
rem 11.2. Actually, for technical reasons we shall consider only subspaces
M, of H,.(T,). Particularly, we obtain from Theorems 11.2 and 11.5:

Theorem 11.6. Let T, and T, be self-adjoint operators on the complex
Hilbert space H, and let P; ,, be the orthogonal projections onto H,.(T)) for
j=1,2.If H(T))C D, (T, T\)) and H,(Ty) C D (T, T), then

R( W+(T2, T, Pl,ac)) =Hac( Tz)a R(W+(Tl’ T,, Pz, ac)) =Hac(Tl)
and

W AT, Ty Py o) = W+(T2, Ty, Pl,ac)*;

2, ac

the absolutely continuous parts of T, and T, are unitarily equivalent. The
corresponding results hold for W_. (In the assertions of this theorem P, ,.
and H,.(T)) can be replaced by P, . and H,(T)).)

Corollary. Assume that W (T, T,, P, ,) exists. Then R(W (T, T\,
Py . N=R(P, ) if and only if W (T, T, P, ,.) also exists.

2, ac

11.2 The existence and completeness of
wave operators

Useful existence results for W _(T,, T, P) are known only in the case
where P= P, .. (or P <P, ). Consequently, we shall consider only this
case in what follows. If, for example, 7, is a (non-trivial) differential
operator on L,(R™) with constant coefficients, then P, ,. = I. Therefore in
many cases there is no loss of generality in assuming that P <P

1, ac*
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The wave operator W (T, T\, P, ,) is said to be complete if
R(W .(T,, T\, P, ,.))=H,(T,). By the Corollary to Theorem 11.6 this is
the case if and only if W (T, T,, P, ,.) also exists; this wave operator is
then also complete, and the absolutely continuous parts T . and T, ,, are
unitarily equivalent. A similar result holds for W_(T,, T\, P, ,) and
W_(T, Ty Py o) W RIW _(Ty, T, Py ))=R(W (T,, T\, P, ). then
the scattering operator S(T,, T))= W (Ty, T\, P ,.)*W _(T,, T\, P, ,.) is
obviously a unitary operator on H,(T,); this holds in particular if
W (T, T, P, ,)and W_(T,, T, P, .) are complete.

The purpose of this section is to prove a few abstract criteria for the
existence and completeness of W.(T,, T), P, ). These will then be ap-
plied to differential operators in the next section. The reader can find
further references, for example, in 7. Kato [45].

Assertions similar to those occuring in the following theorem are known
in the literature as Cook’s lemma.

Theorem 11.7. Let T, and T, be self-adjoint operators on the complex
Hilbert space H. If e ''"\f € D(T,) N D(T,) for all t €R, the function

R—>H,t>(T,—T,) e 'Tyf
is continuous, and

[T =Ty e Ty df < oo,

then f € D(Q2.(T,, T))).

PrOOF. Since ¢~ 'Tif € D(T,) N D(T,), the function Q(¢)f=¢"T2 e~ 'Tf is
differentiable for all t € R, and its derivative is

S0 f) =i & T(Ty— Ty) &7y,
This derivative is continuous by assumption. Therefore,

U S~ Qs)f =i [T, ~ T))e T du,

120 S = ) A1l < [ (T, T) e~ T du.

Since the integral over (— oo, 00) 1s bounded, the limits £_ (7T, T))f=
lim,_, , S(¢)f exist. ]

Theorem 11.8. Let T, and T, be self-adjoint operators on the complex
Hilbert space H, and let E be the spectral family of T,. If f& H,.(T)),
Hy=L{E(t)f : t ER}, Py is the orthogonal projection onto H;, H;C D(T )N
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PrOOF. The proof is in three steps.

First step: Without loss of generality we can assume that H;= L,(J) with
J a bounded interval and that the restriction 7' ; of T, to the reducing
subspace H;=L,(J) is equal to the operator of multiplication by the
variable.

Proof of the first step. The subspace H; reduces T, because it obviously
reduces E(7) for all t€R (cf. Theorem 7.28). The operator T , is self-
adjoint on H; and is defined on the whole of H;. Therefore, T, is bounded
(Theorem 5.6). Hence there exists an interval (#,, t,) such that || E(z) f|| =0

for t<t, and [|E(?) f]| = ||f|l for t >1,.
If we set p{t)=|E()f||” for tER, then there exists (cf. the proof of

Theorem 7.16) a unitary mapping V; : H—Ly(R, p,) for which VT, fo“l
is the multiplication operator on Ly(R, p)):

(VfT,,fo‘ lg)(x) = xg(x) for g€ Ly(R, pf).

Because f € H,.(T)), the function p, is absolutely continuous, i.., there
exists a o0 € L;(R) such that

4 t
t) = o(s)ds = | o(s)ds for rER
e = o) ds = [ o(s)
Denote S;={t €R : o(z) #0}. (Since o is uniquely determined only up to
a Lebesgue null set, S; is uniquely determined only up to a null set; the
reader can verify that this plays no role in what follows.) The set S; is
measurable and can obviously be chosen to be bounded. The formula

VVf : LZ(R, pf) -—>L2(Sf), g 01/2g

defines a unitary mapping. With the notation U= W,V the operator
UT,, fo" is the multiplication operator on L,(S;). Let us extend the
operator U, to the operator

U: HoH @ Ly(S), g ((I-P)g, UPg).

U is obviously unitary; U maps H; onto L(Sy) and transforms 7 , to the
multiplication operator on Ly(S)). The subspace H;- and the restriction of
T, to H/ remain invariant under U. Consequently, we may assume
without loss of generality that H;= L,(S) with some bounded measureable
subset S of R and that 7' , is the multiplication operator on Ly(S).

Let J be a bounded open interval with S C J, and denote §=J\ S and
A=H® L,(8)= H* ® L,(J). The operators 7, on H (j=1,2) will be
extended to self-adjoint operators T; on H if we define

D(T;) =D(T) ® Ly(3),
T(g+h) = Tg+ Mh for geD(T), he L),
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where M denotes the multiplication operator on L,(8). The restriction of
T to L,(J) is then equal to the multiplication operator on Ly(J). We
therefore have L,(J)CH C(T) If we choose an f € L,(J) such that f(x)=1
for all x € J, then fEH, C(T) and

Hi: =L{F()f:teR}=Ly(),

where F denotes the spectral family of f’ Since f’ f vanishes on L,(85),
the operator (f’z T 1) P; belongs to B,(FI) where Pf denotes the orthogo-
nal projection onto Hf If we prove that H;C D2, (T2, T 1)), then it follows
that H,C D(Q. (T, T})). Since ¢ T2 e~ Tig=¢l T2 ¢=itTiy for g€ H, we
also have then that H,C D(Q..(T),, T))).

Second step: Let V=T, — T,. The assertion of the theorem holds if VP,
has the form

VPg = -21 c{g, gy h forall g€EH,
J:
where g; € C°(J), ; € H and || gj|| = ||4;]| = 1. Then for all g € Cg°(J) (with

Q(t) — ei tT, e -1 tT,)

1(0)g — Qs)gl* < 87| gl ﬁl |cj|[{f°°|F(&*g)(u)'2 du}n/z
*© - | 1/2 (11.9)
+{ [IF(gre) P au)” ]

(here F is the Fourier transformation on L,(R) and g*g is taken to be
equal to zero outside J). A similar estimate holds for the integrals over
(—o0,t) and (— o0, s).

Proof of the second step. e~'"T'g € H;C D(T,) for all g€ H;=L,(J) and
t € R. The function
R—oH, 1= (T,—T)e g = VPe™ Ty

is therefore continuous for all g € H,. Moreover, for g € H;= Ly(J)

|VPe™ T =

jgl cjfjgj*(x)e ' (x) dxh

< D el IBlIm) 2| F(gre) (D).
j=1

If g€ Cg°(J), then the (extended) function g*g belongs to Cg°(R), and
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thus F(g*g) € S(R). Hence, in this case

o0 .
f |VPe ™ Tigl| dt < oo forall g€ Cg°(J).

— o0

Therefore, C§°(J)C D(R,(T,, T,)) by Theorem 11.7. Since the subspaces
D2, (T,, T,)) are closed by Theorem 11.1, it follows that H;= L,(J)
C D (T, Th)).

With &, =8, (T,, T,) we have for g € Cg°(J) that

19, g~ Q)gl* = |12, glI>— 2 Re(Q, g, At)g) +1Q()g|
= 2|2, gl>— 2 Re(®, g, Qg
= 2Re(Q, g, @, g—U1)g>
= 2 Re ifw<9+ g, ¢ T2YP, e gy ds
t

o0 . .
= —21mf (R,e"Tig, VPe *Tig) ds (cf. Theorem 11.1)
z
< *© —isT —isT
= -2Im X ¢f (R, h){g, e Tig) ds
j=1
4 * —isT 2 *® —isT 2 1/2
<23 fe{ [ KT T hyP ds [I<g, e TP ds)
j=1 { {

Since e~ *Tig € H,, we have

*© _isT 2 ® —isT 2
ft K@, e T, )| ds=ft KR, Py e™'*Tg, B ds

0

|<e71sThg, (Q+Pf)"‘hj>|:Z ds

Il
—

2
ds

0

[e7g(x) [(Q,B)*h ] (x) dx
< 27| F Y (g* (P ) )P = 2] g*(Q, P )* |2
< 27| glIZ (9, Pp)* k| 1* < 27 gl

and -
| KgoeTTe)Pds = 2m [ | F(gre)()P ds.
t t

Consequently, we obtain that

n

00 /2
19, £ =208l < a3 lol{ [ TIAgre)R ds)

j=
and hence the assertion follows from the inequalities

1(0)g — (s)gl? < (1) — L. gl + 119 g —2s)gll)’
< 2(12, g— Q2P+ 119, g—Q(s)gl?).
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Third step: The assertion of the theorem holds in general.
Proof of the third step. Let the operator V, be defined by the equality

Vy is obviously self-adjoint and belongs to B,(H). Forall g€ H;and h€ H
Chy Vogy = Chy (VP )*g + Vg — PVg)
= (VP:h— VPh, g> +<{h, Vg) = <(h, Vg),

ie., VoPr=VP,
The operator V,, € B|(H) has the form

o0
Vog = 2 ¢<g,8>g for gEH,
j=1

where g € H, || g;|| = 1 and 272 |¢;| < co. For all j € N we choose sequences
(&, nnen from.H with the properties Pig; , € Gg°(J), ||g; /| <1land g; ,—
g; as n—oo. With

n
Vg = > <8 .88 . for g€H neN
j=1

it follows that ||V, — V|| —0, since for every NeN and n > N
N oo
Vo= Voll <22 1l g —gl+2 X el
j=1 J=N+1

If we now set T, ,=T,+(V,— V,), then by Theorem 9.16 and Theorem
9.18.

- s .
elTan 5el'T2 a5 n—> o0, t ER.

If we set @ (1)=¢' ‘T27e¢ ™ T1, then
Q.() > as n— o, tER
The second step can be applied to T, , in place of T, since
(T, n = TOPf = (V+V, - Vo) Py = V. Py,
and V, P; has the form required in the second step:

n
V,Pig = 21 c<Pg 88, for geEH
Jj=

Therefore, (11.9) holds for all g € Cs°(J) with €,( . ) in place of Q( . ) and
with P;g; , in place of g;,. We obtain from this for n—co that

19005 = 20)8l? < 8l g1l 3 lo| { [ 71F((2a) 80P du]

STRLCRCk du}"zJ; (11.10)



11.2 The existence and completeness of wave operators 349

for the proof we notice that F((Pyg; ,)*g) converges to F((P;g,)*g) in Ly(R)
as n—co. Since the right side of (11.10) tends to zero as ¢, s— o0, we have
Ce(N D, (Ty Ty)), and thus H,=Ly(J)C D (T, T))). We can
prove similarly that H,C D(Q_(T,, T))).

This completes the proof of Theorem 11.8. O

Theorem 11.9. Let T, and T, be self-adjoint operators on the complex

Hilbert space H, and let E be the spectral family of T).

(@) If J is a bounded interval, R(E(J)P, ,)CD(T,),and (T, —
T)E(J)P, , € B|(H), then the wave operators W (T,, T|, E(J)P, ,.)
exist.

(b) If the assumption of (a) is satisfied for every bounded interval J, then the
wave operators W (T, Ty, P, ,.) exist.

1, ac

1, ac

PRrROOF.

(@) If f€ R(E(J)P, ,) then H CR(E(J)P, ,), and thus (T,— TP €
B\(H). By Theorem 11.8 H; c D(2.(T,, T))); therefore, f €
D(2.(T, T))). As this holds for all fE€R(E(J)P, ,), we have
R(E(J)P, ,)CDE.(T,, T)), ie., W.(T,, T|, E(J)P, ) exist.

(b) R(E(J)P, ,.)CD(..(T,, T))) for every bounded interval J, by part
(a). Since the linear hull of these spaces (for all bounded intervals J) is
dense in R(P, ,.), the assertion follows. J

Theorem 11.10. Let T, and T, be self-adjoint operators on the complex
Hilbert space H. The wave operators W (T, T\, P, ,) and
W.(T,, T,, P, ,) exist and are complete provided that R(E\(J)) C D(T)),
R(Ey(J)) CcD(T)) and (T,— T)E(J)EB\(H) for j=1,2 and for every
bounded interval J. This holds in particular if one of the following assump-
tions is satisfied:

(1) There is an operator V € By(H) such that T,=T,+ V (Kato-Rosen-

blum).

(i) D(T,)=D(T,) and (T,— T\)(z — T,)"% € By(H) for some z € p(T)).
(i) D(T))=D(T,) and (T,— T,)(z —~ T,)"% € B,(H) for some z € p(T,).
(iv) D(T))=D(T,), and there exists an n €N such that (T,— T\ (z—T,)™"

€ B,\(H) for some z €p(T,) and (T,— T,)(z — T,)" " € B,(H) for some
z€p(Ty.

(v) There exists an n €N such that D(T,)> D(T7)D R(EL(J)) for every

bounded interval J and (T, — T\)(z — T,)™" € B,(H) for some z € p(T)).

Proor. If (T,—~ T))E(J) € B|(H) for j=1, 2 and for every bounded inter-
val J, then the wave operators W_(T,, T, P, ,)) and W _(T\, T,, P, ,.)
exist by Theorem 11.9(b). These wave operators are complete by the
Corollary to Theorem 11.6.

(i) obviously implies (iv) for all n €N. The assumptions (ii) and (iii) are
equivalent according to (9.7) (observe that the assumptions of (9.7) are
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fulfilled. (iv) follows from (ii) and (iit). In order to prove that (i), (ii), (iii),
or (iv) implies the assertion, it is sufficient to prove that (iv) implies the
assertion: For every bounded interval J

(T,— T)E\(J) = (T,— T))(z— Tl)_n(z - Tl)nEl(J) € B,(H).

The formula (7, — T,) E,(J) € B,(H) follows similarly.

It remains to prove that (v) implies the assertion: For this, we prove
(T, — T))E,(J) € By(H) as above. Since R(E,(J)) C D((z — T,)"), the opera-
tor (z— T,)Y'E,(J) is bounded, and thus

(T,— TY)EyJ) = (T,— T,)(z— T)) "(z— T,)"Ey(J) € B,(H). 0]

In the case D(T,)= D(T,) Theorem 11.10 can be essentially sharpened.

Theorem 11.11, Let T, and T, be self-adjoint operators on the complex
Hilbert space H. Assume that D(T,)= D(T,) and (T, — T,)E,(J) € B,(H) for
every bounded interval J. Then the wave operators W . (T,, T)) exist and are
complete.

I am indebted to Dr. R. Colgen for the proof given here. The case where
D(T}/?y= D(T}/?) can be also treated without many changes. First we
prove the following auxiliary theorem.

Auxiliary theorem 11.12. Let T, and T, be self-adjoint operators on the
complex Hilbert space H. Assume that D(T,)= D(T,).
@) ||(I— E,((—n, n)))Ey(J)||—0 as n—> oo for every bounded interval J.
(b) If the limits s —1lim,_ , E,((—n, n))e' "1 e "TE,(N)P, . exist for all
n €N, then the limits
s— lim &M e "E(JP, .

f—>*o0
also exist.

PROOF.

(a) It is obvious that (I — E,((— n, n)Ex(J)=(I — E((— n, m))(T, +i)""
X (T, +i)N(T,+ 1)~ (T, +1)Ey(J) for all nEN. Since (T, +i)E,(J) and
(T, +i)(T,+1i)"' are bounded and since ||[(I — E,((— n, n))(T, +1) ||
< (1/n), the assertion follows.

(b) This assertion immediately follows from

€T e T TEND) Py oo — E((— 1, n))e! T e THTEN(J) P, ||
= [l "(I = E\((— n, n))) Ex(J) €7/ T2P, . |
< [(I—E;((—n, n)Ey)J)|| >0 as n— oo.

O

2, ac
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PrROOF OoF THEOREM 11.11. The existence of W (T, T;) follows from
Theorem 11.9(b), because R(E (J))cC D(T,)= D(T,) for every bounded
interval J. It therefore remains to prove the existence of

W.(T, T, Ez(J)Pz, e) =5 — lim e'7 e—“TzEz(J)Pz, ac
{— * o0

for every bounded interval J.
Let J be a bounded interval. As (T, — T})E,(J) € B|(H), the operator

= (Tz‘“ TI)EI(J) + ((Tz_ TI)EI(J))* - EI(J)(TZ_ TI)EI(J)
is a self-adjoint element of B,(H) and
VoE(J) = (T,— T))E(J),
E(N)V, = (VE())* D E(NT, — T,E ().
Define T, = T, — V,. Since R(E;(J)) C D(T;)= D(T,), we then have

EI(J) V0E3(J) = (EI(J) T, - T1E1(J))E3(J),
and thus
TlEl(J)E3(J) — E\(V)TLE5(J) = (TIEI(J) —E(J)T,+ E\(J) Vo)E3(J) = 0.

If we define.4 : R— B(H) by the equality
A(t) = E|(J)e''T e ' TE(J) P

3, ac,

then
<u A(tyoy = iu, € (T E(J) E5(J) — E(I) T1E5(J)) e 7Py L 0) =0

for all u, vE H. A is therefore constant, i.e., 4(2) = A(0)= E(J)E3(J)P; .

for all r € R.
Since Ty =T, — V,, with V€ B,(H), the operators

Wt(TB’ T2’ EZ(J)PZ, ac) = s — lim ei T e_ithEZ(J)PZ, ac
exist by Theorem 11.9(a), and
Wt(TB’ T2’ EZ(J)PZ, ac) = E3(J)P3, ac Wi-(TB’ T2’ EZ(J)PZ, ac)

by Theorem 11.2. This implies
s— lim (I—E(J)P; ) € e "E,(J)P, ,. = 0,

t—* oo
and thus the existence of
s— lim E(J) e e " E (NP,

t—-+ o0

=s— lim E(J)eTe Te e TE ()P, ,

t—>*+o0

=s5— lim E;(J) e e TE()P; . €T e TE (NP, ,.

t—* o0

=s— lim A(0) e e "EN(J)P, ,.

t—>*+o0
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As this holds for all bounded intervals J (in particular, for J=(— n, n), as
well), the existence of

s— lim E,((—n,n)) e e " E(JHP, .
t—* oo ’

also follows for all n €N. Consequently, the assertion of the theorem is
obtained by Auxiliary theorem 11.12(b). ]

In what follows we would like to prove a version of the so-called
invariance principle for wave operators (cf. also T. Karo [22], X.4).

Theorem 11.13 (Invariance principle). Let the assumptions of Theorem 11.8
be satisfied (let H; and P; be defined as there). Assume that the function
?: R>R is twice continuously differentiable and ¢'(x)>0 (respectively
¥'(x)<0) for all x€R. Then H,C D(Q.(HT,), ¥(T))), and Q. (HT,),
NT)))g=2.(Ty, Tg (respectively Q(H(Ty), HT)g=2(Ty, T))g) for
all g € H;.

For the proof we need an auxiliary theorem.

Auxiliary theorem 11.14. Ler ¢ : R—>R be twice continuously differentiable.
Assume that 3'(x) >0 (respectively 3'(x) <0) for all x €ER. Then for all
8 € Ly(R)

o0 .
gl > [ 1F(e™ " g)(w) du — 0
0
as s—oo (respectively s— — o0). (A similar result holds for [° _ if we
exchange “s—o0” with “s— — 0",

Proor. The inequality is clear since F : L(R)—L,(R) is unitary and
e )| =] g|| for all s ER. It is therefore enough to prove the conver-
gence relation for all g from a total subset of L,(R), for example, for
characteristic functions of bounded intervals. We consider the case 4’ > 0.
Then for g = xy,, 5, s >0, and u>0

: - b . .
Fem0g)(u) = (m) 2 [famior 1900
a

— i(277_)~'1/2fb(u+sﬂ,(x))——]_aa_xe—iux—isﬂ(X) dx

u+s3'(x)

i(27r)"‘/2{

e—iux—isﬂ(x) }h

a

+fb S’&”(X) e—iux—isﬂ(x) dx}
a (u+s9'(x))*

There exist C; >0 and C, > 0 such that ¢'(x) > C, and |3"(x)| < C, for all
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x €[a, b]. Consequently, for all u >0 and s >0

[Fe™ " Og)(u)] < Cyu+s) ™,
and thus -
f |Fe ' Ig)(w)|? du < CZ&~' forall s> 0.
A |

The case ¥’ <0 can be treated in a similar way if we consider # >0 and
s <0. ]

PrROOF OF THEOREM 11.13. As in the proof of Theorem 11.8, we can assume
without loss of generality that H;= Ly(J) with some bounded interval J
and that the restriction of T to L,(J) is equal to the operator of multi-
plication by the variable.

Let 3’ >0. We consider §,: First we remark that (11.10) obviously
holds for g € C(J), as well. If we replace g by e ¥ Tg=g=is3()g( ),
then we obtain for s =0 and #— oo that

1R,(T, T;) e isHT)g — g=isH T2
<3 § | ooF((P )* —is(.) )( 2d 1/2
< 87 gl 2 6] OI 8)* € g)w)|”du} .
j=1

By Auxiliary theorem 11.14, the expressions in the braces are bounded by
1 glI%|l &> =1l g]1%, and tend to 0 as s—co. Consequently,

Q. (Ty, T)) e 1 Tg — ¢=isHT)g 50 a5 5 0

for all g € Cs°(J). Then this holds for all g € L,(J), as well. Hence, for all
8 € Ly(J)
e 1 HTIQ (T, T))g —e ¥ Mg 50 as s— o

(cf. Theorem 11.1). Multiplication by &' **72 gives assertion in this case.

The other cases can be handled similarly. |

Theorem 11.15. Let T, and T, be self-adjoint operators on the complex
Hilbert space H, and let E denote the spectral family of T,. Assume that
R(E(J)P, ., )T D(T,) and (T,— T)E(J)P, ., € B|(H) for every bounded
interval J. Assume, furthermore, that the function ¢ : R—R is twice continu-
ously differentiable and ¥ (x)>0 (or ¥'(x)<0) for all x€R. Then
H,.(NT)) = H,.(T)), the wave operators W (¥ T,), ¥T)), P, ,.) exist, and
Wo(3(Ty), HT)), Py )= W.o(Ty Ty, P o) (or Wo(H(Tp), HT,), P, o)
=W _(Ty T,, P, ,.), respectively).

PrROOF. A subset N of R is a null set if and only if #(N) 1s a null set. If F is
the spectral family of #(T,), then F(S)= E(? ~'(S)) for every Borel set S
(cf. Section 7.3, Proposition 6). It follows that H,((T,))= H,(T,). The
rest of the assertion follows from Theorem 11.13 (cf. the proof of Theorem

11.9). O

1, ac

1, ac
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Theorem 11.16. Let T, and T, be self-adjoint operators on the complex
Hilbert space H. Assume that T, >y, T, >v, and (T, —A)"?—(T,—AN)"? €
B,(H) for some AER such that A<y and some p €EN. Then the wave
operators W .(T,, T,, P, ,.) exist and are complete.

PrOOF. Let 3 : R—>R be a twice continuously differentiable function such
that #(t)=A+¢""? for t>(y—A)"? and #'(1)<0 for all tER (hence,
H(T;,—A)"?)=T, for j=1, 2). The wave operators

Wr(Tz’ Tl’ Pl,ac) = W:((Tz_}\)_p’ (Tl _A)—p’ Pl,ac)
and

Wi(Tl’ T2’ P2,ac) = W:((Tl __)\)—p’ (TZ_}\)_p’PZ,ac)

therefore exist according to Theorems 11.10 and 11.15. The assertion thus
follows. ]

11.3 Applications to differential operators on L,(R™)

If T, is a self-adjoint differential operator on L,(R™) with constant coef-
ficients, then in many cases the existence of W_(T,, T,) can be proved
without using Theorem 11.8 or any of its consequences. We only have to
apply Theorem 11.7 and appropriate estimates of exp(—1 ¢7) f that can be
proved with the aid of the Fourier transformation. Here we prove a special
case of a result of K. Veselic and J. Weidmann [53], [54] (compare also with
L. Hormander [43)).

Auxiliary theorem 11.17. Let ACR™ be a closed set. Assume that the
function h : R™—>R is infinitely many times continuously differentiable in
R™"N\A and grad h(x)#0 for x €R™\A. Then for every function g¢&
Cs°(R™\ A) and for every p > 0 there is a constant C such that

&= emi#g(y) dy| < Cle| (1 +|x])*

for all x ER™ and t ER\ {0} (here g is considered as a function defined on
R™ with g(x)=0 for x € A).

PrOOF. For every y ER™\ A there is aj€ {1, 2, . . ., m} for which 9;4(y)
=(39/9y;)h(y)#0. Since 8;4 is continuous, there is a neighborhood U, of y
in R™\ A such that 9;4(z)#0 for all z€ U,. The compact set supp g can
be covered by finitely many such neighborhoods U, , ..., U, . Then there
are functions 9; € Cg°(R™) such that supp 4; C U, and X7 ,3,(y) =1 for all
y €supp g (partition of unity; cf. W. Rudin [33], Theorem 6.20). It is obvi-
ously sufficient to prove the assertion for the functions 9,g in place of g,
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i.e., we can assume that aj (1, 2, ..., m} exists for which 9,4(y)# 0 for
all y €supp g. (In many concrete cases there is a j€{1,2, ..., m} such
that d;a(y)#0 for all y € R™\ A; then the foregoing step of the proof is
superfluous.)

Hence, let 9;4(y)#0 for all y Esupp g. Then by k-fold partial integra-
tion with respect to y; we obtain for all Kk €N and 750 that

. . : ixy
felxy—lth(y)g(y) dy — fe—lth(y)ajh(y)e g(y) dy

ajh(y)
= (i t)wlf —Uh(y)af[ ea I;g((;)) } dy
= ... =1 —ith(y l CIL()})
= Gt)” f h(»)g. [ = h(y) 8[ . aj[ ajh(y) dy

= (i)™* [ ¢ 4Ix(x, ) dy,

k
X, y) = >_:0 9,(»)x?

and the supports of the functions #, € Cg°(R™\ A) are contained in supp g.
Therefore,

k
[ Mgy dy = (0)7F 3 xp [0 09, (5) dy.
p=0
We consequently obtain for every kK €N that

Ifeixy—ith(y)g(y) dy| < Cle|~*(1 +]|x]".

This estimate evidently holds for £ =0, as well.
Now let k €N, be such that k <p <k + 1. Then

1701+ |x])* > |71 + |x])* for |7} (1+|x])> 1,

1] 72(1 +|x))p > 1] =¥+ D(1 +|x])*H! for |f|7Y(1+|x|) < 1.

If we apply the above result with k and £ — 1, then we obtain the assertion.

O

In what follows, for a real-valued measurable function 4 defined on R™
let M, denote the maximal operator of multiplication by 4 on L,(R™), and
let T,=F ~'M,F. If h is a polynomial, then 7, is a differential operator
with constant coefficients.
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Theorem 11.18. Let us assume that with a closed set A C R™ of measure zero
we have

h€ C®(R"\A) and grad h(x) #0 for x&A

Let V be a symmetric operator on L,(R™) such that S(R™)cD(V), and
assume that there exist a p €Ny, a © > 1, and a C > 0 with the property that
Jor all r >0

HVfll < C(1+ r)"@)||f||pl for all f € S(R™) such that f(x) = 0 for |x| <r.

Then for every self-adjoint extension T of T, + V (provided that any exist)
the wave operators W (T, T,) exist.

In the following we shall not prove this theorem but a somewhat more
general one that also considers operators on Ly(R™)™ (for example, Dirac
operators). For this let A be a measurable function defined on R™ whose
values are M X M Hermitian matrices (such a function is said to be
measurable if the entries of the matrix are measurable functions). Let M
again be the maximal “operator of multiplication” by H on Ly(R™* and
let T, = F ~'M,, F. The operator T}, is evidently self-adjoint. We denote by
hy(x), ..., h(x) the M (not necessarily different) eigenvalues of H(x) and
by e,(x), . .., ey(x) the corresponding normalized eigenelements. (There
is a great deal of freedom [especially if multiple eigenvalues occur] in the
choice of these functions; in what follows 1t will be possible to choose them
in such a way that the functions 4, and e; are infinitely many times
differentiable.) The operator 7, is a differential operator if all entries of
the matrix function H are polynomials; however, the functions hj and 2
are in general then not polynomials (cf., for example, the Dirac operator,
Section 10.6).

A function H defined on R™ whose values are Hermitian M X M
matrices is said to be permissible if the functions 4; and e; can be chosen
such that there exists a closed set A C R™ of measure zero for which

oo pm oo { M M
h, € C*(R™\A), ¢; € C*°(R™\A)",
grad A(x) # 0 for x € A(j=1,..., M).
Theorem 11.19. Let H be a permissible function. Let V be a symmetric

operator on L,(R™™ with the properties: S(R™M < D(V), and there exists a
PENG a®>1,and a C >0 such that for all r >0

IVl < C(L+r)"®|If1l,2 for all f € S(R™)™ such that
f(x) =0 for |x| <r.

') . |l is the norm of W ,(R™).
?Here || . ||, denotes the norm in W, ,(R™)™.
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Then the wave operators W (T, Ty) exist for every self-adjoint extension T
of Ty+ V.

PrOOF. We prove that if Ff € Cg°(R™\ A)¥, then f satisfies the assumptions
of Theorem 11.7. Since CP(R™\A)M is dense in Ly(R™M = L,(R™\ A)M,
this will prove the assertion.

Let Ff € C°(R™\ AYM. Then, in particular, f € S(R™)™. The assumption
on V (for r=0) implies that

|V (e™*Ta —e~ Ta)f|| < Cli(e™"* T — e Tr)f]],
= C”(e—isH(.)__e—itH(.))Ff”(p)

. . 1/2
= ¢ fle e HORER(P(L+ 5P dx
-0 as s>t
The function ¢ Ve~ ‘T#f is therefore continuous on R.

Now let # € C*(R) be such that 0<d(s) <1, ¥(s)=1 for s <0 and
I(s)=0 for s > 1. With some p€(1/0, 1) let 3, € Cs°(R™) be defined by
the equality 3,(x) = &(]x| — |¢z|*) for all x ER™ and tER.

The assumption on V' (for r =0) implies (cf. Theorem 10.8(c)) that

. . 1/2
Vet T < Cmax [ [ (D et ) (o)f ax

lal<p \ x| <|rjr+1

1/2
= C, max {f (ZW)"m/zlfei"ye"“H("’)y"‘(Ff)(y) dy|? dx} )
|x] < e +1

The operator induced on C¥ by the matrix e~ “#© can be written in the
form

M
e iHOE = 2] e—itig-(y)(ej( »), g)ej( y) for ¢€ CM

j=

where (., .) is the scalar product in C¥, Consequently,
M
JeeT HOy (B () dy = 3 [eTeT B e (), y (F)(»)e(y) dy.
Jj=1

Since Ff € C§°(R™\ A)™, we also have y*Ff € C°(R™\ A)™. Therefore, the
functions y>(e(y), y“(Ff)(¥))e(y) also belong to Cs°(R™\A)”. Hence
we can apply Auxiliary theorem 11.17 to the last integral. We thus obtain
for all p >0 and |¢| > 1 that

1/2
Ve < G [ () d
| x

< C3|tlp(#— D+(mp/2)

| <]e]*+1
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We obtain similarly from the assumption on V (for r=|¢]*) that
IV(1=8)e ™! Tuf|| < C,(1+12#)”° max fje™* ™D
al<p
< Cymax DY |¢| 7 = Cyft]7+.
a<p

If we choose p so large that p(p— 1)+ (mp/2) < — pu® < — 1, then
1V e Tuf|| < [[Ve™ Taf|| + | V(1 —8)e Trf]| < Colt]*©

for [¢|> 1. Since t—> Ve 'T#f is continuous, the integrability of >
|V e~ '*Txf|| follows from this. ]

Theorem 11.20.
(@) Let T, be the self-adjoint operator defined by the formulae D(T))
=W, (R™), T, f= —Af for f€ D(T,). Let V be defined by the equality

Vi(x) = l IEkc,,l(X)D"‘f(x) for [ & S(R™),
ol <
and assume that |c,(x)| < C(1+ |x|)~ '€ for some C >0 and some € > 0.
Then the wave operators W . (T,, T,) exist for every self-adjoint exten-
sion Tyof T+ V.
(b) A corresponding result holds if T, is the free Dirac operator on Ly(R%?
and the c,(x) are 4 X 4 matrices.

PRrOOF.

(a) We have T,= T, with A(x)=|x|%. Since grad A(x)==0 for x %0, the
assumption of Theorem 11.18 1s obviously satisfied with p = k.

(b) The functions 4; and e; are known from Section 10.6 and satisfy the
assumptions of Theorem 11.19 with A= {0}. Theorem 11.19 is there-
fore applicable if we choose p = k. O

The assumptions of Theorem 11.20 on the coefficients ¢, can be essen-
tially weakened (cf. Exercise 11.1).

In Theorems 11.18 to 11.20 we showed the existence of W _(T,, T)) in
many cases where 7T is a. differential operator with constant coefficients.
Since in these cases H,.(7,)= H (cf. Exercise 10.7; this is clear for —A and
the unperturbed Dirac operator), this is equivalent to the existence of
W . (T, T, Py ,). We cannot expect that the completeness (i.e., the equal-
ity R(W_.(T,, T,))= H,.(T,)) can be proved under such general assump-
tions. A few simple assertions can be proved with the aid of the results of
Section 11.2. In order to be able to apply them we need the following
auxiliary theorems.

Auxiliary theorem 11.21. If r, s >0, r —s >m /2 and ¢ € C§°(R™), then the
operator
(I) . W2,r(Rm) “')W2,S(Rm)’ fH (pf
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belongs to By(W, .(R™), W, (R™)). If r—s>m, then &€
Bl( Ww, r(Rm)’ WZ,s(Rm))°

PrROOF. We recall the proof of Theorem 10.19. & is a Hilbert-Schmidt

operator if and only if the integral operator K on L,(R™) defined there is a

Hilbert-Schmidt operator. The kernel of K is given by the formula
k(x,y) = (1+xP)59(x =) (1+[y) 77 for x,y €R”

with = Fp € S(R™). Because of the inequality [Y(x)] <C(1+|x[*)~! we

have

k(x, p)] < C(1+]x =y (1 +xP) 21+ |yP) 72

C(1+[xP) ™21+ |y~ for |y|<i|x],

C,(1+|x —y|2)_l(1 + |y|2)(s/2)_('/2) for |y >%|x|.

If we choose / >(m/4)+(s/2), then k € L,(R™ X R™); the operator K is
therefore a Hilbert-Schmidt operator.

Now assume that r —s >m, s, =(r +5)/2 and ¢, € Cg°(R™) with ¢,(x) =
1 for x €supp . Then ® can be considered the product of the mappings

(I), . W2, r(Rm) _)W2,s,(Rm)’ fH (plf,

®” . W2,s,(Rm) _)WZ,s(Rm)’ fl_—) (pf
As both of these operators are Hilbert-Schmidt, ® belongs to
B(W,, (R™), W, (R™)) (cf. Theorem 7.9). O

Auxiliary theorem 11.22. Let T be a self-adjoint operator on L,(R™). Assume
that D(T") C W, ,(R™) for some n €N and some t >m. Let V be a symmet-
ric operator on Ly(R™) such that D(V)D W, (R™) for some s€J0,
t —m). Assume that there exist a C >0 and a © >m such that for all r >0

VAl < 407111,
for all fE€ W, (R™) such that f(x)=0 for |x| <r. Then

V(i—T)"" € B(Ly(R™)).
(An analogous result holds in Ly(R™)™.)

ProOOF. Let § = §, € Cs°(R™) be defined as in Section 2.2, Example 8 (i.e.,
0<d8(x), 8(x)=0 for |x|>1 and [&(x) dx=1). For all m-tuples y=
(Yps - -+ » Vo) EZ™ let

QY={xERmzw<@<w+L j=LL.“,mL

¢, (x) = [8(x~y)xq () dy.
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Then we obviously have

2 @(x)=1 forall xeR"

yezm

where the sum is finite for every x € R™ (with at most 3” summands). By
Auxiliary theorem 11.21 the operator

o W, (R™) ->W, (R™), f o.f
belongs to B\(W, (R™), W, (R™)) for every y €Z"™, and the trace norm

|, llg,w, , w, , does not depend on y (we have @ =17 ®qr_,, where 7,
denotes the operator of translation by vy : (7,/)(x)=f(x — 7))

-y

The operator (i— T)™" is a continuous mapping from L,(R™) into
W;, (R™): As in the proof of Theorem 10.18 we can prove that || . || - >
C,ll . |, for some C, >0, and thus

IG=T)"FF < C2{IT"A—T) FIP+IG— T)"F11°} < GllfI1>
Now let Q@ ={x€R":v,~1<x,<y;+2 for j=1,2,...,m}, ¢ =
/8(x —=y)xg () dy, and

¢, 1 Wy (R™) W, (R™), [ §f.
Then &JY@Y =®_, and Vfi)y, as an operator from W, (R™) into L,(R™), s,
by assumption, bounded by
1V, llaw, . 1y < Co(1+[¥D ™"

Observe now that (By, || . ||,) is a Banach space by Exercise 7.10 and
that by Theorem 7.8(c) ||[AB]||, < ||4|;||B]|l and ||CA|,<||C|| ||4]|l, for
bounded B and C. It therefore follows that

Vi-T)"l, = X Ve e a(i-T)", < X VO & G(—-T)7"|,

yezr yezn

< 2 1V llew,, ol @y lls,oms, w o llG— T ™" llaws, ws
yezm

Co 3 (1+1) 70 < G5 f (1+[E)° dé < o0.

yezm

N

O

From Auxiliary theorem 11.22 we can immediately derive criteria for the
existence and completeness of wave operators with the aid of Theorem
11.10. (These existence statements are weaker than those contained in
Theorem 11.20). Here we only give a typical result. Actually, for m > 2
much better results can be proved using entirely different methods. We
shall not consider them here (compare with, for example, S.7T.
Kuroda [47, 48] and M. Schechter [49, 50] for further references).
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Theorem 11.23. Let T| be equal to —A, with D(T|)= W, (R™). Let V be
symmetric such that D(V)D D(T)), and let T,=T +V be self-adjoint.
Assume that there exist an s > 0, a © >m and a C > 0 such that for all r > 0

IVl < C(1+r) "SI,

for all feW, (R™)N D(V) such that f(x)=0 for |x|<r. Then the wave
operators W . (T,, T) exist and are complete.

ProoF. Since D(T)" = W, ,,(R™), by Auxiliary theorem 11.22 V(i—T,)~"
€ By(L,(R™)) for every n €N such that 2n — s >m, and thus

VE,(J) € B|(L,(R™)) for every bounded interval J.
The assertion therefore follows from Theorem 11.11. 0

REMARK. The assumptions of Theorem 11.23 hold in particular if ¥ is a
differential operator of order <2 whose coefficients decrease as |x|~® for
some ® >m. An analogous result can be proved for Dirac operators.

EXERCISES

11.1. The assertion of Theorem 11.20 holds also if the functions ¢, are locally
square integrable and N, (x) < C(1+|x|)~ I=¢ for some C > 0 and some ¢ > 0.
Hint: Choose p >k +(m/2) in the proof.

11.2. Assume m <3, T\ = —A, D(T})=W, ,(R™) and g € Ly(R™)Nn L(R™). If V' is
the operator of multiplication by ¢, then V is T,-bounded with T,-bound
zero; consequently, T, = T, + V is self-adjoint and D(T,)= D(T,). The wave
operators W .. (T,, T)) exist and are complete.

Hint: (T, + s)7' = (T, + 5)7' = (T, + 5) " 'W(T, + 5)"! € B(L(R™)) for
sufficiently large s, since

[VI'2(Ty+5) " and |V]Y/(Ty+5)7" = [V|Y2(Ty+5) T (Ty+5)(Ty+s) ™
are Hilbert-Schmidt operators (Theorem 11.16).



Appendix A

Lebesgue integration

In this appendix we shall compile and prove a few results of Lebesgue
integration theory that are used in several places in this book. We essen-
tially follow the presentation of F. Riesz and B. Sz.-Nagy [31]; but notice
that only the measure induced by the volume function is studied in detail
there. For complete presentations of the theory of measure and integration
we refer the reader to, for example, E. Hewitt and K. Stromberg [18] or W.
Rudin [32].

A.1 Definition of the integral

Let § =%(R™)' be the set of bounded intervals J=J, X X ... X, in
R™, where the J; are arbitrary open, half-open, closed, one-point or empty
intervals in R. Let § = $(R™) be the set of finite unions of intervals from
¢ . It is obvious that every M € § can be written as a union of finitely many
mutually disjoint intervals from §¢.

A mapping p : $ —»R is called a function of an interval or a interval
Sfunction on R” if we have:

(A1) Monotonicity: Jy, J,€ 4 and J, C J, imply p(J)) < p(Jy).

(A2) Additivity: J;, €S, N b= and J;U ), €$ imply p(J, U Jp)
= p(Jy) + p(J). .

The mapping p can be extended to ¢ by the formulae

p(M) = X p(J) for M= U J with JNJ =& for j+*k.

j=1 j=1

'In the following we omit R™ if no confusion is possible.

362
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This definition is obviously independent of the choice of the representation
M= U}_,J. This extended mapping is also monotone and additive.
The monotonicity and additivity immediately imply that

p(M) > 0 for all Meg‘p; p(J) = 0. (A3)

An interval function p is said to be regular if we have:

(A4) For every JE¢ and every € >0 there exists an open interval J
such that J c J and p(J) < p(J) + €.

It is easy to see that p is regular if and only if we have:

(A5) For every JE¢ and every € >0 there exists a closed interval J
such that J c J and p(J) > p(J) —e.

A regular interval function on R™ will be called a measure in the sequel.

ExaMPLE 1. The volume function

M) =11 (6,—a) for J= {xER™:14;S xS b))
j=1

J

is a measure. A is called the Lebesgue measure.

ExaMmPLE 2. If f : R— R is a right continuous non-decreasing function, then
the formula

(f(b) - f(a) for J=(a, b],

_ f(b)—fla—) for J=[a, b],

pf(J) f(b—)—f(a) for J=(a, b),
Lf(b—)—f(a—) for J=[a, b)

defines a measure.

EXAMPLE 3. If p, is a measure on R? and p, is a measure on R?, then the
equality

o(di X &) = py()px(dy) for Jy € 4(RP), J, € $(RY)

defines a measure on R” 9.

In what follows let p always be a measure on R™. A set N CR™ is called
a p-null set if for every e > 0 there exists a sequence (J,) from ¢ such that

Nc U J, and D p(J,) <e

neN neN

Since p is regular, these intervals can always be chosen to be open.

ExaMpLE 4. All finite and countable subsets of R™ are A-null sets.
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ExAMPLE 5. Every subset of a p-null set is a p-null set.

ExampLE 6. Countable unions of p-null sets are p-null sets: If the N (k€
N) are p-null sets, then for every € >0 there are sequences (J; ,), <y from
§ for which N, CU,endk, » and 2, cnp(d ») <€27" This implies that
UrenNMc C U, kendi, » and 2, ;enp(J, ,) <€

In what follows we say that a certain assertion holds p-almost everywhere
(or for p-almost all x) if there exists a p-null set N such that the given
assertion holds for all x € R™\N. In particular, we write f = g or f, =g if

el

there exists a p-null set N such that f(x)=g(x) or f,(x)—g(x) for all
x € R™\ N, respectively.
A function f : R"—C 1s called a step function if

n
f=2cjx‘& with J€§¢ for j=1,...,n
ji=1

(here x,, denotes the characteristic function of M). Of course, the intervals
J: are not uniquely determined by f. However, we can choose the intervals
J; to be mutually disjoint. We denote the set of step functions defined on
R™ by T= T(R™). The set T(R™) i1s a complex vector space.

For an f € T we define the p-integral by the equality

J1do= [59 do() = S o) for 1= 3 ox,

=1 j=1

This definition is independent of the choice of the representation of f as a
linear combination of characteristic functions.

The following properties of the p-integral of step functions are obvious:

(A6) If f, g€ T are real-valued and f< g, then [fdp < fg dp.

(A7) |ff dp| < fIf] dp for every fE T.

(A®) The mapping T—C, fi—>[f dp is linear.

Concerning the extension of this notion of an integral to a wider class of
functions we need a few preliminary remarks. First we consider only
real-valued functions.

Auxiliary theorem Al. If M Eg and (1,) is a sequence from § such that
MCUnEN then p(M)<EnENp(I)

PrROOF. Let M= U j 1J; with pairwise disjoint intervals J. Since p is
regular for every € > 0 there exist closed intervals J for Wthh J CJ; and
p(J) > p(J) — €/(2k) and open intervals [, for Wthh I, I, and E ,;_-Np( )
<2, enp(l)+€/2. The set M=y __,J is a compact subset of M and
p(M) > p(M)—¢€/2. Consequently, there is an N €N such that MC
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u¥_,T,, and thus

N
M) < p(M) +5 < X p(l)+5 < 3 pll) + e

n=1 neN

As this holds for all € > 0, the assertion follows. O

Auxiliary theorem A2. If (f,) is a non-increasing sequence from T and f, > 0
fn?O, then (f, dp—0.

ProOOF. Let N, be the p-null set on which the sequence (f,) does not
converge to zero, let K € R be chosen such that we have K >f, (then we
also have K > f, for all n €N), and let /; be an interval such that f,(x)=0
for x €R™\ |/, (then f,(x)=0 for x € R™\/; and all n €N).

For a given € >0 let ¢ =e(K+p(lp))"'. Let S be the set of mutually
disjoint intervals where f, assumes constant values not smaller than €'
Then with the notation M, = U ,.sJ we have

M DM, D -+ and [ M, CN,,
neN

because of the monotonicity of the sequence (f,). This implies that

Mk = U (Mn\Mn+l)U m Mn C U (Mn\Mn+l)U NO' (A9)

nelN n=k

For every n€N let 9, be a finite set of mutually disjoint intervals for
which M\\M,,,= Uaeoj J. Since M;D UXZI(M,\M,, ) for kEN and
(MAM, . )N (MM, )= for n#m, we have

n=1 n=1JeYg, n=1Je9g,

k=1 k—1 k—1
p(M,) > p( U (Mn\Mn+l)) = p( U U J) =2 X o),
and therefore

2 2 P(J) p(M;) < 0.

n=1Je9,
Consequently, there exists a k; € N such that
2 > p(J)<—~ for k > k,
n=k JEY,

Since the p-null set N, can be covered by countably many intervals of total
measure <e'/2, by (A9) the set M, can be covered by countably many
intervals of total measure <e'. By Auxiliary theorem Al we therefore have
p(M,) <¢€ for k > k,, and thus

ffk dp < Kp(M) + €p(ly) < €(K+p(lp)) =€ for k > k, O
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Auxiliary theorem A3. If (f,) is a non-decreasing sequence from T and the
sequence of integrals ([f, dp) is bounded, then there exists a function
f: R™" R for which f,— f.

p

Proor. Without loss of generality we may assume that the functions f, are
non-negative (otherwise we would consider the sequence (f, —f;)). Let Ny
be the set of those x € R™ for which the sequence (f,(x)) diverges. We have
to show that N, is a p-null set.

Let € >0 be given. Let C >0 be such that [f, dpo <C for all n €N. Let
J, be the set of disjoint intervals on which f, assumes constant values not
smaller than C/e¢, and define

N, = U J= {xER"’ :fn(x)>£} for neN.
JET, €
If N={x€R™ : f(x)>C/e for some nEN]}, then NoCN= U, yN, and
N, C N, ;. We can therefore choose a sequence (J;) of disjoint intervals so
that
k(n)

N,= U J, forall neN andthus N= {J J, DON,.
k=1 k=1

It therefore follows for all n €N that

k(n)
C C
S o)< = T o= < [fdo <G
k=1 € Jesg, €
and hence
[e o]
D el <,
k=1
i.e., Ny is a p-null set. O

Auxiliary theorem A4. Let (f,) and (g,) be non-decreasing sequences from T
such that f, —f, g,— g and f < g. Assume that the sequences of integrals

(/f, dp) and ? /g, dps are bounded. Then

lim [f, dp < lim f g, dp.
n—oo

n—>»o0
PrROOF. For every m €N the sequence (f,, — g,),cn 1S DON-increasing and
— hi — =f —g<f—g<0.
p— lim (f,—g)=fn—8sf-850

Consequently, for every m €N the sequence ((f,, —&,)4+),en 1S DON-IN-
creasing and p-converges to 0 (here A, = max{0, #}). By Auxiliary theorem
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A2 we therefore have [(f,—g,), dpo—0 as n— 00, and thus

Jinde= lim [g,dp = lim [(f,~,)dp

< nli_)ngof(fm——gn)+ dpo =0 forall meN.
The assertion follows from this if we let m tend to oo. O

In what follows let T, = T,(R™, p) be the set of the functions f: R"—>R
for which there exists a non-decreasing sequence (f,) from T for which
f,—f and the sequence of integrals is bounded. Since the sequence of

p

integrals ( f iA dp) is non-decreasing and bounded, it 1s convergent and we

can define
1o = s f1.80

By Auxiliary theorem A4 this definition is independent of the choice of the
sequence (f,) (having the required properties). If f, g€ T, and a, b > 0,
then af + bg obviously also belongs to T, and

f(af+bg) dp = affdp+bfgdp.

Now let T, = T,(R™, p) be the real vector space that is spanned by T, i.e.,
Lh={f=fi—f, . f1, LET;}. On T, let us define the p-integral by the
equality

ffdp:ffldp——ffzdp for f=f,—f, with f€T,.

This definition is independent of the choice of the functions f; and f,, since
f=h—fr=8 8 with f, f,, 8,8, € T, implies f,+g,=g,+f,, [f; do+
/g, dp =g, dp+ [, dp, and thus

ffldp~ffzdp=fgl dp*fgzdp-

The elements of T,(R™, p) are called p-integrable functions (observe that
only real functions have been considered so far).

Theorem AS.

(@) The mapping T,—R, fi>[f dp is linear.
(b) £, g€ T, and f < g imply [f dp < [g dp.
(C) IffE Tzs then |fl’f+’f— S T2-

(d) |/ dpl < [|f| dp for every f € T,.
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PRrROOF.

(a) This assertion is evident.

(b) It is obviously sufficient to consider the case f=0 (g can be replaced
by g—f). Let g=g,—g, with g,,g, € T,. Then g, < g, and hence

/8, dp < [g, dp by Auxiliary theorem A4, i.e., fg dp > 0.
(c) Let f=f,— f, with f, f, € T;. Then max{f,, f,} € T, and min{ f, f,} €
T, (proof!). The assertion then follows from the formulae

|fI = max{ f;, f,} — min{ f,, £,},
f+ = max{f]afz} _fz’ fo= max{fl’fz} _fl'
(d) We have

|ffdel = [, do~ [7_ dol
<[fodo+ [fodp=[(f+f)dp=[Iflde. O

Theorem AG6. For every function f € T, there exists a sequence (f)) from T
such that f,— f and [|f,— f| dp—0. In particular, (f, dp— [f dp.
[o]

Proor. Let f=f, —f, with f,, f,€ T,. Then there exist non-decreasing
sequences (f ,),en from T such that f —>f and ff , dp—/f dp for

j=1,2.For f, =, .~ fy, , we have f, - fand |, do— £ dp| < J|f, — /| dp

—f|f1n_“ (fx f2)| dp < J(fyi— fx,n)dp'*'f(fz fz,n)dp—>0 as n—c0.
O

A.2 Limit theorems

The following theorem asserts that the extension process of the previous
section (which took us from T over T; to T,) does not lead from 7, to any
wider class of functions. In the rest of this section we shali prove theorems
which show, under which assumptions the passage to the limit and the
integration are exchangeable. These theorems show the essential advantage
of the Lebesgue integral when compared with the Riemann integral.

Theorem A7 (B. Levi). Let (f,) be a monotone sequence (non-decreasing or

non-increasing) from T, for which the sequence of integrals (ff, dp) is
bounded. Then there is an f € T, for which

fy>f and  [f,do— [fdp.
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PrROOF. We may assume without loss of generality that (f,) is non-decreas-
ing (otherwise we consider (— f))).

First step: There are non-decreasing sequences (g,) and (4,) from T,
with bounded sequences of integrals for which f,=g,— A, (i.e., it is
sufficient to prove the theorem for a sequence (f,) from T)).

Proof of the first step. Define k;=f, and k,=f —f_, for j>2. Then
fo =21k and k, >0f0rallnEN Wehavek k; kaw1thkj],k-’
€ T,. For every j €N there exists an [E T such that l k; , and [(k; ,
l)dp\2’ Ifwesetk =k; » landk =k; 1~ l thenkl,kaET,
and k; = k,l k , for all jEN The ser1es POl ]fk dp is convergent
(since f k , dp <2_’ ). If C is a bound of the sequence ( [f, dp), then

kidp= | f,dpo <C forall neN.
£ fra-]

Then the series 272,/ I€j , dp is also convergent. The functions

n

gn=21€j,l and hn=2k32
Jj=1

have the required properties.

Second step: The theorem holds for any sequence (f,) from T;.

Proof of the second step. For every n €N there is a non-decreasing
sequence (g, ,)n.en from T with a bounded sequence of integrals such
that g, ,, > f.- Define g, =max{ g, , : n <m}. Then (g,,) 1s a non-decreas-

ing sequence from T. Since g, ,, S < f, f for n <m, we have g, < f and

[g,dp< [f,dp<C for all me N By Auxiliary Theorem A3 there exists
an f€ T, for which g, P f and [g,dp—/[fdp. From the inequality

Gnm S < &n for all n <m we obtaln by letting m—» co, that f, f, and thus
g, § £, % f. Consequently, f, - Sfand [f, dp—[f dp. |

Theorem A8 (Lebesgue’s dominated convergence theorem). Let (f,) be a
sequence from T, for which f, = J. Assume that there exists a g € T, such that

|f| g for all n€N. Then f also belongs to T, and [f, dp— [f dp.

Proor. For all n€N let g,=sup{f, f,+1,-..}. Then g, belongs to T,:
Since max{ f,, f,+1} =, —fis 1)+ +f.+1E Ty it follows by induction that
max{ f, fis1 - - > foex} € To. Moreover, since

fmax{f,,,f,,+l,...,f,,+k} dp <fgdp forall keN

and max{f, f,.1 .- -> .41} —>8, as k— o0, the function g, indeed belongs
to T, by B. Levi’s theorem. The sequence (g,) is non-increasing and
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/g, dp> — [g dp. Therefore, f=p—limg, €T, and [g, dp—/f dp by B.
Levi’s theorem.

If we define A, =inf{f,, f,,,, ... }, then we can show analogously that
h, e fand fh, dp—[f dp. The assertion then follows, because 4, < f, < g,.
O]

Theorem A9. Let (f,) be a sequence from T, and assume that f, — f. If there
p
exists a g € T, such that |f| < g, then f also belongs to T,.
p

ProOF. Let f,=min{ g, max{f,, —g}} forall nEN. Then f, € T>. |f,| < g
for all n€N, and f, — f. The assertion therefore follows from Lebesgue’s
p

theorem. 0O

Theorem A10 (Fatou’s lemma). Let (f,) be a non-negative sequence from T,
for which the sequence of the integrals is bounded and f, — f. Then f € T, and
p

ffdp < lim inf ff,, dp.

PrOOF. Let h,=inf{f, f,.,, ...} for all nEN. The sequence (k,) is
non-decreasing and h, — f. The inequalities 4, < f,, , for all n, Kk €N imply
p

fh,, dp < liminf [f,., do = liminf [, dp, neEN.
—>00 —>00

Consequently, B. Levi’s theorem implies that f € T, and

[fdo= lim [h, do < tim inf [ 4, e. =

A.3 Measurable functions and sets

In the sequel let p be a measure on R™. A function f : R”—C is said to be
p-measurable if there exists a sequence (f,) from T for which f, — f. It 1s

obvious that every continuous function defined on R™ is p-measurable.
The sum, product, and quotient (if the denominator  0) of two p-measur-

able functions are p-measurable. Along with f, the Ff)unction g o fis also
p-measurable for every continuous function g : C—C. In particular, |f] is
p-measurable if f 1s p-measurable. Every f & T,(R™, p) is p-measurable
(cf. Theorem A6).
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Theorem All.

(@) If f: R" >R is p-measurable and there exists a g € T, such that |f| < g,
then f also belongs to T,.

(b) If (f,) is a sequence of p-measurable functions such that f, - [, then f is

p-measurable.

PROOF.

- (a) This immediately follows from Theorem A9.

(b) Let 2 € T, be such that A(x) >0 for all x €R™ (the reader is advised to
prove the existence of such a function). With g, =(k +|f,|)” 'Af, for all
n€N we have g, —;>g=(h + |fD~'Af. Since all g, are measurable and

since |g,|<h, we obtain that all g, belong to T7,. Consequently, it
follows from Lebesgue’s theorem that g € T,. The function g is there-
fore p-measurable. This then holds for f=(h — | g|) " 'hg, as well. O

A subset M of R™ is said to be p-measurable if its characteristic function
Xy 18 p-measurable. If x,, is p-integrable, then the measure p(M) of M is
defined by the equality p(M) = fx,, dp. If M is p-measurable and x,, is not
p-integrable, then we set p(M)=oco. All sets M €${(R™) are obviously
p-measurable and have the finite measure p(M); for these M the definition
coincides with the earlier one. Every p-null set N is p-measurable with
p(N)=0.

Theorem A12. Countable unions and intersections of p-measurable sets, as
well as the complement of a p-measurable set are p-measurable. If
M, M,, . .. are disjoint p-measurable sets, then

p( U Mn) = > o(M,).

nefN neN

If MiDM,D ... are p-measurable sets and p(M;) < o, then

p( N Mn) = lim p(M,).

neN

The proof of this theorem can be left to the reader. One has to consider
the characteristic functions x,, and apply the previous theorems. The cases
where infinite measures occur have to be treated carefully.

Theorem A13. A function f : R" >R is p-measurable if and only if the set
M,={x ER™ : f(x) > s} is p-measurable for every s € R. The same holds for
the sets {x ER™ : f(x)<s}, (x ER™ : f(x) >s} and {x ER™ : f(x) <s}.
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ProOOF. Let f be p-measurable. We can assume without loss of generality
that s=1 (otherwise we replace f by f—s+1). The function g=
min{1, max{0, f}} is p-measurable and g"—x,, as n—o0. The function x,,
1s therefore p-measurable.

Let M, now be p-measurable for all s € R. Then the sets

{(xeR": f(x)<t} = R"\M, and M(s, 1) = {xER™ : s < flx) <t}
are also p-measurable. The functions

kn~'forxeM((k—Dn" Y kn™Y), k=—n?+1, —n®+2,.. ., n?
0 otherwise

fi(x) = {

are therefore p-measurable for all » €N. The assertion follows, because

Ja—t. O

The family of Borel sets in R™ is the smallest family of subsets of R™
that contains all intervals and is closed with respect to taking complements
and countable unions and intersections. It is obvious that all open and all
closed subsets of R™ are Borel sets. A function f: R"—-R is said to be
Borel measurable if the set {x € R™ : f(x) >s} 1s a Borel set for every s ER.
(A function f : R™"—C is said to be Borel measurable if Re f and Im f are
Borel measurable.)

If p is a measure on R™, then every Borel set is p-measurable and every
Borel-measurable function defined on R™ is p-measurable. (The measures
considered here are hence called Borel measures, as well.)

Now we extend the notion of the integral to complex valued functions.
A function f: R"—>C 1s said to be p-integrable if Re f,Imfe T,. We
define

ffdp=fRefdp+ifImfdp.

The set of p-integrable functions is a complex vector space. It will be
denoted by £,(R™, p). The mapping £,(R™, p)—C, fi=>f dp is obviously
linear.

Theorem Al4.
(@) If f: R"—C is p-measurable and there exists a p-integrable function g
such that |f| < g, then f is p-integrable and |(f dp| < [g dp.

e
(b) 1/ dp| < J1./| dp for every f € £,(R™, p).
(c) For every f €L, (R™, p) there exists a sequence (f,) from T for which

[Ifi—fldp>0.
(d) For any p-measurable function f: R"—C we have f = 0 if and only if

fEL,(R™, p) and f|f| dp=0.
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PROOF.
(a) The functions Re f and Im f are p-measurable, and |Re f| < g and
p

|Im f| < g. The functions Re f and Im f are therefore p-integrable by
p

Theorem All(a), i.e., f €L, (R™, p). The inequality follows from (b).
(b) Let a=sgn(Jf dp)*. Then by Theorem A5(d)

|ffdp|=affdp=fRe(af)dp <f|af|dp=f|f|dp_

(¢) This follows by applying Theorem A6 to Re f and Im f.

(d) The equality f =0 implies |f| =0, f€£,(R™, p) (since the sequence
whose membersp are all zero ;-converges to f), and [|f|dp=0. If
/1f| dpe =0, then B. Levi’s theorem can be applied to the sequence (g,)
with g = n| f|. Hence there exists a g € T, for which g, = n| f| =g This

is possible only if f=0. ]

Theorem A15 (Lebesgue). Ler (f,) be a sequence from £,(R™, p) such that
f, = f. Assume that there exists a g € L,(R™, p) such that |f,|< g for all

nEN. Then f € £,(R™, p) and [f; do—>[f dp.

ProOOF. We can obviously apply Theorem A8 to the sequences (Re f,) and
(Im f,). This gives the assertion. ]

Corollary. If (f,) is a sequence from £,(R™, p) such that T3_,/|f,| dp < o0,

then there exists an fEL,(R™, p) such that X;_,f—f and [fdp=
P

2 =1/t dp.

ProOF. We can apply B. Levi’s theorem to the sequence (27| f]),en and
obtain a g€ T, C £,(R™, p) for which 27_,|f| >g. Consequently, there
p

exists a function f : R”—C such that 27_, f,— f as n— 0. Since |2}, f|
p
< g for all n €N, the assertion follows from Lebesgue’s theorem. |

Let M be a p-measurable subset of R™. A function f : M—C is said to be
p-measurable (p-integrable) if the function

0 for x&M
is p-measurable (p-integrable). If f: M—C is p-integrable, then we define

do = [ f dp.
fo p f fdp
If f: R”"—>C is p-measurable (p-integrable), then the restriction f|,, of f to

f:R™ > C, f"(x)={f(x) for xeM

M is p-measurable (p-integrable), since fl,=x,f If f: R"=C is p-



374 Appendix A: Lebesgue integration

measurable and f},, is p-integrable, then we define
dp = wdp = dp.
fo p folM p fof p

We denote the vector space of p-integrable functions f: M—C by
f)"I(M’ p)

Theorem A16.

(@) If f: M—>C is p-integrable, (M,) is a sequence of mutually disjoint
p-measurable subsets of R™, and M= U,cyM, then [, fdp=
S end S dp.

(b) If f: M>R is p-integrable and [ f dp <ap(K) (f«f dp >ap(K)) for
every p-measurable subset K of M, then f < a(f > a).

(© If f: R">C is p-measurable, fEBl(J 0), and [,fdp=0 for all
bounded intervals J, then f = - 0.

PROOF.

(a) Apply the above corollary to the sequence (xy, f).

(b) Let K,={xEM: f(x)>a}. Then x, (f—a) >0 and [yxx (f—a) dp=
0. By Theorem A14(d) we therefore have x, (f— a) = 0. This gives the
assertion.

(c) It is sufficient to consider real f. It is obvious that [gf dp =0 for every
g€ T. If Iis a bounded interval and M C I is p-measurable, then there
exists a sequence (g,) from T such that 0< g, <1, g,(x)=0 for x &,
and g, = Xu- Then it follows from Lebesgue’s theorem for the sequence

(g.f) that [f dp = (xS dp =0. By part (b) we obtain thatf 0. O

A.4 The Fubini-Tonelli theorem

In what follows let p;, and p, be measures on R? and RY, respectively. Let p
denote the product measure on R?*? (cf. Al, Example 3).

Auxiliary Theorem A17. If N is a p-null set in RP*9, then for p,-almost all
x ER? the set {y ER? : (x,y)E N} is a p,-null set, i.e.,

= {xERP: {yER?: (x,y)EN} isnota p,-nullset)
is a py-null set.

PrOOF. Since N is a p-null set, there is a sequence (J;) of intervals for
which Jy=J; x X Jy 1s NC U pendes SrenP(Ji) < oo, and each zEN is
covered by infinitely many J, (we choose the union of infinitely many
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covers by intervals with total measures 27!, 272,273, . .. ). We have
S (X, 401Xy, 2= S 0 Ioa(dh ) = T p(de) < oo
kEN keN kEN

We can therefore apply B. Levi’s theorem to the sequence of step functions

(2 %009 f s, 001

Consequently, there is a p,-null set F, such that

neN.,

2 XJ,.k(x)foz,k dp, < o forall x €R’\F,.
kEN

It remains to prove that N, C F;. Let x, € R’ \ F;. Then

2 '&QXJ""(xO)XJz.k(y) dp2()’) < ¢0.

kEN

For every y €R? such that (x, y)E N the element (x, y) belongs to
infinitely many J, = J; , X J, . The non-decreasing sequence

( 2 xJ,,k(xo)xJz,k(y))
k=1 n

enN

is therefore divergent. Since the corresponding sequence of integrals with
respect to y is bounded, it follows from B. Levi’s theorem (or from
Auxiliary theorem A3) that { y ER? : (x,, y) E N} is a p,-null set. There-
fore, x, & Nj, and thus N, C F;. O

Theorem A18 (Fubini). Let p,, p, and p be as above, and let f € £,(RP7, p).
Then we have: For p,-almost all x ER? the function f(x,.) belongs to
£,(R4, p,). The function F defined by the equality

F(X) = '/?qu(x, )7) dpz(y) lf f(x’ * )E E’I(Rqa Pz)a
0 otherwise

belongs to £,(R?, p,) and
ffdp=j;dep].

A similar result holds if we exchange the roles of x and y. To express the
content of this theorem, we briefly write

ffdP = fw{fmf(x,y) sz(J’)} dp,(x)
- qu{prf(x’ y) dpl(x)} dp,(»). (A10)
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PrOOF. Since f=f,—f,+1f;—1if, with f,€ T, it is enough to study the
case f € T;. Then there exists a non-decreasing sequence (f,) from T and a
p-null set N such that f,(z)—f(z) for all zERP*I\N and [f, dp—[f dp.
Formula (A10) is evident for the step functions f,. Define g,(x)=
[f.(x,y) dpx(y). Then (g,) i1s a non-decreasing sequence from T(R”) and
/g, dp,; < ff dp. By B. Levi’s theorem there hence exists a g € £,(R”, p,) for
which g, g and [g, dp,— /g dp,. Consequently, by Auxiliary theorem

A17 the set
No={x€ER?: {y ER?: (x,y) EN} is nota p,-null set}
U {x €R? : (g,(x)) is not convergent}
is a p,-null set. For x & N, the non-decreasing sequence (f,(x, .) has the

properties

Je )52 fCx ) and [ f(x ) dox(y) = g,(x) < g(x) < oo.

By B. Levi’s theorem f(x, . ) therefore belongs to £,(R?, p,) for all x & N,
and

ff(x,y) dpy(y) = nliggof Jo(%, ) dpy(y) = lim g,(x) = g(x).
Re ey

Since g is p,-integrable and g = F, the function F is also p,-integrable and
P1

dep|=fgdpl=nlLr{3°fgndpl

= tim [ { [ £:00) 80,0} doi(0) = lim [1, a0 = [F3p

n—o0

O

Theorem A19 (Tonelli). Let p,, p, and p be as above, and let f . RP*9—C be
p-measurable. Assume that f(x, .)€ £,(R, p,) for p,-almost all x €RP and
that the function F defined by the formula

F(x) = fmlf(X,y)l dpx(y), if flx, ) EL,(RY, py),
0 otherwise
belongs to £,(R”, p,). Then f € £,(RF*9, p).

Proor. For every n €N let
M, = {(x,») ERPT: | f(x, p)| <m, |(x, »)| <n}, f, = xS

Since f is p-measurable, every f, is p-integrable by Theorems Al3 and
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Al4(a). The sequence (| f,|) is non-decreasing and | f,|—|f|. An application
of Fubini’s theorem to | f,| gives

fiao = [ L[ 155l doal) ] do.()
< [ [ 1l a0 | o) < e

Consequently, the p-integrability of |f| follows from B. Levi’s theorem.
Since f is p-measurable, f € £,(R?*4, p) by Theorem Al4(a). O

A.5 The Radon-Nikodym theorem

Let p and p be two measures on R™. The measure p is said to be absolutely
continuous with respect to p (in symbols: u<p) if every p-null set is also a
p-null set. (Then every p-measurable set is u-measurable, as well).

Theorem A20 (Radon-Nikodym). Let p and u be two measures on R™. We
have pu<p if and only if there exists a p-measurable non-negative function
h:R" SR such that x h €L (R™, p) for every bounded interval J and
w(M) = [xh dp for every p-measurable set M (here we consider the integral
to be equal to oo if x,h is not p-integrable). Every p-measurable function is
also p-measurable. If f : R™—C is p-measurable and p-integrable, then

[fdu=[fndp.

PrROOF. If u has the above form, then u<p obviously holds. Now let u<p
and let J be an arbitrary bounded interval in R™. Let us consider the
Hilbert space L,(J, 7) with the measure 7 = p + u. The mapping

Ly(J, ) - C, ft—>ffd,u
J
is a continuous linear functional, since |f f du| < [ |f] dr <7(J)'/?|| f]i.

By the Riesz representation theorem (Theorem 4.8) there exists a g &
L,(J, ) (more precisely, a g & £,(J, 7)) such that

ffd,u=fgfd¢ for f € Ly(d, 7). (A1)
J J

If here we replace f by x,,, where M is an arbitrary p-measurable subset of
J, then we obtain

w(M) = fJxM dp = fdgxM dr = fMg dr.
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Since w(M) <7(M), it follows that
0 <fgd¢ < (M)
M

It follows from this by Theorem A16(b) that
0 < g(x) <1 for p-almostall x €J.
We obtain from (All) that

f(l—g)fdp=fgfdp for f € Ly(J, 7). (A12)
J J

Now set N={x&€J:g(x)=1} and L=J\N. Then (Al12) implies for
f=xy that

p(N) =fx~dp=fgx~dp=f(1—g)x~du = 0,

and thus u(N)=0, as well, because u<p. If in (A12) we set f=(1 + g+ g2
+ - - - +g")xn, then it follows for all n €N that

f(1~g"“) du =fg(1+g+ -+ - +g") dp.
M M

The integrands of both sides constitute non-decreasing sequences the
integrals of which are bounded by u(M). The left integrand converges to
X, and hence the left side tends to (M N L). By B. Levi’s theorem there
exists an A€ L,(J, p) such that g(1+g+ --- +g")—>h as n—»o0 and

Iug(l+g+ - - +g")dp—[,h dp. Consequently, it fopllows that

p(M) = p(LOAM) + p(NOM) = p(LAM) = th dp.

Since g > 0, we also have 2 > 0. Without loss of generality, we can choose
P

o
h>0.

Now let (J,) be a sequence of disjoint intervals for which R” = U , o s
Let A, be functions such that

w(M) = th,, dp for every p-measurableset MCJ,.

Let 2 : R™"—>R be defined by the equalities h(x) = h,(x) for x € J,. Then h
has all properties required, since for every p-measurable subset M of R™

sM = 3 pMnd)= 3 |

neN neNvYMNJ,

hdp = th dp.

If f1s p-measurable, then there is a sequence (f,) from T such that f, e f-
Consequently, we also have f, > f, and thus f is p-measurable.
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It remains to prove the last assertion for non-negative functions f. For
every n €N let

M,,={xER": (k- 1)2_"<f(x)<k2“”} for k=1,2...,62%
and
22n
fo= 2 (k=127 "%y,
k=1

Then f, € £,(R™, u) for all n €N and

22n 22n

Jhdp=3 (k=D27uM, ) = 3 (k=127"[ hdo=[fhdp.
k=1 k=1 M,

n, k

It follows from this by B. Levi’s theorem that [f du= [fh dp. O

A function F : R—C is said to be absolutely continuous if there exists a
A-measurable (i.e., Lebesgue measurable) function f: R—C that is A-inte-
grable (Lebesgue integrable) over every bounded interval and

F(x) = FO) + [ (1) A1)

This function f is called the derivative of F. (It is possible to show that F is
A-almost everywhere differentiable and F’(x) = f(x).) The derivative f is

uniquely determined by F. (This follows from Theorem A16(c).)
If p is a measure on R, then p<A if and only if the function

| B p((0, x]) for x>0
f:RoR, f(x)—{_p((x,o]) for x<0

is absolutely continuous, i.e., if p is induced by an absolutely continuous
function f in the sense of Section Al, Example 2.

Let F and G be absolutely continuous functions on R, and denote by f
and g their respective derivatives. If F(0)= G(0)=0, then we obtain by
Fubini’s theorem that

A “(Fg+G) d\ = f EEQC [ 45) xs)+1(6) [ ) o) )
= [0 [(20) )+ &) [ o) M) | xGo)

= 2F(x)G(x) - fo (fG+ gF) dA,

and thus
F(x)G(x) = fo (Fg + fG) dA.

2Here we set 5= — (9 for x <0.
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If we do not necessarily have F(0)= G(0)=0, then
F(x)G(x) — F(0)G(0) =f0 (Fg + fG) dA.

Consequently, for — co0 <a <b < o0 we have the formula of integration by

parts

a

*Fg d\ = F(b)G(b) — F(a)G(a) — f *1G dA. (A13)



Appendix B

A representation theorem for
holomorphic functions with
values 1n a half-plane

A function s : R—C is said to be of bounded variation when it can be
written in the form h=h, — h, +1h; —ih,, where the functions 4, : R—»>R
are non-decreasing bounded functions. (We can show that 4 is of this form
if and only if there i1s a C >0 such that X, |h(b,)— h(a,)| <C for every
sequence ((a,, b,]) of disjoint intervals. The smallest C of this kind is called
the variation of h. We do not need this result here.) If A is a right
continuous function of bounded variation, then the integral

foo (z—1)"'dh(r) for z€C\R

can be considered as a Riemann-Stieltjes integral. We will retain this
notation in the sequel. We can also view this integral as a linear combina-
tion of the corresponding integrals with respect to the measures o,
(cf. Section Al, Example 2). Consequently, the theorems of Appendix A
are at our disposal.

Theorem B1l. Assume that w : R—R is right continuous and of bounded
variation, hm,_, _  w(t)=0, and

f(2) =f (z=0)"'dw(t) for z€G= {z€C:Imz>0}.
(a) For all t € R we have the Stieltjes inversion formula

- 8
w(t) = slirgl lim Ly Im f(s+1ic¢€) ds.

(b) If f(z)=0 for all z € G, then w(t) =0 for all t €R.
381
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PrROOF. Part (b) follows from part (a). Consequently, it is sufficient to
prove (a). Since w is real-valued,

Im f(s +i¢) = f_woolm[(s+i e—u)wl] dw(u)
= —efoo [(s——u)2+ ez]~l dw(u)

— 00

for every € > 0. It follows from this by Fubint’s theorem that

f_roolmf(s+i €) ds = —f f~°° o u) a2 ds dw(u)

= —f [arctan +-—2—] dw(u).
Since
larctanr——u+;|<w forall reR

and

a for r>u,

arctanr~u+—7-7——> T for r=u, as €0,
€ 2 2
0 for r<u,

Lebesgue’s theorem implies that

lim f Im f(s +i €) ds

e—0, v o

= — 7 dw(u) —-f{r}g dw(u) —f(r’ c’0)0 dw(u)

(—o0,7)
Y Y
= —aw(r—) ———2-—[w(r)-—w(r~—)] = ———j—[w(r)+w(r—)].
(In order to be able to apply Lebesgue’s theorem, we write [+ - - dw=
[+++-dw;— /- - dw, where w, and w, are non-decreasing right continu-

ous functions, w=w, —w,, and lim,_, _ w,(¥)=lm,_ _ _w,(#)=0.) If we
set r=¢+ 8 with § > 0 and let § tend to zero, then the assertion follows. []

Theorem B2. Assume that w : R—C is right continuous, of bounded varia-
tion, and lim, ,_ _w(t)=0. If [® _(z—1)""'dw(£)=0 for all zEC\R then
w(?)=0 for all t €R.

PrROOF. Forz€ G={z€C : Im z>0} we have

f_w(z —) " dw(r) = 0

and

f:o(z- t)_l dw*(t) = {f—i(z*_— t)_l dw(t)}* = 0.
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Therefore,

f_i(z-—t)-—l [Re w(?) ] f (z—0)""d[Im w(2)] =

for all z € G. It then follows from Theorem B1(b) that Re w(¢)=Im w(¢)=
0, and thus w(¢) =0 for all t € R. O

Theorem B3 (Herglotz). Let G=({z€C :Im z>0}, and let f: G—C be
holomorphic such that Im f(z) <0 and |f(z)Im z| <M for all z € G. Then
there exists a unique right continuous non-decreasing function w : R—R for
which w(t)—0 as t— — oo and

f(z) = f:o(z—t)“‘ dw(t) forall z€G.

For all t € R we have w(f) <M and

— 8
w(?) = lim lm —1 Im f(s +i€) ds.

-0, e->0, 7 -0

ProOF. The last equality will follow from Theorem Bl(a) if we prove the
existence of a function w having the remaining properties.

A
ﬁy=1mz
Ir,=v
L =1+I+1
v
_1_t I . m’
. E 0 7%+2ie X-Re 2
-r 0 r

For 0<e<r let the paths I, I, and I' be defined as the above figure
shows. For z=x +1y € G such that Im z=y >¢€ and for r >|z| the point
z* + 2i € lies outside I,. Therefore, by the Cauchy integral formula

72) = 507 J €= 970 &

=51 [ [0 20 )0 &

2971

=51 [ =200 - 0~ 2 =21 9] ) &F

= ‘;fr(y —O[(§-2)(§—z*-2i9)] 7 f§) dk.
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For { € I/ we have for fixed z that
fE <e'M and |(y-ol[-2)(-2*-2i¢] ' <Cr2

The integral over I therefore tends to 0 as r— co, and there remains
= l - — XD ~1
fey = [ (r=a[G-a(E-2=219] /(&)
= -:;f_woo(y—e)[(t+i e-z)(t-ie—z*)]“'f(z+ie) ds

1 ;o -~ :
= —f (y—e)[(x—t)2+(y—-e)2] " +ie) dr.
™ — o
If we set v(z)=1Im f(z), then it follows for 0 <e <Im z=y that
1 px ~ .
o(z) = —f (y—e)[(x~t)2+(y—e)2} 'o(r+i€) dr.
T - o0
The inequalities |yo(z)| < |f(z) Im z| <M imply for 0 <e <y that

L7 (=P [x= 1P+ (=] ole+i€) di] = [y = o(2)] < M.

By latting y — 00, we obtain from Fatou’s lemma (observe that v < 0) that
o( .+1 €) is integrable over R and

0<:Wlf o(t+ie)dt <M forall ¢ > 0.

Since
(y=[(x— 0+ (=] = y[(x= ) +y*] 7]

1 1
el ———~+— for 0 <e <y,
y(y—¢ y

it follows that
f_i{(y—e)[(x_z)2+(y—e)2]“ —y[(x= 0 +y*] ot +ie) dr >0

as €—0+ . Therefore, for all z€ G
. 1 0 2 211 .
= lim — — 1)+ t+ :
v(z) Jim ~Q°y[(x Y+ o(t+ie) dr

In what follows let
3.(2) =—_——1-ft o(s+ie)ds for tER, € > 0.
T Y-

The functions &, are all non-decreasing and bounded, 0 <3,(7) <M for all
t ER.! Let us construct, with the aid of the diagonal process, a positive null

"The following steps can be much shortened if we make use of the fact that the family of
measures induced by {9, : 0 <e< 1} is compact in the “vague” topology.
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sequence (¢,) in such a way that (¥ (#)) is convergent for all rational
numbers ¢. If we set

¥Ht) = nli)nc}o ¥ (¢) for rational ¢,
then ¥(s) <3¥(¢) for all rational s and ¢ such that s <z. If we extend & to a
function ¢ : R—R by defining
#(t) = inf{d(s) : s >¢, s rational} for irrational ¢,
then ¢ is obviously non-decreasing, and lim,_, (9(¢) — 3(— 7)) <M.

We show that in the sense of the Riemann—Stieltjes integral

v(z) = —fooy[(x—t)2+yz]'1 dd(z) for z€G.

~ 0
Since
_ o L N2, 211 :
v(z) = (1191& - —wy[(x )" +y ] o(t+ie) de
: o0 ~1d
= — 1 214
lim _wy[(x O +y ] 480 de
= — lim ooy|t(x—z‘)2+yz]-1 dd.(1),
e—0+ J . o

this assertion is equivalent to the equality

. ® 2 271 *® 2 211

lim y[(x=0)"+y*]7" dd (1) =f y[(x =0 +y*]7" dd(r).

n—0o0 — o0 — 0
For the proof of this equality we notice that if we wish to approximate this
Riemann-Stieltjes integral (with a continuous integrand) by Riemann
sums, then it is enough to consider only partitions of (— oo, c0) with
rational division points. For every such rational partition P and for fixed
z=x+iy let Up, Lp, Up ,, and L, , be the upper and lower sums of the
integrals

J = f_ooy[(x- 0%+ 2]t do(e)
respectively
J, = fmy[()c—t)z-}-yz]_1 dé, (1)

= o0

that correspond to P. For every rational partition P we obviously have
Up ,— Up and Lp ,— Lp. For every § >0 there exists a rational partition P
for which Up — Lp <8/2. For this P there is an ny €N such that |Up , —
Up|<8/2 and |Lp , — Lp| <8/2 for all n > ny. Since L, , <J,<Up , and
L, <J<Up, it follows that |J—J,|<8 for n>ny Therefore, J,—J as
n— 0.
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Consequently, we have shown that for z € G

Im f(z) = v(z) = —~f°oy[(x~t)2+y2]—] d9(7)

— o0

= Imf°° (z—1)"" dd(s).

Since f and z> [®_(z— )" d¥(f) are holomorphic in G and have the
same imaginary part, it follows that

flz) = f_oo (z—1)""d®¥() + C withsome C €R.

Because | f(z) Im z|] < M and

\(Im z)f°° (z— 1)~ d3()| < f°° 1d9() <M for zE€G,
we must also have |C Im z| <2M, and thus C=0.
If we now define
¥e) = 8li%1 Ht+8) for tER

and
w(t) = 9(r) — ) lim _ Hx) for t€R,

then w has the required properties: The passage from ¥ to & does not
change anything in the integral formula we have just proved, since 9 has at
most countably many points of discontinuity and they can be avoided
during the formation of the partitions. The passage from ¢ to w does not
influence the integral formula. ]
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