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Preface to the English edition

This English edition is almost identical to the German original Lineare
Operatoren in Hilberträumen, published by B. G. Teubner, Stuttgart in
1976. A few proofs have been simplified, some additional exercises have
been included, and a small number of new results has been added (e.g.,
Theorem 11.11 and Theorem 11.23). In addition a great number of minor
errors has been corrected.

Frankfurt, January 1980 J. Weidmann
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Preface to the German edition

The purpose of this book is to give an introduction to the theory of linear
operators on Hubert spaces and then to proceed to the interesting applica-
tions of differential operators to mathematical physics. Besides the usual
introductory courses common to both mathematicians and physicists, only
a fundamental knowledge of complex analysis and of ordinary differential
equations is assumed. The most important results of Lebesgue integration
theory, to the extent that they are used in this book, are compiled with
complete proofs in Appendix A. I hope therefore that students from the
fourth semester on will be able to read this book without major difficulty.
However, it might also be of some interest and use to the teaching and
research mathematician or physicist, since among other things it makes
easily accessible several new results of the spectral theory of differential
operators.

In order to limit the length of the text, I present the results of abstract
functional analysis only insofar as they are significant for this book. I
prove those theorems (for example, the closed graph theorem) that also
hold in more general Banach spaces by Hilbert space methods whenever
this leads to simplification. The typical concepts of Hubert space theory,
"orthogonal" and "self-adjoint," stand clearly at the center. The spectral
theorem for self-adjoint operators and its applications are the central
topics of this book. A detailed exposition of the theory of expansions in
terms of generalized eigenfunctions and of the spectral theory of ordinary
differential operators (Weyl—Titchmarsh—Kodaira) was not possible within
the framework of this book.

In the first three chapters pre-Hilbert spaces and Hubert spaces are
introduced, and their basic geometric and topologic properties are proved.
Chapters 4 and 5 contain the fundamentals of the theory of (not neces-
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X Preface to the German edition

sarily bounded) linear operators on Hubert spaces, including general
spectral theory. Besides the numerous examples scattered throughout the
text, in Chapter 6 certain important classes of linear operators are studied
in detail. Chapter 7 contains the spectral theory of seif-adjoint operators
(first for compact operators, and then for the general case), as well as some
important consequences and a detailed characterization of the spectral
points. In Chapter 8 von Neumann's extension theory for symmetric
operators is developed and is applied to, among other things, the Sturm-
Liouville operators. Chapter 9 provides some important results of perturba-
tion theory for seif-adjoint operators. Chapter 10 begins with proofs of the
most significant facts about Fourier transforms in applications to
partial differential operators, in particular to Schrödinger and Dirac opera-
tors, follow. Finally, Chapter 11 gives a short introduction to (time depen-
dent) scattering theory with some typical results; to my regret, I could only
touch upon the far reaching results of recent years.

Exercises are not used later in the text, with a few exceptions. They
mainly serve to deepen understanding of the material and give opportunity
for practice; however, I often use them to formulate further results which I
cannot treat in the text. The level of difficulty of the exercises varies
widely. Because I give many exercises with detailed hints, they can be
solved in general without much difficulty.

Now I want to very heartily thank all those who helped me with the
production of this book. Mrs. Hose turned my notes into an excellent
typed manuscript with infinite diligence. Messrs. R. Holistein, D. Keim
and H. Küch spent much time reading the whole manuscript and discuss-
ing with me their suggestions for improvement. Messrs. R. Colgen and W.
Stork helped me with the proofreading. I thank the publisher and the
editors for their pleasant cooperation.

My teacher Konrad Jörgens inspired me to study this subject; he
influenced the present exposition in several ways. I dedicate this volume to
his memory.

Hattersheim am Main, the summer of 1976 Joachim Weidmann
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Vector spaces with a scalar product,
pre-Hilbert spaces

In what follows we consider vector spaces over a field K, where K is either
the field C of complex numbers or the field R of real numbers; accord-
ingly, we speak of a complex or a real vector space. For every c E K let c"
be the complex conjugate of C; so for c E the star has no significance.

As a rule, we assume the most important notions and results of linear
algebra to be known.

1.1 Sesquilinear forms

Let H be a vector space over K. A mapping s : H x H—* K is called a
sesquilinear form on H if for all f, g, h E H and a, b E K we have

s(f,ag+bh) = as(f,g)+bs(f,h), (1.1)

s(af+ bg, h) = a*s(f, h) + b*s(g, h). (1.2)

If (1.2) holds without stars, then s is called a bilinear form on H; in
particular every sesquilinear form on a real vector space is a bilinear form.

Property (1.1) is obviously equivalent to the two properties

s(f, g+ h) = s(f, g) + s(f, h), (1.1')

s(f, ag) = as(f, g). (1.1")

Similarly, (1.2) is equivalent to

s(f+g, h) = s(f, h) + s(g, h), (1.2')
s(af, g) = a*s(f, g). (1.2")

1



2 1 Vector spaces with a scalar product, pre-Hilbert spaces

If s is a sesquilinear form on H, then the mapping q: H—+ EK that is defined
by q(f) = s(f, f) for each f E H is called the quadratic form on H generated
or induced by s. For each quadratic form q we obviously have

q(af) = f a E (1.3)

so we have, in particular, q(af) = q(f) for every a E with at = I.
The following theorem shows that in a complex vector space the generat-

ing sesquilinear form is uniquely determined by the quadratic form; for
real vector spaces this is not necessarily true in general; see Exercise 1.2.

Theorem 1.1 (Polarization identity). Let H be a complex vector space, s a
sesquilinear form on H, and q the quadratic form generated by s. Then for all
f,geHwe have

s(f,g) = q(f—g)+ iq(f— ig)—iq(f+ ig)). (1.4)

The proof of this identity may be given by calculating the right side of
(1.4) according to the rules (1.1) and (1.2).

Theorem 1.2 (Parallelogram law). Let s be a sesquilinear form on a vector
space H, and let q be the corresponding quadratic form on H. Then for all
f,gEHwe have

q(f+g) + q(f—g) = 2[q(f)+q(g)]. (1.5)

PROOF. For every f, g E H we have

q(f+g) + q(f—g) = s(f,f) + s(f, g) + s(g,f) + s(g,g)
+ s (f,f) — s (f, g)— s(g,f)+ s(g, g)

=2q(f)+2q(g). 0

A sesquilinear form s on H is said to be Hermitian provided that for every
f,gEHwe have

s(f,g) = s(g,f)*. (1.6)

A Hermitian bilinear form on a real vector space is said to be symmetric.
If s is a Hermitian sesquilinear form, and q the quadratic form generated

by s, then we obviously have q(f) E for alif E H; we say briefly that q is
real. The following theorem shows, among other things, that Hermitian
sesquilinear forms can be by this property of their associated
quadratic forms. We also obtain that symmetric bilinear forms are
uniquely determined by the corresponding quadratic forms.

Theorem 1.3. Let H be a vector space over K, s a sesquilinear form on H, and

q the quadratic form generated by S.



1.1 Sesquilinear forms 3

(a) If = C, then the following statements are equivalent:
(i) s is Hermitian,

(ii) q is real,
(iii) for all f, g E H we have

Re s(f, g) = — q(f—g)}, (1.7)

(iv) for alif, g E H we have

Im s(f, g) = ig) — q(f+ ig)). (1.7')

(b) If = R, then the following statements are equivalent:
(i) s is symmetric,

(ii) for all f, g E H we have

s(f,g) = (1.8)

PROOF.

(a) (ii) follows from (i): q(f)* = s(f, f)* = s(f, f) = q(f), i.e., q(f) is real.
(iii) follows from (ii): Because q(h) E for all h E H, it follows from
(1.4) that

Re s(f, g) = g) q(f— g) + iq(f— ig) — iq(f+ ig))

=

(iv) follows from (iii): Because of (iii) we have

Ims(f,g) = —Re(is(f,g))

= Re s(f, — ig) = ig) — q(f+ ig)).

(i) follows from (iv):

s(g,f)* = Re s(g,f) — jIm s(g,f) = Im s(g, if) — i Im s(g,f)
=

= (q(f+ g) q(f— g) + iq(f— ig) — iq(f+ ig)) = s(f, g);

here we have used (1.3) with a = — 1, a i, and a = — i.

(b) (ii) follows from (i) by calculating the right side of (ii) while using the
symmetry of s.
(i) follows from (ii):

s(g,f) =

=s(f,g). 0

A Hermitian sesquilinear form is said to be non-negative when

s(f,f) > 0 for all f E H; (1.9)
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it is said to be positive when

s(f,f) > 0 for all f E H with f 0. (1.10)

Since we have s(0, 0) =0, every positive sesquilinear form is non-negative.
We also say that the corresponding quadratic forms are non-negative,
respectively positive. (Because of Theorem 1.3, the word "Hermitian" may
be omitted from this definition in the complex case; this does not hold in
the real case, cf. Exercise 1.3.)

Theorem 1.4. Ifs is a non-negative sesquilinear form on H, and q denotes the
quadratic form generated by s, then for eveiy f, g E H we have the Schwarz
inequality

<[q(f)q(g)]"2. (1.11)

If s is positive, then the equality sign in (1.11) holds if and only if f and g are
linearly dependent; the equality s(f, g) = [q(f)q(g)]"2 holds if and only if
there exists a c >0 such thatf= cg or g=cf.

PROOF. Let f, g E H. For all t E we have

0 q(f+ tg) q(f) + 2t Re (f, g) + t2q(g).

This second degree polynomial in t has either no root or a double root.
Since this holds for a polynomial at2 + 2bt + c if and only if b2 — ac 0, it
follows that

[Re s(f, g)]2 < q(f)q(g). (1.12)

If one chooses a E K such that IaI = I and as(f, g) = (s(f, g)( holds, then it
follows from (1. 12) with h = ag that

Js(f, = [Re as(f, g)]2 = [Re s(f, h)]2

<q(f)q(h) = q(f)q(ag) = q(f)q(g);

this is the Schwarz inequality.
Let s now be positive and let s(f, g) = [q(f)q( g)}"2 be true. If g =0,

then the equality g = Of proves the assertion. Consequently, let g 0.

Because of the equality [Re s(f, g)J2 — q(f)q( g) =0, the polynomial consid-
ered above has a double root t0; hence we have q(f+ t0 g) =0 i.e., f=
— t0g. From — 10s( g, g) = s(f, g)> 0 it follows that — t0> 0. If we have
Is(f, = [q(f)q(g)]'/2 and choose a and h as above, then s(f, h) =
[q(f)q(h)]"2 follows. According to the part just proved we then have
either g =0 = Of, or there exists a c> 0 such thatf= cli = acg. In both cases
f and g are linearly dependent. One can verify the converses of the last
two assertions by simple calculation. 0
EXAMPLE 1. For each m E (rkJ denotes the set 1, 2, 3,... } of positive
integers) let cm be the complex vector space of the m-tuples f=
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(fi, 'fm)' g = (g1, g2, g,,j,... of complex numbers with the
addition

f+g = (f1+g1,f2+g2, . . .

and multiplication by a E C

af = (af1, af2, . . . , af,,3.

1f a complex mXm matrix, then

s(f, g) = for f, g E Ctm

j, k = I

defines a sesquilinear form on Cm. s is Hermitian if and only if the matrix
(afk) is Hermitian, i.e., if for everyj, k = 1, 2, . . . , m we have = s is
non-negative (positive) if, for example, (afk) is a diagonal matrix with
non-negative (positive) entries in the diagonal. An important special case
of a positive sesquilinear form on cm occurs when (afk) is the unit matrix.
Then

s(f,g)

EXAMPLE 2. On the real vector space (symmetric, non-negative, posi-
tive) bilinear forms can be given accordingly.

EXAMPLE 3. Let CEO, 11 be the complex vector space of complex-valued
continuous functions defined on [0, 1] with the addition

(f+g)(x) = f(x) + g(x)

and multiplication by a E C

(af)(x) = af(x).

If r : [0, is continuous, then by

s(f, g) = f 'f(x)*g(x)r(x) dx f, g E C[O, 1]

a sesquilinear form is defined on CEO, 1]. It is Hermitian if and only if r is
real-valued; it is non-negative if and only if r(x)>O for all x E[O, 1]; it is
positive if and only if r(x) 0 for all x E [0, l} and r does not vanish
identically on any non-trivial interval.

EXAMPLE 4. Let 1] be the real vector space of real-valued continuous
functions defined on 10, 1]. For each continuous function r [0, the
bilinear form

s(f, g) = f'f(x)g(x)r(x) dx f, g E C[O, 1]
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is symmetric. Concerning non-negativity and positivity the same assertions
hold as in Example 3.

EXAMPLE 5. If k:[0, 1] X [0, is continuous, then by

s(f, g) = f'f'k(x,y)f(x)*g(y) dy dx

a sesquilinear form is defined on C[0, 1]. This is Hermitian if and only if
the kernel k is Hermitian, i.e., if for every x, y E [0, 1] we have k(x, y) =
k(y, x)*.

EXERCISES

1.1. Prove the assertions given in Examples 1—5.

1.2. The matrix

(01
0

generates a non-zero sesquilinear fonn on (cf. Example 2), the quadratic
form of which vanishes. Consequently, in a real vector space sesquilinear
forms are not determined uniquely by the corresponding quadratic forms.

1.3. Let s be the sesquilinear form on generated by the matrix

(1 a
ko

If IaI <2 (jaj 2), then we have s(f, f) >0 for all f E such that 0

(s(f, f) > 0 for all f E If a 0, then s is not symmetric.

1.4. Let s be a non-negative sesquilinear form on H, q the quadratic form gener-
ated by s, and N= {f E H: q(f)= 0). Show that
(a) N is a subspace (sub-vectorspace) of H.
(b) lifE N and gE H, then we have s(f, g)=0 and q(f+g)=q(g).
(c) In the Schwarz inequality the equality sign holds if and only if f and g are

linearly dependent modulo N, i.e., if there are numbers a, b E K not
vanishing simultaneously and such that af+ bg E N.

(d) We have s(f, g) = [q(f)q(g)]"2 if and only if there is a c > 0 such that
f— cgE N or g—cfE N.

1.5. Prove the Cauchy inequality

m 2 m m

j=1 j=1 j=1

with the aid of Example 1 and the Schwarz inequality.

1.2 Scalar products and norms

A positive sesquilinear form on H is called a scalar product (or inner
product) on H. In what follows scalar products will be denoted mostly by
<.,.> and occasionally they will be given an index in order to distinguish
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between them. A non-negative sesquilinear form is called a semi-scalar
product. Examples for (semi-) scalar products may be obtained from the
exercises in Section 1.1.

The mapping s H x H—÷ 1K is a scalar product if and only if for all
f,g,hEHandaELK we have

(i) s(f,g+h)=s(f,g)+s(f,h),
(ii) s(f, ag) = as(f, g),
(iii) s(f,g)=s(g,f)*, (1.13)
(iv) s(f,f)>0,
(v) s(f, f) >0 if 0.

For the proof we only have to observe that the properties (1.1) and (1.2)
follow from (i), (ii) and (iii). Similarly, a mapping s: H x 1K is a
semi-scalar product if and only if s satisfies properties [(1.13) (i-iv)].

A mappingp : is called anorm on Hif for allf,gEHand aEIK
we have
(i) P(f)>0'
(ii) (1.14)

(iii) p(f+ g) <p(f) +p(g) (triangle inequality),
(iv) p(f) >0 provided
A mapping p H if it satisfies the properties
[(1.14) (i—ui)]. In what follows norms will mostly be denoted by I . II and
for more precise distinctions they will occasionally be given different
indices.

REMARK. If p is a seminorm on H, then for all f, g E H we have

p(f±g)> Ip(f)—p(g)I.

PROOF. The triangle inequality implies

p(f) = p(f—g+g) <p(f—g) +p(g),
thus

p(f) —p(g) p(f—g).

thus

— (p(f)—p(g)) p(f—g).

From these two inequalitiesp(f— g)> Ip(f)—p(g)I follows. One can show
the inequality p(f+ g)> —p(g)I in a similar way. 0
EXAMPLE 1. In cm (or let us define two norms by

= and = :j= 1,.. . , m}.

If c1 >0 forj= 1, 2, . . . , m, then by

p1(f)
=

and = :j= 1, . . . , m)
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two seminorms are defined. These seminorms are norms if all the are
positive.

EXAMPLE 2. If r is a non-negative continuous function on [0, 1], then by

pl(f) - dx

and

= max(r(x)If(x)I : 0 1)

two seminorms are defined on C[O, 1]. These are norms if r does not
vanish identically on any non-trivial interval. For r(x) 1 these norms will
be denoted by . and . respectively:

= f'If(x)I dx,

= max(If(x)I : 1).

A large number of norms can be generated with the aid of scalar products
because of the following theorem.

Theorem 1.5. If s is a semi-scalar product on H, then p(f) = [s(f,
defines a seminorm on H.

If <.,.> is a scalar product on H, then If II = (1, defines a norm on
H.

PROOF. Property [(1.14) (i)] follows immediately from [(1.13) (iv)]; [(1.14)
(iv)] follows from [(1.13) (v)]. It is sufficient to prove the remaining
properties for the first case. Because of [(1.13) (ii)] and [(1.13) (iii)] we have

p(af) = =

which is [(1.14) (ii)1. With the aid of the Schwarz inequality it follows that

p(f+ g)2 = p(f)2 + 2 Re s(f, g) +

p(f)2 + +p(g)2 p(f)2 + 2p(f)p(g) +p(g)2
= (p(f)+p(g)),

which is the triangle inequality [(1.14) (iii)]. LI

From the Schwarz inequality for non-negative sesquilinear forms we
obtain for the norm . (seminorm p) induced by a scalar product
(semi-scalar product s) that

Ilfil 1 gIl, (1.15)

ls(f, < p(f)p(g). (1.15')
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Proposition. If is a scalar product on H and
. if

denotes the norm
generated by it (cf. Theorem 1.5), then

II f + g J = I f + II g
I

if and only if
there exists an a 0 such that f= ag or g = af.

PROOF. If f= ag with a > 0, then we have

if-'- gM = 1(1 + a)g(f = (1 + a)ff = lfaglf + Ii gM = lIfll + Ii gIl

(this part of the assertion holds for any norm). Conversely, if lIf+ = If II
+Iigfl then

fffj2 + Ii gil + If gil2 = fff+ = If ff12 +2 Re g> + if gil2,

thus Re <f, g> = If II II gil. Using (1.15) this implies g> = hf II II gil. Now
Theorem 1.4 gives the assertion. 0

For a norm
ff

(seminorm p) induced by a scalar product (semi-scalar
product) the parallelogram identity

Ilf± gff2 + fff— gil2 = 2(lhfhI2+ (1.16)

respectively

p(f+g)2 +p(f--g)2 2(p(f)2+p(g)2). (1.16')

follows from Theorem 1.2.
If one considers a (semi-)norm as the length of a vector, then these

equalities have the following geometric meaning: In a parallelogram the
sum of the squares of the diagonals equals the sum of the squares of the
sides. According to (1.4) [respectively (1.8)] the scalar product <. , .>
(respectively semi-scalar product s) which we started with is given by the
polarization identity

I { iif+ - If- gfl2 + if ff- igjl2 - if ff+ igff2}, = C,
<f,g>

(1.17)
respectively

g)2 —p(f— g)2 + ip(f— ig)2 — 1p(f+ ig)2}, = C,
s(f,g) =

FL

(1.17')

The following theorem enables us to decide if a given (semi-)norm is
generated by a (semi-)scalar product.

Theorem 1.6 (Jordan and von Neumann). A norm . ff
on a vector space H

is generated by a scalar product in the sense of Theorem 1.5 if and only
if the parallelogram identity (1.16) is satisfied. If this is so then the scalar
product is given by (1.17). A corresponding statement holds true for
seminorms and semi-scalar products.
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PROOF. If the norm . is induced by the scalar product <. , then (1.16)
holds true and the scalar product can be recaptured from the norm by
means of (1.17). It remains to be shown that if

1

satisfies the parallelo-
gram identity and <. , .> is defined by (1.17), then <. , .> is a scalar product
and generates the norm We restrict ourselves to the proof in the
complex case; the real case goes analogously and is even a little simpler.

Let <. , .> be defined by (1.17). We show that <. , .> is a scalar product.
[(1.13) (iv—v)]: For all f E H by virtue of the definition of <.,.> we have

=
{ — + iIJf—

= 0+2i f112—2i11f112} =

The properties [(1.13) (iv—v)] of <. , .> now follow from the corresponding
properties of the norm Ii

. At the same time we obtain that
H ii is

generated by <. ,

[(1.13) (iii)]: For alif, gE H we have

=

= Hf—gil2— iHf± illf— iglf2}

= <f,g>.
[(1.13) (i)]: For alif, g, h E H because of (1.16) we have

= g112+ ilif— iIif± igfj2

+JJf+ — + iIIf— ihli2 — iHf±
=

___

2
2

.g± h

)
+ + i(i(f- .

g± h) .g- h112

112_

= !
{ Ilf+

g + h112 + g - h112 - g + - -

+ .

g + h112
+ - ± h112 g - h

I!2}

=2<f, (1.18)

Since by (1.17) we obviously have 0> = 0, from (1.18) it follows by
substituting h =0 that

2<f, = <f,g>. (1.19)
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From (1.18) and (1.19) it follows that

which is the required property.
[(1.13) (ii)]: We already know that g> =2<f, g/2>. From this and

from property [(1.13) (i)] we obtain by induction that

g> = <f, for all n, m E

(I%J0 is the set of non-negative integers {O, 1, 2, . .
. )). If a > 0, then there

exist numbers ak = such that ak—+a as k-.-.oo. By the proposi-
tion preceding Example 1 we have

< 1gM,

If± — lf± — gil,

therefore because of (1.17)

as

From this it follows that

a<f,g> = lim = urn =<f,ag>.
k—*oo

Furthermore, we have

-g> = iiIf+ if—

= —<f,g>;
consequently ag> = a<f, g> for all a E As we also have

<f, ig> = { iIf+ — + ilIf± gM2 — ilif— gI12}

= i<f,g>.

The equality ag> = a<f, g> follows for all a E C. The proof for semi-
norms is completely analogous.

If H is a (complex or real) vector space and <. , .> is a scalar product on H,
then we call the pair (H, <. , .>) a vector space with scalar product or a
pre-Hilbert space. If it is clear which scalar product is meant on H, then we
shall briefly write H for the pair mentioned. If

II .
is a norm on H, then

we call the pair (H, . J) a normed space. Here we shall also only write H
in most cases. By Theorem 1.5 the norm If ii = is defined in a
natural way on every pre-Hilbert space. Therefore in what follows we shall
consider every pre-Hilbert space as a normed space.

EXAMPLE 3. On cm respectively by

<f,g>
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a scalar product is defined. The corresponding norm

( m

IIJU
=

1fFJ
I

is the Euclidean length of the vectorf, thus If— is the Euclidean distance
of the points f and g.

EXAMPLE 4. On C[O, 11 by

g> = f'f(x)*g(x) dx, IfII = {fhIf(x)12

a scalar product and the corresponding norm are defined.

EXAMPLE 5. Let 12 be the Hubert sequence space, i.e., the set of (real or
complex) sequences f2, . . . ) for which < 00. Then 12
will be a (real or complex) vector space if one defines addition and
multiplication as follows:

for f,gEl2 and

It is clear that this definition of multiplication is meaningful since along
with < oo we also have < 00. 1ff and g are in '2' then
for every N E we have

N (N N (00 00

< <
n=1 n=1 )

consequently we also have

<00

i.e., f+ g E 12. It is easy to see that by

g> = f, g E 12

a scalar product is defined on 12; the series converges, because
I

The induced norm is

( 00

IlfIl =
t. n=1

Unless otherwise stated, in what follows '2 will always denote the complex
sequence space.
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EXERCISES

1.6. The norms in Examples I and 2 are not generated by scalar products.

1.7. The proposition after Theorem 1.5 does not hold true in general for norms
that are not generated by scalar products.

1.8. Let p be a seminorm on H generated by a semi-scalar product and let
N= {JEH : p(f)=O}. We have p(f+g)=p(f)+p(g) if and only if there
exists an a>0 such thatf— agE N or g— afE N.

1.9. (a) Let A2 be the set of functionsfholomorphic on C1 = (z EC: <1) for
which

f
(the integral can be understood as an improper Riemann integral or as a
Lebesgue integral). A2 is a vector space. By

g>1 = f f(x + + dx dy, = f f(x + dx dy
CI CI

a scalar product and the corresponding norm are defined on A2.
(b) Let H2 be the set of functions f holomorphic on C1 for which the limit

lim f dt
0

is finite. H2 is a vector space (Hardy-class). By

(. 2
11f112 = lim j If(rett)I dt

0

a norm is defined on H2. This norm is generated by the scalar product

g>2 = urn f dt.
r—+1 0

(c) If f(z) = g(z) = are the Taylor series off and g, then
we have

=
g>2 =

(d) H2 is a subspace of A2 and we have forf E H2.
(e) For all f E H2 we have

= sup dt : i}.

1.10. Let A be an arbitrary set, let : oo), and let 12(A ; be the set of
functions f: A C that vanish outside a countable set (that may vary with f)
and for which <oc.
(a) (12A ; is a subspace of the space of all complex valued functions on A.
(b)By

<f, g> = f, g E 12(A ;
aEA

a scalar product is defined on l2(A ;
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1.11. Let A be an arbitrary set; for each a E A let (Ha, < ' be a pre-Hil'bert
space. Then

H {f(fa)aEAE II Ha:
aEA

fa 0 for at most countably many a E A, <
}aEA

is a vector space (with componentwise addition arid multiplication). By

<(fa)' (ta)> = <fa, ga>a, (fa)' (ge) E H,
aEA

a scalar product is defined on H, i.e., (H, <., .>) is a pre-Hilbert space.



Hubert spaces

2.1 Convergence and completeness

Let (H,
.

be a normed space. A sequence in H is said to be
convergent if there exists an f E H such that If,7 as n—>oo. There
exists at most one f E H with —fIHO; since from IlL and

that thusf=g. We
say that the sequence tends to f and call f the limit of the sequence
In symbols we write f= or as If no confusion is
possible, we shall occasionally abbreviate these by writing f= or

Proposition.
(a) From it follows that

II II I fl; the sequence (II I) is bounded.
(b) If (H, is a pre-Hilbert space, then we also have that and

imply g>.

PROOF.

(a) By the proposition preceding Example 1 of Section 1.2, we have
— If Ill IlL —f II; from this the assertion follows.

(b) We have <
II — + —f since the sequence is bounded

on account of (a). 0
A sequence in H is called a Cauchy sequence if for each >0 there

exists an n0 E such that for n, m > n0 we have IlL <€. In what
follows, we shall briefly write for this IlL as n, Every
convergent sequence is a Cauchy sequence: if f is the limit of the sequence
(fr), then IlL !Ifn —f II + lIffmIH0 as n, m—co. Conversely, in an

15
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arbitrary normed space (or pre-Hilbert space) not every Cauchy sequence
is convergent, as Example I below shows.

Proposition.
(a) If (f,j is a Cauchy sequence, then the sequnce II) is convergent (thus

it is bounded).
(b) If (H, <., .>) is a pre-Hilbert space and (ga) are Cauchy sequences,

then the sequence is convergent.

PROOF.

(a) As III — I III II In — fm II,
the sequence (II I) is a Cauchy sequence

in R, thus it is convergent and bounded.
(b) By (a) there exists a c > 0 such that

If
<c and c for all

n, m E Since

gn—gm>f+ fm' gm>f

the sequence ge>) is also a Cauchy sequence.

EXAMPLE 1. Let (C[0, I], <. , .>) be the pre-Hilbert space introduced in
Section 1.2, Example 4. We show that not every Cauchy sequence is
convergent. For this let the sequence in C[O, 1] be defined in the
following way: f1(x) = 1 for all x E E0, 1], and

1 for

for

for n =2, 3 This sequence is a Cauchy sequence, since for 2 n m
we have

cI/2+1/n I
IIfn fm112 J

dx —.
1/2

To prove that the sequence (fe) is not convergent let us assume that there
exists an f E C[0, 1] such that i.e., Then for 2 <n m
we have

- 112 dx
+f1 f(x)12 dx

0 (1/2)±(1/n)

= fm(X)12 dx
+f1

If(x) -fm(x)12 dx
0 (1/2)±(I/n)

<f'If(x) dx.
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Since the right-hand side tends to 0 as m 00, we have

— 112 dx +f' If(x)12 dx = 0 for n> 2.
0 (1/2)+(I/n)

Since f is continuous, it follows from this that

f(x)=— 1 for xE[0,fl,
f(x)=O for

However, this contradicts the continuity of f. Therefore the sequence
cannot be convergent in C[0, 1].

A normed space (H, f) is said to be complete if every Cauchy
sequence is convergent. A complete normed space is called a Banach
space; a complete pre-Hilbert space is called a Hubert space.

EXAMPLE 2. The space C[0, 1] becomes a Banach space with the norm
(cf. Section 1.2, Example 2)

= max (If(x)l : 1}.

(By Exercise 1.6 it is not a Hubert space.) For suppose is a Cauchy
sequence, i.e., assume that for every >0 there exists an n0 E such that
for all n, m > n0 and for all x E[O, 1] we have Ifn(X)fm(X)I <€. Then

is convergent for every x E[0, 1]; letf(x) = First we show
that this f is continuous. For 0 let n0 be chosen as above and for this n0
let 6 >0 be chosen so that for 1x1 — x21 6 we have
From this it follows for lxi — x21 6 that

If(xi) —f(x2)I + —f(x2)I

= , +

+ urn <
0

This proves the continuity off. Now we show that f,, For >0 let n0 be
chosen again as above. Then for n > n0 we have

-fILe = max : 0<x 1)

=max{

consequently -3f.

EXAMPLE 3. cm and II?" are Banach spaces with the norms II .

and from Section 1.2, Examples 1 and 3. This follows easily from the
fact that a sequence is a Cauchy sequence (convergent sequence) in cm
or if and only if it converges componentwise. (The proof can also be
obtained as a special case of Example 4.) cm (respectively is therefore
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a Hubert space with the scalar product

<f,g>

EXAMPLE 4. Let the scalar product and the norm in '2 be defined by

00 ( \1/2
<f, g> = !IfiI

= n=1

as in Section 1.2, Example 5. We show that '2 is complete, therefore it is a
Hilbert space. Let (f be a Cauchy sequence, f = (fI,
As

lfj,n fj,mI

the sequence (4 is a Cauchy sequence for eachj E i.e., there are
numbers 4 E C such that 4 —*4 as n —* 00. It remains to prove that
f= (4) E '2 and f as n—* 00. For e >0 let n0 E be chosen so that for
n, m > n0 we have (n) _f(m)II <€. Then for all k E we have

k k

14, n — = If1, n — 4, urn sup If (n)
— f <

j=1 m-÷oo

therefore also

_112 for n > n0.
i—I

It follows from this thatf —f E 12, thusf E 12, also, and (If (n) <€ for
n > n0, i.e., f

EXAMPLE 5. The Lebesgue space L2(M) for a Lebesgue measurable subset M
of Rm: For the concepts and results of this example a knowledge of
Lebesgue's integration theory is needed (cf. Appendix A). This will be
assumed in what follows. The notions of "measurable," "almost every-
where," and "integrable" refer to Lebesgue measure in

Let M be a measurable subset of First we treat the function space

= { f : f measurable complex-valued on M, f (f(x)(2 dx <

is a vector space, since withf, g E a E C the functions af and
f+ g are also measurable and because of

(af(x)( = (a{ (f(x)( and 2(f(x)f2+2Jg(x)(2

we have

dx < oc and + g(x)12 dx < oo.
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It is obvious that by s(f, g) = JMJ *(x)g(x) dx, f, g E a semi-scalar
product is defined on Let

Ot(M) = (f : f measurable complex-valued function on M,

f(x) = 0 almost everywhere on M}.

Then Ot(M) is a subspace of and we have

Ot(M) = : s(f,f)=0}.
Now we define

L2(M) =

Thus we build equivalence classes in by placing two functions in the
same class if they coincide almost everywhere. Addition of these classes
and multiplication by a complex number are defined via representatives: If
f and are the equivalence classes of f and g and a E C, then

af= (af), aj+bg = (af+bg).

The scalar product of two equivalence classes f and is defined by

= s(f, g) - *(x)g(x) dx,

where f and g are representatives of I and It is evident that this
definition does not depend on the choice of f and g. From f>= 0 it
follows that the representatives of f vanish almost everywhere, i.e., f is the
zero element of Therefore <. , .> is actually a scalar prod-
uct, and L2(M) is thus a pre-Hilbert space. In what follows we shall denote
the functions f E and the corresponding equivalence classes f E
L2(M) by the same symbol f. The function f is then always an arbitrary
representative of the corresponding equivalence class.

Theorem 2.1. (L2(M), <. , .>) is complete, thus it is a Hi/bert space. If

then there is a subsequence of such that

f(x) as j oo, almost evetywhere in M

(here . ) andf(. ) are arbitrary representatives of respectively f).

PROOF. Let be a Cauchy sequence in L2(M). For eachj E I%J there exists
an such that

IIfm for n, m >

Without loss of generality we may assume that for allj E Then
we have in particular —411 <2g. In what follows let be an
arbitrary (however, in the proof fixed) representative of



20 2 Hubert spaces

For all k E let : be defined by the equality

=

The sequence .)) is non-decreasing, and

f dx = U gkM2 (± 2_i) <

for all k E By B. Levi's theorem (Theorem A 7) the sequence and
thus also the sequence (gk), is convergent almost everywhere. Then the
sequence of the functions

fnk

also converges almost everywhere to a measurable function f( .). We show
thatf(

. ) and that in the sense of L2(M) we have as
For each >0 let n(c) andj(€) be chosen so that for n > andj we
have

dx = 14

The functions . ) . are non-negative, their integrals are
bounded by c and we have

If(x) — almost everywhere in M.

By Fatou's lemma it follows from this that If(. ) . is integrable and
that we have

dx <€ for n >

Therefore f( . ) . ) E e2(M) and, consequently, f( . ) E Besides,
we have for n n(), i.e., f,,—.f in the sense of L2(M). The
second part of the assertion is proved by the fact that almost
everywhere. Eli

If we look only at real valued functions in this example, then we obtain
the real Hubert space L2

EXAMPLE 6. All the reasoning of Example 5 can be carried out analogously
if p is a measure generated by a regular interval function on (cf. Ap-
pendix A), M is a p-measurable subset of and L2(M; p) is the
corresponding space of square integrable functions with respect to p.
Theorem 2.1 holds true for L2(M; p) also. We omit the details here.
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EXERCISES

2.1. Let be a sequence in the normed space (H, II . II) with <oo.
(a) and the sequence 1ff) is a Cauchy sequence.
(b) If H is a Banach space, then the sequence 1ff) is convergent; we write

for the limit of this sequence.

2.2. (a) In Exercise 1.11 H is a Hubert space if and only if all Ha are Hubert
spaces.

(b) The space 12(A ; of Exercise 1.10 is a Hubert space.
(c) The spaces A2 and H2 of Exercise 1.9 are Hubert spaces.

Hint: This can be proved with the aid of Exercise 1.9(c) or the mean value
property of holomorphic functions.

2.3. (a) Let C"[O, 1] be the vector space of k times continuously differentiable
complex (or real) valued functions defined on [0, 1]. By

= f if (i)(x)*gU)(x) dx
j=O 0

a scalar product is defined on I]. The space (C"[0, I], <., .>k) is not
complete.

(b) Let W2, 1) be the space of those complex-valued functions on [0, 1]
that are k — 1 times continuously differentiable, whose (k — 1)th derivative
is absolutely continuous (cf. Appendix A 5) and whose kth derivate is in
L2(0, I). By

= f if dx
j=0 0

a scalar product is defined on W2 1). The pair (W2 k(O' 1), <. is a
Hilbert space.

(c) 1] is a subspace of W2, I). For each f E W2, 1) there exists a
sequence from C"[O, 1] such in the sense of W2k(O, 1).

2.2 Topological notions

Let (H, II . 1) be a normed space. A subset A of H is said to be open if for
each f E A there exists an c >0 such that the ball

K(f,€) = {gEH: IIg—fII<€}
lies in A.

EXAMPLE 1. For each r > 0 and each h E H the ball K(h, r) = { g E H:
g — hil <r) is open. It will be called the open ball around h with radius r.

The assertion is obvious for r =0, as K(h, r) is then empty (the empty
set is open). Now let r> 0, g E K(h, r), then we have

c= >0
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and for eachfE K(g, €)

lh f11 llh - + g <llh - + =
i.e., K(g, c) < K(h, r).

A subset A of H is said to be closed if CA = H \ A, the complement of A,
is open.

EXAMPLE 2. For each f E H and each r > 0 the ball k(f, r) = (g E H:
II g —f II r} is closed, because for g E Ck(f, r) we have g — r >0
and K(g, if g —ff1 — r) c CK(f, r). The set k(f, r) is called the closed ball
around f with radius r.

Closed sets can be characterized in another way. For this we mention
another definition. An element f E H is called a contact point of the subset
A of H if for each >0 there exists a g E A such that g <€. The set
of all contact points of A will be denoted by A. We obviously have A c A.

Proposition.
(I) A C B implies A C B.
(2) We have f E A if and only if there exists a sequence in A such that

-
(3) WehaveA=A.

PROOF. (1) and (2) are clear.
(3) Let f E A, >0. Then there exists a g E A such that g —f ii <€/2 and
for this g there exists an h E A such that lJh — gil <€/2; consequently
llh <€. ThereforefE A holds, i.e., A cA. Since A cA, it follows that
A=A. o

Theorem 2.2. A is closed. A is closed if and only if A = A. The set A is the
smallest closed subset of H that contains A.

PROOF. First we show that A is closed, i.e., CA is open. LetJECA. Since
A = A, then we have f E CA, i.e., f is not a contact point of A. Therefore
there is an >0 such that K(f, €) n A =0 and consequently K(f, €) c CA.
If A = A, then A is closed by the first part of our theorem. If A is closed,
then CA is open, i.e., for each f E CA there exists an >0 such that
K(f, €) n A =0. However, this means that no elementf of CA is a contact
point of A, therefore A c A and thus A = A. —

If B c H is closed and A c B, then it follows that A c B = B, therefore
AcB. LI

On the basis of Theorem 2.2 it is justified to call A the closure (closed hull)
of A.
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EXAMPLE 3. For r >0 the closed ball k(f, r) is the closure of K(f, r). For if

gEK(f, r), then for the elementgn=f+(l belongs

to K(f, r) and we have Hence K(f, r) cK(f, r). As k(f, r) is closed,
we also have K(f, r)ck(f, r).

Theorem 2.3. The closure of a subspace of H is a subspace.

PROOF. Let T be a subspace of H, let f, g E and let a, b E 1K Then there
are sequences and (ga) in T such that It follows that

af+ bg = + =

As + bg E

a T is a subspace of H, then the
restriction of . to T defines a norm on T. Thus T becomes a normed
space (T, . in a natural way. Analogously, if (H, <. , .>) is a pre-Hilbert
space, then we can consider T as a pre-Hilbert space (T, <. ,

Theorem 2.4. A subspace T of a Banach space (H, <. >) (respectively a
Hubert space (H, <., .>)) is closed if and only if(T, H . is a Banach space
(respectively (T, <. , .)) is a Hi/bert space).

PROOF. If T is closed, and is a Cauchy sequence in T, then there exists
an f E H such that therefore f E T, i.e., T is complete. If T is
complete and f E t, then there exists a sequence from T such that

—*f; as is a Cauchy sequence, is convergent in T, i.e., f E T. 0
Let A and B now be subsets of a normed space H. The set A is said to

be dense relative to B if B c A holds. If, in addition, A c B, then we say
that A is a dense subset of B (or briefly A is dense in B). If A is dense
relative to H, then we say briefly that A is dense.

Proposition. If A1 is dense relative to A2 and A2 is dense relative to A3, then
A1 is dense relative to A3.

PROOF. From A3 c A2 and A2 c A1 it follows that A3 c A1 = A1. 0

EXAMPLE 4. A sequence of complex numbers f = is said to be finitary if
only finitely many members are different from zero, i.e., f=

. . . 0, 0, . . . ). The set of finitary sequences is a subspace 120 of

We show that '2,0 is dense (in 12). Letf= be an arbitrary element of

12. Then for we . . 0,0,. . . )E4,0 and

I

Consequently f i.e., f E
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EXAMPLE 5. Let P be the vector space of polynomials in one variable. P
can be considered as a subspace of the pre-Hilbert space (C[0, 1], <., .>)
from Section 1.2, Example 4. P is dense in CEO, 1]: By Weierstrass'
approximation theorem (ef. Hewitt-Stromberg [18], (7.31)) for each con-
tinuous f and for every 0 there exists a polynomial p such that
max (ff(x)—p(x)f : x E[O, 1]) <€. We also have then that If—ph <€, i.e.,
f is a contact point of P.

EXAMPLE 6. Let M be a measurable subset of Let

L2,0(M) = (fE L2(M): there exists a K >0 such that
jf(x)f <K almost everywhere in M,

and f(x)= 0 almost everywhere in (x EM: IxI >K}}.
L2, 0(M) is dense in L2(M). For let f be an element of L2(M) and for each
n E let

f(x) = ff(x) if xf<n and f(x)<n
I. 0 otherwise.

Then we have < ff(x)j for all n E and all x E M, and
as By Lebesgue's dominated convergence theorem it now follows
that

-ff12 = fMfn(x) -f(x)(2dx as n 00.

Therefore —÷f. Since f,, E L2 M), the assertion follows.

EXAMPLE 7. A subset J of of the form

J

with a3, b3 E is called an interval in here any combination of the
signs < and < is permitted. A function f: is called a step
function if there are finitely many intervals J1,..., and complex
numbers c1, . . . , such that

f(x) =

where XA denotes the characteristic function of A, i.e.,

(x)=[1 for xEA
XA (.0 otherwise.

The set of step functions on is obviously a vector space (the
linear operations are defined as usual). We show that is a dense
subspace of L2(Rm). To prove this it is enough to show that is dense
in L2, 0(Rm). It is obvious that T(Rm) c L2, 0(Rm). Letf E L2, Thenf is
integrable and there exists (cf. Theorem A6) a sequence from T(Rm)
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such that almost everywhere in and

as

(Integrals for which no domain of integration is given are always taken
over the whole space JRtm.) If for K 0 we have If(x)I K almost every-
where, then we may assume that K for all x E JR", and for all
n E I%i. Consequently, we have

-fM2 -f(x)I dx 0 as n oc,

i.e.,

EXAMPLE 8. Let be the space of infinitely many times differentia-
ble complex-valued functions with compact support (i.e., for every f E
C000(JRm) there exists a compact subset K in such thatf vanishes outside
K; the smallest set K of this kind is called the support of f, in symbols
supp f). We show: C000(JRm) is a dense subspace of L2(JRm). For the proof it
is enough to show that C000(JRm) is dense relative to T(JRm). To prove this it
is enough to show that for every interval J the characteristic function is

a contact point of C000(JRm). For this, let us define E by

&(x) = Iexp for IxI<€,
0 for IxI>€,

and

The reader can verify himself that E and supp = {x E
JRm• <€} hold. If J is now an interval in Rm and for n E we define

f 61/fl(x—y)xJ(y) dy, x E JRtm

then we E C000(JRm),

1 for xEJRm with

1

0 for x E JRtm with d(x, J) > -f-,
n

and 0 1 for all x E JRtm (here d(x, A) stands for the Euclidean
distance of the point x from the set A). We have for all x that
do not lie on the boundary of J. Therefore almost every-
where. Thus by the Lebesgue dominated convergence theorem it follows
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that

= - dx 0,

i.e., in the sense of

A subset A of a normed space is said to be separable if there exists an at
most countable subset B of A which is dense in A. If T is a subspace of H
and B is a subset of H, then B is said to be total with respect to T if the
linear hull L(B) (the set of finite linear combinations of elements of B, or,
in other words, the smallest subspace of H that contains B) is dense
relative to T. We use the concept total in if B c T, and total if T= H.

EXAMPLE 9. The spaces cm and iir are separable, as the set of elements
with rational components (in cm this means that the real and imaginary
parts of the components are rational) is enumerable and dense.

Theorem 2.5. Let (H,
J . I) be a normed space.

(a) If A is a separable subset of H, then A is separable, also.
(b) If A is separable and A1 c A, then A1 is separable, too.
(c) A subspace T of H is separable if and only if there exists an at most

countable subset A of H that is total with respect to T.

PROOF.

(a) Let B be at most countable and dense in A. Since A is dense in A, the
set B is also dense in A.

(b) Let B = n E be an at most countable set that is dense relative
to A. Let J be the set of those pairs (n, m) E x for which there
exists an f E A1 such that < 1/rn. For every n, mE J let us
choose a E A1 such that I <1 / m. The set B1 =

: (n, m) E J) is then at most countable. We show that it is dense
with respect to A1, i.e., A1 is separable. Letf E A1. As B is dense in A,
B is also dense relative to A1. Therefore for every k E there exists an
n(k) such that II < 1/k. Hence (n(k), k)E J and we have

2
II k k fn(k)II + lfn(k) — fII

i.e., gfl(k) as k—*oo. Hence B1 is a dense subset of A1.
(c) If T is separable, then there exists an at most countable subset B which

is dense in T. Since L(B) B, the set_L(B) is dense_in T, too. Let B
now be at most countable and let T c L(B). Then L(B) is separable, for
the set Lr(B) of finite linear combinations of elements of B with
rational_coefficients is dense in L(B) and Lr(B) is countable. Since
T c L(B), the subspace T is separable, also.

EXAMPLE 10. 12 is separable, as the set of unit vectors = : n E
is total in /2: the linear hull of the unit vectors is
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EXAMPLE 11. is separable. By Example 7 it is enough to show that
is separable. Let S0 be the set of characteristic functions of intervals

with rational end points. The set S0 is countable and obviously_dense in
the set S of characteristic functions of all intervals,_therefore L(S0)D L(S).
Because L(S) = T(Rm), it follows from this that L(S0)D i.e.,
is separable.

EXAMPLE 12. For every measurable subset M of iir the space L2(M) is
separable. The space L2(M) may be considered as a subspace of
provided we identify each f E L2(M) with the element f E defined
by

f(x) = 1(x) for xEM,
for xEM.

EXAMPLE 13. Let p be a measure on (cf. Appendix A) and let M be a
p-measurable subset of ERtm. The Hi/bert space L2(M, p) (cf. Section 2.1,
Example 6) is separable. This can be proved for M = ERtm as in Example 11
(in the course of the proof of S c one has to notice that the boundaries
of intervals in general have measures different from zero). For a general M
we obtain the assertion by considering L2(M, p) as a subspace of L2(ERm,
The space T(ERm) of step functions is dense in L2(ERm, p).

EXERCISES

2.4. A subset A of a normed space H is separable if and oniy if its closed linear
hull L(A) is separable.

2.5. Prove that the function from Example 8 is infinitely many times differen-
tiable.

2.6. Let G be an open subset of let p be a measure on ER", and let L2(G, p) be
defined as in Section 2.1, Example 6.
(a) If L2, 0(G, p) is the subspace of L2(G, p) consisting of all bounded

functions with compact support in G, then L2, o( G, p) is dense in L2( G, p).
(b) If T(G) is the space of step functions whose supports are contained in G

(these are then compact subsets of G!), then T(G) is dense in L2(G, p).
(c) the space of infinitely many times continuously differentiable

functions with compact support in G, is dense in L2( G, p).

2.7. The spaces A2 and H2 of Exercise 1.9 are separable (cf. also Exercise 2.2c).

2.8. (a) Prove the separability of L2(a, b) for — oo <a <b < oo with the aid of the
Weierstrass approximation theorem (cf. Example 5).

(b) With the aid of (a), prove the separability of L2(ER).
(c) Prove the separability of L2(Rm) analogously.

2.9. (a) A subset A of a normed space is not separable if and only if there exists
an a> 0 and an uncountable subset B of A such that for alif, g E B, f=/=g
we have
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(b) If a subspace T is not separable, then for each a > 0 there exists such a set
B.

(c) 12(A ; is separable if and only if A is at most countable.

2.10. Let H be a pre-Hilbert space and let T be a dense subspace of H.
(a) The closures of (fE T: Ifli 1) and of {fE T: tfl! < 1) are equal to

K(0, 1).

(b) For every f E H we have fj = sup g> : g E T, gil 1) =
sup {i<f,g>l :gET,



Orthogonality

3.1 The projection theorem
Let (H, <. , .>) be a pre-Hilbert space. Two elementsf, g E H are said to be
orthogonal (in symbols fig) if g> =0. If fi g, then we obviously have
lIf+ gil2 = llfU2 + Ii gil2; this formula often is referred to as the Pythagorean
theorem. An element f E H is said to be orthogonal to the subset A of H (in
symbols fi A), if fi g for all g E A. Two subsets A and B of H are said to
be orthogonal (in symbols Al B) if g> =0 for allfE A, g E B. If A is a
subset of H, then the set A-'- = {f E H fI A) is called the orthogonal
complement of A.

Proposition.
(a) We have (0)-'- = H, H' = (0), i.e., 0 is the only element orthogonal to

every element.
(b) For every subset A of H the set A' is a closed subspace of H.
(c) AcBimpliesB-'-cA-'-.___
(d) We have A' = L(A)' = L(A)'.

PROOF.

(a) For every f E H we have <0, f> =0. If f is
not orthogonal to H.

(b) 1ff, gE A' and a, bE then for all hE A it follows that

<af+ bg, h> = a*<f, h> + b*<g, h> = 0,

i.e., af+ bg E A'. Therefore A' is a subspace. It remains to prove that
'C A'. Let f E A', and let be a sequence from A' such that

29
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Then we have for all h E A that

h> = h> 0,

consequently f E A'.
(c) If f E B -'-, then we have h> =0 for all h E B, therefore also for all

hEA, and
(d) Since A c L(A) c L(A), from (c) it follows that

.L

L(A) ciL(A) CA'.

It remains to prove that A' cL(A)'. 1ff E A', then we have h> =
0 for all h E A, and therefore for all h E L(A), as well. If h E L(A), then
there exists a sequence (ha) from L(A) such that h. Consequently,
we have

<f5 h> = lim<f, = 0.

i.e.,fEL(A)'. LI

In order to prove the projection theorem we need an approximation
theorem, which we prove with somewhat more generality than we actually
need. A subset A of a vector space is said to be convex if from x, y E A and
0< a < I it follows that ax + (1 — a)y E A. Any subspace is obviously
convex.

Theorem 3.1. Let H be a Hi/bert space and let A be a non-empty closed
convex subset of H. Then for each f E H there exists a unique g E A such that

If— gil = d(f, A) = inf{llf—hIl hEA).

PROOF. There always exists a sequence (ga) of elements of A such that
II

—fiHd—— d(f, A). If we replace f by g by gm—f in the
parallelogram identity (1.16), then on account of the inequality If— hM

for all h E A, we have

Ii — gmlI2 = 211 + —f112 — 411!— ±gm)112

as n, (here we have used the fact that lies in A, since A
is convex). Hence (ga) is a Cauchy sequence. As H is a Hubert space, there
exists a g E H such that —*g. We have g E A, since A is closed. Moreover,
we have

hg—f II = = d.

It remains to prove that g is uniquely defined. If g, h E A are such that
Uf— gU = if— hil = d, then for the sequence (g, h, g, h, g, . . .) we
obviously have —f II = d. By the above reasoning (ge) is a Cauchy
sequence, i.e. we have g = h. LI
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Theorem 3.2 (Projection theorem). Let H be a Hi/bert space, and let T be a
closed subspace of H. Then we have T = T. Each f E H can be uniquely
decomposed in the form f = g + h with g E T and h E T '-. This g is called the
(orthogonal) projection off onto T.

PROOF. As T is convex and closed, by Theorem 3.1 there exists a g E T
such that hf— = d(f, T). Let us set h =f— g.

hE Ta-: We have to prove that for all wET we have <w, h>=0. For
w =0 this is clear, so let w E T, w 0. Then for all a E the element
g + aw also belongs to T. Therefore

d2 = d(f, T)2 If- (g+aw)112 = - awII2

= 11h112 — 2 Re(a<h, w>) + 1a1211w112

= d2 — 2 Re(a<h, w>) + haf2tIwII2.

With a = IIwII 2<w, h> it follows from this that

If h>12 0,

so <w, h> =0.
In order to prove the uniqueness of the representation f= g + h let us

assume thatf= g + h = g' + h' with g, g' E T, and h, h' E Ta-. Then we have
g—g'E Tand h'—hE T', therefore

g—g'=h'—hETnT'=(O}.
It follows from this that g = g' and h = h'.

It remains to prove that T''.
Tc 1ff E T, then by the definition of we have g> =0 for

all g E Ta-, i.e., f is orthogonal to Ta-, f E T-'--'-.
T -'- c T: Let f E T ±• On the basis of what we have already proved

the element f may be represented in the form f= g + h with g E T C
h E T-'-. From this it follows that h =f— g E n T-1- hence h = 0, i.e.,
f=gET. LI

Proposition.

____

(a) Let H be a Hi/bert space. For every subset A of H we have A' = L(A),
i.e., A" is the smallest closed subspace containing A.

(b) In a Hi/bert space H we have A' = {0} if and only if L(A)= H holds,
i.e., if A is total.

PROOF.

(a) Since A -'- = L(A) the projection theorem shows that L(A) =
L(A)" = A".

(b) If A' = then we have L(A)= A" = {0}' = H. If A-'-' = H, then
we have = = = {0}, as is a closed subspace. LI

If T, and T2 are subspaces of a vector space such that T1 n T2 = (0),
then

T1+T2= (f+g:fET1,gET2)
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is a direct sum (consequently we write T1 -I- T2), i.e., each element from
T1 + T2 has exactly one representation of the form f+ g with f E T1 and
g E T2. If T1 and T2 are subspaces of a pre-Hilbert space with T1 I T2, then
we have T1 n T2 = (0). In this case we call the direct sum T1 -I- T2 an
orthogonal sum and we denote it by T1 T2.

Theorem 3.3.
(a) Let H be a pre-Hilbert space, and let T1 and T2 be orthogonal subspaces.

If T1 T2 is closed, then T1 and T2 are closed.
(b) If H is a Hubert space and T1, T2 are closed orthogonal subspaces, then

T1 T2 is closed.
(c) If H is a Hilbert space and T and T1 are closed subspaces such that

T1 C T, then there exists exactly one closed subspace such that T2 C T,
T2 J.. T1 and T = T1 T2.

For the subspace T2, defined uniquely by part (c) of this theorem, we write
briefly T2 = T e T1. The subspace T2 is called the orthogonal complement
of T1 with respect to T. For T = H we obtain that H e T1 =

T1 is closed (the proof for T2 goes the same way). Let
f E and let be a sequence from T1 such that Since
T1 C we have c T2= T1 T2. Hence f E T1 T2 and
thus we have f= g1 + g2 with g1 E T1, g2 E T2. On the other hand, it
follows from f,, E T1 that and so fI T2, and, consequently,
g2 =f— g1 E T2 n Ti-. Therefore g2 = 0. From this it follows that f= g
ET1.

(b) We have to prove that T1 T2c T1 T2. Let f E T1 T2; then there
exists a sequence (f1 +f2, ,,) E T1 T2 with E T1, f2 E T2 and

Since

c 2.. ,ç 2 2J1,n+J2,nJ1,mJ2,m — J1,n J1,m + J2,n J2,m

the sequences (f1 and (f2 ,) are Cauchy sequences. Consequently
f1, E T1, f2 E T2. From this it follows that

f = urn = f1 +f2 E T1 T2.

(c) By Theorem 2.4 T is a Hubert space. Without loss of generality we
may assume that T= H. In this case let us set T2 = T11. Then by the

projection theorem (Theorem 3.2) we have H= T1 T2. In order to
prove uniqueness, let us choose an arbitrary subspace such that
H= T1 Then we surely have c T1-'-. 1ff E T1-'-, then f—fr
with f1 E T1, f2 E Here we must have f1 =0, since 0 = f> =

= 11f1112. Therefore we have f=f2 E i.e., T1-'- c and thus

0
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EXAMPLE 1. Let — 00 a c b ( 00. In L2(a, b) by

T1 = (fEL2(a, b) :f(x)=O almost everywhere in (a, c)}

T2 = (fE L2(a, b) f(x)=O almost everywhere in (c, b)}

two subspaces are defined, and we have L2(a, b) = : For g E T1
and h E T2 we obviously have <g, h> =0. Moreover, for each f E L2(a, b)
we have g = X(a, E T1, h = E T2 and f= g + h.

EXAMPLE 2. In L2( — a, a) by

T÷ = (fEL2(—a, a) :f(x)= ±f(—x) almost everywhere in (—a, a))

two subspaces are defined and L2( — a, a) = T_: For g E T÷ and
hE T_ we have

<g, h> = f g(x)*h(x) dx = f°g(x)*h(x) dx _f°g(x)*h(x) dx =

Let us set f÷(x) = ± f( — x)). Then for each f E L2(— a, a) we have
E T÷ and f=f÷ The subspace

T is the space of functions.

If T1,..., T,1 are mutually orthogonal subspaces of H, then we call the
(direct) sum of these spaces an orthogonal sum and we write

j=1

Parts (a) and (b) of Theorem 3.3 can be extended to this case. For
infinitely many subspaces see Exercise 3.3.

If A is an arbitrary set and (Ha, < , . >a) is a pre-Hilbert space for each
a E A, then by Exercise 1.11 the space

H= {fUa)aEAE fT
a EA

fa for at most countably many a EA, and < 00 }
aEA

is a pre-Hilbert space with the scalar product

<(fa)' (ga)> <fa' for (fa)' (ge) E H.
aEA

By Exercise 2.2a the space H is a Hubert space if and only if all Ha are
Hilbert spaces. If we identify Ha with the subspace of elements
such that = 0 for fi then the spaces Ha become pairwise orthogonal
subspaces of H. Therefore (H, <. , .>) is called the orthogonal sum of the
spaces (Ha, <. ' >a) in symbols H= EJ3aEAHa (if A is finite, then H=
llaE Ha).
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Theorem 3.4. Let H be a Hi/bert space. If T is a closed subspace and S is a
finite dimensional subspace, then T + S is closed.

PROOF. The problem can be reduced by induction, to the case where S is
one dimensional; S= L(f). If we write f=f1 with E T and f2 E Ti-,
then we have T+ S= TED L(f2). Therefore T+ S is closed by Theorem
3.3(b).

EXERCISES

3.1. Let H be the pre-Hilbert space (f E C[O, 1J: f(1) = O} with the scalar product
(1' g> = (t)*g(t) dt. The subspace T= (fE H: dt=O} is closed,
Tr/H, and T'=(O}.

3.2. Let H be the pre-Hilbert space C[— 1, 1] with the scalar product g> =
5 dt. The subspaces T1 = (f E H : f(t) =0 for t 0) and T2 =
(f E H : f(t) = 0 for t > 0) are closed and such that T1 I T2. The orthogonal

sum T1 T2 is not closed (cf. Theorem 3.3(b)).

3.3. Let H be a Hubert space, and let : a E A) be a family of pairwise
orthogonal subspaces of H.

(a) If (fa) E 11aEA Ta, and fa 0 for at most countably many a, and
IIfa 112< thenf= can be defined. The subspace T of alif

of this form is called the orthogonal sum of Ta, in symbols T

a sequence (an) from those a for which fa and define
a E as This definition is independent of the choice of the

sequence (an).
(b) T is closed if and only if all Ta are closed.

If all 1 are different from (0), then T is separable if and only if A is
countable and all are separable.

3.4. Let H be a pre-Hilbert space, let 0 be a dense subspace of H, and let N be a
finite dimensional subspace of H. Then 0 n N -i-.

Hint: By induction on n = dim N we can reduce the problem to the case n = 1,
i.e., N = L( g), g 0. Then there exists an h E 0 such that <g, h> = 1. If
fE then there exists a sequence from 0 such that For the
sequence = f,, — <g, h we then have f, E 0 n N and —*f.

3.5. Let H be a pre-Hilbert space and let T1 and T2 be subspaces of H such that
T1 I T2. Then we have T1 T2i T2. If H is a Hilbert space, then we have

3.2 Orthonormal systems and orthonormal bases

Let (H, <., .>) be a pre-Hilbert space. A family M= tea : a E A) of
elements from H is called an orthonormal system (ONS) if we have

<ea, ep> = for a, /3 E A
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denotes the Kronecker delta, i.e., 6aa = 1 for all a E A and =0 for
a An orthonormal system M is called an orthonormal basis (ONB) of
the subspace T if M is total in T (i.e., M c T and L(M)D T). If M is an ONB
of H, then M is called an orthonormal basis.

Proposition.
(a) Each ONS is linearly independent (i.e., every finite subsystem is linearly

independent).
(b) Each ONB M is a maximal ONS (i.e., if M' is an ONS such that

M C M', then we have M' = M).
(c) If H is a Hubert space, then each maximal ONS is an ONB.

PROOF.

(a) If {e1, . . . , is a finite subsystem of an ONS, then (e1, . . . , e,,} is
also an ONS. If 1a1e1 =0, then it follows that

2

0=
j=1 j=1

Therefore = 0 for all j.
(b) Let M be an ONB. If M were not maximal,_then there would be an

e E H such that e I M; consequently e I L(M), this contradicts L(M)
=H.

(c) Let M be a maximal ONS in the Hilbert space H. If M were not total,
i.e., if we had {0}, then there would be an e E L(M)' such
that Jell = 1. Hence M' = Mu {e} would be a larger ONS which
contradicts the maximality of M.

EXAMPLE 1. The set of unit vectors (e1,.. . , e,,j is an ONB in is the
vector with I at thejth place and zero otherwise).

EXAMPLE 2. The set of unit vectors (ek = k E is an ONB in 12.

EXAMPLE 3. An ONB in A2 is { : n E with = [(n + l)/i7] 1"2z
An ONB of H2 is (f,, : n E with z'1. This follows
immediately from Exercise 1.9, in particular part (c).

EXAMPLE 4. In L2(0, 1) the set M= n with is
an ONS, as one can verify by a simple calculation. We show that M is an
ONB, i.e., that M is total. For this let CEO, 1] = {f E CEO, lJ : f(0) =f(I)).
For each fE C[0, 1] by Fejér's theorem there exists a sequence of
trigonometric polynomials E L(M)) such that uniformly tends to f.
We also have then that —.f in the sense of L2(0, 1), i.e., M is total in
C[O, 1]. If we also prove that C[0, 1] is dense in C[O, 1], then everything
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will be proved. For f E CEO, 1] and n E let us define

1

1(x) for
n

1 1

for 1.

Then we obviously E C[O, 1] and

EXAMPLE 5. Let F0 = : A E with exp (iAx). On
F0by

g> = lim fTf(x)*g(x) dx

a scalar product is defined. For the proof of the existence of this limit it is
sufficient to treat f= and g = For these we have

1 rT I —i
<f, g> = urn —J dx = urn

-T
=0 for

1 çT
<f' g> = lim

J
dx = I for = A.

—T

The properties [(1.1 3)(i-iv)] of scalar products are obviously satisfied. If

then =

Therefore we have f> =0 if and only if f= 0, which is property
[(1.13)(v)]. By construction, M— {ex XE R} is total in F0, i.e., M is an
ONB in F0. The space F0 is not a Hilbert space. For if (Ak) is a sequence of
mutually distinct real numbers and (ak) is a sequence of complex numbers
such that ak 0 for all k and < 00, then the sequence with

= is a Cauchy sequence that is not convergent.

The following theorem, known as the Gram-Schmidt orthogonalization
process enables us to generate orthonormal systems and (in separable
spaces) orthonormal bases.

Theorem 3.5. Let H be a pre-Hilbert space. For each finite or countably
infinite set F= (f,j from H there exists a finite or countably infinite
orthonormal system M = } such that L( F) = L( M). If F is linearly indepen-
dent, then we can also insure L(f1,.. . ,f,,) = .. . , for all n.1 If we
require that in the representation = the coefficient is positive,
then M is uniquely determined.

'In the sequel we write L(e1, . . . , in place of L((e,, . . ..,
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(In what follows we shall always use the Gram-Schmidt orthogonaliza-
tion process with this additional requirement.)

PROOF. It is obviously enough to prove only the last part of the assertion.
Every normed element from L(f1) has the form with 1b11= 1.

The additional condition a1 = b1 = 1. That is, e1 =
11f111'f1. So we obviously have L(e1) = L(f1), as well. Let us now suppose
that e1, . . . , are determined in such a way that L(e1, . . . ,

= L(f1, . . .
For every

g + E L(e1,.. . , =L(f1,..
.

such that g± L(e1, .. . , we then have

0 = <es, g> = l,j + i = 1, .. . , n,

thus = — 1<e,, Consequently, necessarily has the form

b —11

bn+1 i=1 i=1

From the requirement,

b -1

=
b

> 0
n+1 1=1

it follows that + > 0, therefore +11 + d
—1 = 1. Consequently,

n

=
1=1 j=i

By construction, we have E L(f1, . . . hence L(e1,.. . ,

c L(f1,. . . , From the formula for it follows that E
L(e1, . . . , i)' therefore we also have L(f1, . . . , C L(e1, . . . ,

D

EXAMPLE 6. In L2(— 1, 1) the set F= : n E with x" is a
linearly independent system. The application of Schmidt's process provides
an ONS M= n E where = holds with >0; i.e.,
p,, is a polynomial of degree n with a positive leading coefficient. These
polynomials are called the Legendre polynomials. As F is total, the
Legendre polynomials constitute an ONB in L2(— 1, 1). The
can be given explicitly:

,, _112n+l\'/2 2(2n!)
2 )

dxn(x —1),

In order to prove this formula it is sufficient to show that the expression
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given for is a polynomial of degree n whose leading coefficient is
positive and that Pm> The first assertion is obvious. Forj <m
we obtain by a (j + 1)-fold integration by parts (the integrated terms
vanish) that

= CmfXjddm(X2_1)mdX

i
= C (— I (x2— dx = 0.m

This implies that <Pfl'Pm> =0 for It remains to prove that = 1.

By integration by parts we obtain that

11', [
dx (x2 — dx

= dx

dx

= (2n)! dx =

(2n)!
n(n—l). ..1

(n+1)(n+2)...2nJ_1

= (n!)22 1+1 =

From this it follows that = 1.

We can see in an entirely analogous way that the generalized Legendre
polynomials

Pa,b,n(x) =[(b— ]/ddfl [(x— a)(x— n E

constitute an ONB in L2(a, b).

Theorem 3.6. Let H be a pre-Hilbert space.
(a) If { e1, . . . , is a (finite) ONS in H, then for each f E H there exists a

gEL(e1, . . . , such that L(e1, . . . , we have

g

(b) Let {ea : a E A) be an ONS in H and let f E H. Then at most countably
many of the numbers <ea, f> are different from zero, and we have the
Bessel inequality

IIfM2> I<ea,f>12.
aEA
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(c) An ONS : a E A) is an ONB if and only if for a/if E H the Parseval
equality

IIfM2 = J<ea,f>12
aEA

holds. Then we also have

f= forall fEH.
aEA

PROOF.

(a) For all c1,. . . , E we have

2

f— = 11f112 — c/f, e> +
j=1 j=1 j=1 j=1

= IIfU2

Therefore If— is minimal if and only if = <e1, f>.
(b) For every finite set {a1, . . . , CA we have

2

IIfH2 = f- +
j=1 j=I

by part (a). Hence

From this the assertion follows because for every >0 only finitely
manyj E exist with the property I<ea, f>12 >

(c) Let us assume the Parseval equality for all f E H. Let f E H, and let (a')
be the sequence of those a for which <en, f> 0. Then we have

2

f- = IfJI2-
j=1 j=1

as Consequently,fE L(M), i.e., {ea : a E A) is an ONB. More-
over, it follows that

f=
j=1 aEA

Let {ea a E A) now be an ONB, i.e., let H= L(M). For every f E H
and for every >0 there exist n E a1, .. . E A and c1,. . . , E

such that
2

<€.
j=1
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By parts (a) and (b) it follows from this that

0 ilfiI2 - f<ea,f>12 < lU2 -
aEA j=1

2 2

= <'€
j=1 j=1

and consequently that

1lf112 =
EA

Theorem 3.7 (Expansion theorem). Let H be a pre-Hilbert space and let
M = (ea : cy E A) be an ONS in H.

(a) If (an) is a sequence of pairwise different elements from A, (ca) a
sequence from and the series is convergent (i.e.,

exists), then we have (ca) E If H is a Hubert space,
then this series is convergent if and only if (ca) E 12.

(b) If g = c,, then we have

= g> for all n E

ii gil2 =
and

forall JEH.

(c) The set of all elements from H which can be represented by a convergent
sum equals L(M).

PROOF.

(a) The sequence is a Cauchy sequence if and only if we
have

k k 2

2

m k —>

and oo.

(b) We have

m 2 m

ii gil2 = = =

and

= = =
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In the same manner, it follows for all f E H that
m

= lim =n=1 n=1

(c) Each element is in L(M), by construction. The converse follows
from Theorem 3.6(c), as M is an ONB in L(M).

Proposition. Let H be a Hubert space, and let M = (ea : a E A) be an ONS.
For each_f E H the vector >.a f>ea is the orthogonal projection of f
onto L(M).

PROOF. If is an arbitrary element from L(M), then by Theorem
3.6(a) we have

= Mf112 - I<ea,f>12
aEA aEA

1f112 <ea,f>12

2

1=1 j=I

consequently

inf : gEL(M)} inf {Uf-g112 gEL(M)}
aEA

Theorem 3.8. Let M1 and M2 be measurable subsets of W and respec-
tively and let : n E } and { : m E be orthonormal bases of L2( M1)
and L2(M2), respectively. If we define E L2(M1 X M2) by y) =

for x E M1, y E M2, then { : (n, m) E X is an orthonor-
ma! basis of L2(M1 X Ma).

PROOF. It is obvious that the functions are in L2(M1 x and they
form an orthonormal system. It remains to prove that { : (n, m) E X

is total. Let h be an element of L2(M1 x M2) such that for all
n, m. For all x E M1 let = h(x, y). By Fubini's theorem we have

E L2(M2) for all x E M1 \ N with some set N of measure zero, and we
have (Parseval's equality)

I 2
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Let us define km by

km(X) = dy = <fm, hr>, X EM1 \N.

Then km also belongs to L2(M1). Another application of Parseval's equality
shows that

dy

dx h>12 = 0.

By summing up, it follows that Ihil = 0. 0

EXERCISES

3.6. If T and Ma are orthonormal bases in Ta, then M= UaEAMa is an
ONB in T.

3.7. Let H be an infinite dimensional Hubert space, and let M be an ONB of H.
The cardinality of every dense subset of H is at least that of M. There exists a
dense subset of H with cardinality equal to that of M.

3.3 Existence of orthonormal bases, dimension of a
Hubert space

Up to now we have always assumed the existence of orthonormal bases;
only in examples did we see that in certain spaces orthonormal bases exist.
The question is then whether all Hilbert spaces or pre-Hilbert spaces have
orthonormal bases. It is relatively easy to show that each separable
pre-Hilbert space has an ONB. For non-separable spaces it is a little
harder to answer this question.

Theorem 3.9. Let H be a separable pre-Hilbert space.
(a) H possesses an ONB.
(b) If M1 is a finite ONS in H, then there exists an ONB in H such that

(c) If H is a Hi/bert space and M1 is an ONS in H, then there exists an
ONB M in H such that M j M1.

(d) H is rn-dimensional (m < oo) if and only there exists an ONB contain-
ing m elements. Then each ONB in H has exactly m elements.
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(e) H is infinite dimensional (i.e., not finite-dimensional) if and only if there
exists an ONB containing a countable infinity of elements. Then each
ONB in H is enumerably infinite.

PROOF.

(a) follows from (b) if we choose M1 =0.
(b) Let {O) and let M1 = (e1, .. . , be an ONS. As H is separable,

there exists a countable dense subset A = : n E I%i) in H. We define
the elements g1, g2, . . . , from A recursively in the following way: let
g1 where j1 is the smallest index for which {e1, . . ., J)) is

linearly independent. If g1, . . . , are defined, then let fjk+I'
where fk+1 is the smallest index for which {e1, . . . , em, g1, . . .

fJk+l) is linearly independent. We obviously have Jk+I >1k. With B=
(e1, . . . , g1, g2, . . . ) we then have L(A) C L(B), i.e., B is total. If
we apply Gram-Schmidt's orthogonalization method to B, we obtain
an ONS M, the first n elements of which coincide with e1, . . . , (as
these are already orthonormal). We have L(M)= L(B)= H, i.e., M is an
ONB in H with M1 c M.

(c) Let H be a separable Hubert space and let M1 be an ONS. Then
is also separable. Therefore, by part (a), there exists an ONB

M2 of L(M1)'. The set M= M1 U M2 is then an ONS, and L(M1 U
= L(M1) L(M2). Consequently, by Exercise 3.5

L(M1 U = L(M1) El) L(M2) = L(M1)EJ3L(M2) =H,

hence M is an ONB of H such that M1 c M.

(d) Let H be rn-dimensional, i.e., assume that the maximal number of
linearly independent elements equals m. As every ONS is linearly
independent, it consists of at most m elements. If M= {e1, . . . , is
an ONS with less than m elements, then we have dim L(M) <dim H,
therefore L(M) H. Thus there exists an f E H such that (e1, .

ek, f) is linearly independent. The Schmidt orthogonalization process
provides an ONS M'={e1, . . . , ek+l} such that McM', i.e., Mis
no ONB. Hence every orthonormal basis has exactly m elements.

(e) If H is infinite dimensional, then every ONB has at least a countable
infinity of elements, for otherwise H would be finite dimensional by
part (d). It remains to prove that each ONB M= {ea : a E A) is
countable. Let N = { : n E be a countable dense subset. For each
a E A there exists an n(a) E Ri such that llfn(a) — ealJ Because

lea — eMIl = for a we have

llfn(a) > lea — — llfn(a) — eall 11ef3

for

This means that the mapping
A is in is

is not finite dimensional.
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Proposition. Every finite dimensional pre-Hilbert space is complete; in partic-
ular, every finite dimensional subspace of a pre-Hilbert space is a closed
subspace.

PROOF. Let H be an rn-dimensional pre-Hilbert space. Then there exists an
orthonormal basis {e1, . . . , em). Let (fr) be a Cauchy sequence in H with
f—IaJ,,?eJ. Then we have

=

j a Cauchy sequence as n oo.

Therefore as with some a1. Putting
m

j=I
we have

m 2 m

If f112—

as fl—*00. Consequently, is convergent in H. U

Proposition. A pre-Hilbert space is separable if and only if it possesses an at
most countable ONB.

PROOF. By Theorem 3.9 each separable pre-Hilbert space possesses an at
most countable ONB. If M is an at most countable ONB in H, then the set
Lr(M) of linear combinations of elements of M with rational coefficients is
dense in L(M), and thus it is also dense in H. As Lr(M) is at most
countable, H is separable.

Theorem 3.10. Let H be a Hubert space.
(a) H possesses an ONB.
(b) If M0 is an ONS, then there exists an ONB M in H such that M M0.

(c) All ONB of H have the same cardinality.

REMARK. Theorem 3.10(a) and (b) do not hold for (non-separable) pre-Hil-
bert spaces; cf., for example, N. Bourbaki [2], Chapter 5, §2, Exercise 2.

PROOF. Part (a) follows from part (b) by choosing M0 =0.
(b) Let WI be the set of all those ONS which contain M0. is partially

ordered by the inclusion "c" (i.e., we have M c M for all M E WI; from
M1 c M2, M2 C M3, it follows that M1 c M3; from M1 c M2, M2 ci M1 it
follows that M1 M2). If 91 is a linearly ordered subset of WI (i.e., for
M1, M2 E9I we have M1 ci M2 or M2 ci M1), then has an upper bound
M E WI (i.e., for every M' E 91 we have M' ci M); for the upper bound
M we may take the union of all N E 91.
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This M is an ONS: If f1, f2 E M, then there exist M1, M2 E such
that f1 E M1, f2 E M2. Since M1 c M2 or M2 C M1 holds, we have f2 E
M2 orf1,f2 EM1. Therefore f1±f2.

As M contains all N E M is an upper bound of By Zorn's
lemma this implies the existence of at least one maximal element
Mmax E (i.e., for each M E such that M we have Mmax
=M).

This Mmax is an ONB: If we had H, then, as H is a Hubert
space, there would be (cf. part (b) of the proposition preceding Theo-
rem 3.3) an f E L(Mmax)' such that If II = 1, i.e., U (f} would be
an ONS such that C Mmax U {f) and U (f); this
would contradict the maximality of Mmax. The requirement M0 c Mmax

is obviously satisfied.
(c) Let M1, M2 be ONB of H. If (M1 I = m < oo (we write

I
MI for the

cardinality of M), then by the proposition preceding Theorem 3.10, the
space H is separable and by Theorem 3.9(d) we have dim H = m =
1M21.

Now let IM1I > For each f E M1 let K(f) { g E M2: <g, f>
0}. By Theorem 3.6(b) we have (K(f)I for all f E M1. We have
U {K(f) : f E M1) = M7, since if g E M2\ U { K(f) : f E M1} we would
have g I M1, therefore g =0 (as M1 is total); however, this is impossible
because all elements of M2 have norm 1. Consequently, it follows that

1M21 < K(f)(
M1

I I
M1 would be finite,

also. We can therefore prove that IM1I IM21 in the same way. LI

The algebraic dimension of a vector space is the cardinality of a maximal
set of linearly independent elements (algebraic basis). In Hilbert spaces it is
useful to introduce another notion of dimension. The dimension (more
precisely, the Hubert space dimension) of a Hubert space H is the cardinal-
ity of an ONB of H. By Theorem 3.10(c) this dimension does not depend
on the choice of the ONB. By Theorem 3.9(d) for finite dimensional
Hilbert spaces the two definitions of dimension coincide; for infinite
dimensional spaces this is not the case, cf. Exercise 3.8.

Proposition. There exist Hubert spaces of arbitrary (Hubert space) dimen-
sion.

PROOF. Let be an arbitrary cardinal number, and let A be a set of
cardinality K. Let 12(A) be the Hubert space 12(A; with = I for all
a EA (cf. Exercise 1.10 and 2.2(b)). The dimension of 12(A) equals K = IAI,
as M=(fa : aEA},wherefa(13)=6ap,isanONB. El
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Theorem 3.11. If H is a Hubert space and S and T are closed subspaces of H
such that S n = {O), then we have dim S ( dim T (dim Hi/bert space
dimension).

PROOF. Let us distinguish between two different cases.
(a) dim T=k<oo: Assume that dim S>dim Tholds. If {eI,...,ek) is

an ONB of T and (f1, .. . , is an ONS in 5, then the system of
homogeneous equations (k equations, k + I unknowns)

k+1
= 0, m = 1, . . . , k

j=1

has a non-trivial solution. Therefore there exists a non-zero element
f= of S n T', which contradicts the assumption.

(b) dim T> Let M1 and M2 be orthonormal bases of T and S,
respectively. For each e EM1 let K(e)= (JE M2 : <e,f> We have
U eeMik(e) = M2, because forf E M2\ U eEMIK(e) we would havefi M1,
thus f± T; which would contradict the assumption. Since for each
e E M1 the set K(e) is at most countable, it follows that

I

INIIM1I=IM1I.

EXERCISES

3.8. Let H be a Hubert space and let A be a countable subset of H such that
L(A) = H. Then H is finite dimensional, i.e., no Hubert space of algebraic
dimension exists.
Hint: Apply the Schmidt orthogonalization process to A; for the resulting
ONB M we have L(M) = H. (It can actually be proved that no infinite
dimensional Hubert space can have an algebraic dimension smaller than the
cardinality of the continuum; cf. N. Bourbaki [2], Chap. 5, §2, Exercise 1.)

3.9. (a) Let (H, <., .>) be a pre-Hilbert space. For any n elementsf1,.. . of H
the Gram determinant is defined by D(f1,. . . , = det (<f', fk>). We
have D(f1,.. . , > 0; the equality sign holds if and only if the elements

• . . , f,, are linearly dependent (in the case n =2 this is Schwarz'
inequality.)
Hint: Use induction on n. In going from n — 1 to n use the fact that the
value of the determinant does not change if the first column is replaced
by — where denotes the orthogonal projection of g
onto L(f2,. . . ,

(b) Prove the same assertion by using the fact that the matrix

k= is the product of the matrices

e1>).1 ,, and (<e,,fk>),1 m'
1=1 m k1 ii

where (e1, . . . , em) is an ONB of L(f1,. . .

(c) Prove an analogous statement for semi-scalar products.
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3.10. Part (c) of the proposition preceding Example I of Section 3.2 does not hold
in pre-Hilbert spaces.
Hint: In '2 let f=(1/n), H= '2,0' H1 = 12,0n By Exercise 3.4 we have
H1 = {f}'. If Mis an ONB of H, then Mis a maximal ONS in 12,0, without
being an ONB in '2,

3.4 Tensor products of Hubert spaces

Let H1 and H2 be vector spaces over We denote by F(H1, H2) the vector
space of formal linear combinations of the pairs (f, g) with f E H1, g E H2,
i.e.,

Let N be the subspace of F( H1, H2) spanned by the elements of the form
n m pn

— 1 x (3.1)
j=1 k=1 j=1 k=1

The quotient space

H1® H2 =F(H1, I-12)/N

is called the algebraic tensor product of H1 and H2.
The product H1 x H2 can be considered as a subset of F(H1, H2), if one

identifies (f, g) E H1 x H2 with 1(f, g) E F(H1, H2). The equivalence class
from H1® H2 defined by (f, g) will be denoted byf®g; these elements are
called simple tensors. Each element of H1 ® H2 is representable as a finite
linear combination of simple tensors. Such a linear combination of simple
tensors is equal to zero if and only if it is a finite linear combination of
elements of the form

(3.2)
k=1 j=1 k=1

In particular, we have

aJbjJ®gk. (3.3)
j=1 k=1 j=I k=1

If (H1, <. , and (H2, <. •>2) are Hilbert spaces over then

gd),
j=1 k=1 j=l k=1

defines a sesquilinear form on F(H1, H2). For arbitrary f E N and g E
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F(H1, H2) we have s(f, g) = s(g, f) = 0, as one can verify by simple calcula-
tion. Consequently, by

± =
k=1

a sesquilinear form is defined on H1 ® H2.

We show that is a scalar product on H1® H2. In order to prove
this it is enough to show that <f, f> >0 holds for all f E H1 ® H2, 0.

Indeed, let f= ® 0. If {ek) and are orthonormal bases of
L{f1, . . . and L( g1, . . . , ga), respectively, then

f = 0 e with Ckl = cJ<ek,fJ><eI, gd>, (3.4)
k,1 j

and thus

= >0.

Therefore (H1 0 <. , .>) is a pre-Hilbert space. The completion of this
pre-Hilbert space (cf. Section 4.3) will be denoted by H1® H2 and called
the (complete) tensor product of the Hubert spaces H1 and H2.

From (3.4) for each f= 0 E H1® H2 it follows by means of
(3.3) that

(3.5)
1 k

where (ek) and {efl are orthonormal systems in L(f1, .. . , f,j and
L( g1, . . . , g,,}, respectively; the elements and are contained in
L(f1, . . . and L( g1, . . . , g,j, respectively.

EXAMPLE 1. Let Pi and P2 be measures on and let H1 = p1),

P2)' By (3.1) an element from F(H1, H2) is in N if
and only if the function

(x,y) (x,y) E R2

vanishes almost everywhere with respect to the product measure p1 X P2'
The algebraic tensor product H1® H2 is thus composed of equivalence
classes of functions, square integrable on R2 with respect to p1 x p2. For
f,gEH1OH2 we have

<j, g> = ff(x,y)*g(x,y) dp1(x) dp2(y).

As H1 0 H2 obviously contains all step functions on the space H1 0 H2
is isomorphic to L2(R2, Pi X P2).
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Theorem 3.12. Let H1 and H2 be Hubert spaces.
(a) If M1 and M2 are total subsets of H1 and H2, respectively, then the set

(f® g : f E M1, g E M2) is total in H1 H2.

(b) If : a E A) and /3 E B) are orthonormal bases of HL and H2,
respectively, then tea ®f,3 : a E A, /3 E B) is an orthonormal basis of
H1® H2.

PROOF.

(a) Let 14 ® E H1 ® H2, >0. For each j E (1, 2,. . . , n } there exist
elements 4' E L(M1) and gj E L(M2) such that If1 —4,11 II <€/2n

<€/2n. Then we have

Hj®g14'®gjJt = <€/n
and consequently

Because

E L(M1)®L(M2) —L(f®g :fEM1,gEM2},

the assertion is proved, since H1 0 H2 is dense in H1 H2.

(b) By part (a) the set tea ®ffl : a E A, /3 E B) is total in H1® H2. More-
over, we have

<ea = a E A, /3 E B,

i.e., tea a E A, /3 E B) is an orthonormal basis.

EXERCISES

3.11. Two non-zero tensors f1 0 and f2 0 g2 are equal to each other if and only if
there exists a cEIX, that satisfiesf2=cf1, g2=

3.12. Let H1 and H2 be Hubert spaces.
(a) We have dim [H1 = (dim H1)(dim H2) (Hubert space dimensions).
(b) If H1 and H2 are different from (0), then H1 H2 is separable if and only

if H1 and H2 are both separable.
(c) (H1 0 H2, <., .>) is complete if and only if H1 or H2 is finite dimensional.



Linear operators
and their adjoints

4.1 Basic notions

Let H1 and H2 be vector spaces over K. A linear operator T from H1 into
H2 is, by definition, a linear mapping of a subspace D( T) of H1 into
The subspace D(T) is called the domain of T. The image R(T)= T(D(T))
= f Tf : f E D(T)) is called the range of T. Since we only treat linear
operators here, we shall speak only about operators from H1 into H2. If
H1 = = H, then T is called an operator on H. A linear operator from H
into K is called a linear functional. The range of an operator T from H1
into H2 is a subspace of H2. An operator is injective if and only if Tf= 0
implies f =0. In this case the inverse T 1 of T is defined by

D(T 1) = R(T), T 'g = f for g = Tf E R(T).

T is a (linear) operator from H2 into H1. For an operator T from H1 into
H2 and for a E K the operator aT is defined by

D(aT)=D(T) and (aT)=a(Tf) for fED(aT).
For two operators S and T from H1 into the sum S + T is defined by

D(S+ T) =D(S)n D(T),(S+T)f= Sf+ Tf for T).

If T is an operator from H1 into and S is an operator from into H3,

then the product ST is defined by

D(ST) = (fED(T): TJED(S)}, (ST)f= S(Tf) for f E D(ST).

If D is a subspace of H1, then the set of those operators from H1 into H2
whose domain is D is a vector space over K; the zero element is the
operator whose domain is D and which sends all elements of D to 0. Let S

50
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and T be operators from H1 into H2. An operator T is called an extension
of S (or S is a restriction of T) if we have

0(S) c D(T) and Sf = Tf for f E D(S).

For this we write S C T or T D S.

EXAMPLE 1. Let M be a measurable subset of and let t: be a
measurable function on M. The maximal operator of by t on
L2(M) is defined by

0(T) = (fEL2(M) : tfEL2(M)}, Tf= if for fE D(T).
The set 0(T) is obviously a subspace of L2(M) and T is an operator on
L2(M).

(4.1) D(T) is dense.

PROOF. For each n E let = (x E M: t(x)I <n}. Then C +1 and
U = M. For each f E L2(M) the function = belongs to
0(T) and we 0

(4.2) The following statements are equivalent:
(a) R(T) is dense,
(b) t(x) 0 almost everywhere in M,
(c) T is infective.
If one of these assumptions is satisfied, then T1 is the mult:plication
operator defined by the function

t (x) [ t(x)' for xEM such that
for xEM such that t(x)=0.

PROOF. (b) follows from (a): Each f E L2(M), that vanishes outside the set
M1 = {x E M: t(x) =0), is orthogonal to R(T). Therefore L2(M1) = (0),
i.e., M1 has measure 0.

(a) follows from (b): Let = (x E M: I t(x) I I / n }; then
M \ U has measure zero. For every g E L2(M) the function

= belongs to R(T) and holds.
(c) follows from (b): If Tf— 0, then t(x)f(x)= 0 almost everywhere in M.

Therefore f(x) =0 almost everywhere, too, and thus f= 0.
(b) follows from (c): If = (x EM: t(x)=0), then for all fE L2(M),

vanishing outside M1, we have Tf= 0; therefore f= 0. From this it follows
that M1 has measure zero.

If one of the above conditions is satisfied, then T is injective and t(x) 0
almost everywhere in M. Hence we have

D(T') =R(T) = (g E L2(M): there exists anfE L2(M) such that g= if)

= {gEL2(M) : t1gEL2(M)},
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and forgE D(T') andfE L2(M) such that g= if we have

T'gf= t1g;
consequently T 'is the multiplication operator induced by t1.

(4.3) We have D(T) = L2(M) if and only if a C exists for which I t(x)J C

almost everywhere in M. We have R(T) = L2(M) if and only if a c >0 exists
for which

I

c almost everywhere in M.

PROOF. If It(x)I <C almost everywhere, then tf E L2(M) for all f E L2(M).
Therefore 0(T) = L2(M). Conversely, let 0(T) L2(M). Let us assume that
no C exists for which It(x)I <C almost everywhere. For n E set = {x
E M: Iz(x)I n), = \ with M0 = M. Then all have positive
measures, and the intersection n has measure zero. Therefore there
exists a subsequence (ak) of such that all Nflk have positive measures. We
have It(x)I — I for XE Nflk. For all k E let us choose fk E L2(M) in
such a way that fk vanish outside Nflk and Ilk II = 1/k. Since the functions
fk are mutually orthogonal, we have

= k=1
E L2(M).

However, if is not in L2(M), i.e., f E 0(T), this contradicts the fact that
0(T) = L2(M). (A simpler proof of this can be found in Exercise 5.5.)

If t(x)I > c >0 almost everywhere, then T' exists, and for the inducing
function t, we have Iti(x)I <C — almost everywhere. Therefore R(T)
= D(T 1) = L2(M). If R(T)= L2(M), then by (4.2) the operator T is
injective and D(T ')= L2(M). For the inducing function t1 we have
(t1(x)I <C almost everywhere, thus I > C —' almost everywhere. [J

If t, s are measurable functions on M and T, S are the multiplication
operators induced by t, s, then T + S is a restriction of the multiplication
operator induced by t + s, as from tf E L2(M) and sf E L2(M) it obviously
follows that (t + s)f E L2(M).

EXAMPLE 2. If i/i: is continuous, then by

Tf = dx,f E

a linear functional is defined with 0(T) = L2, If E L2(R), then T can
be defined on the whole space

The subset N( T) { f E D( T) Tf =0) is called the kernel of T. For
every operator T from H1 into H2 the set N( T) is a subspace of D( T)
(consequently of H1, as well).
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Theorem 41. Let H be a vector space over K, and let T1, . . ., T be
linear functionals such that D(T1) = ... = D(T) = H. If we have
N( T) n 1N( 1), then there exist . . . , E K such that

T
=

PROOF. We prove this by induction on n. Let n be equal to 1. If T1 = 0,

then N( T) N( T1) = H, therefore T =0. If T1 0, then there exists an
f0E H such that T1f0= 1. For everyfE Hwe then havef— T1(f)f0E N(T1)
c N(T). Consequently, Tf= T(f0)T1f, i.e., T= T(f0)T1.

Let us now assume that the assertion is true for n — I (n > I). Assume
that N( T) n 1N( 7). If N( D fl N( then it follows that
N( T) n N( T,). Therefore by the induction hypothesis we have
T= So in this case the assertion holds. If z5

n N( T,) such that TJ0 = 1. Let

T—

For all f E n N(T,) we have

= T1(f) - = 0-0= 0, i = 1,2,. . . , n - I

and
= — = T,,(f) — = 0,

i.e.,
n

f— fl N(T3 cN(T),
i= 1

and thus

T0(f) = T(f) — = T(f— = 0.

Therefore we have
n—!

N(T0) fl N(T1).
1=1

By the induction hypothesis it follows from this that

n—i

T — T( f0) 7, = T0 = c. T,
1=1

i.e., T is a linear combination of T1,...,

Let H1 and H2 now be normed spaces. An operator T from H1 into H2 is
said to be continuous at the point f E D( T) if for every sequence from
D(T) such that we have T

T is continuous at each point of D( T). The operator T is said
to be bounded if there exists a C > 0 such that Tf II

f E D(T). Any such C is called a bound of T.
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Theorem 4.2. Let T be an operator from H1 into H2. Then the following
assertions are equivalent:
(a) T is continuous,
(b) T is continuous at 0,
(c) T is bounded.

PROOF. (b) obviously follows from (a).
(c) follows from (b): Let us assume that T is not bounded. Then for every

n E there exists an f,, E D(T) such that
1

From this it
follows that, in particular, f,, 0; without loss of generality we may assume
that = 1/n. Consequently we have and >n(l/n)= 1,
which contradicts the continuity of T at zero.

(a) follows from (c): Assume liTf II for allfED(T). If fED(T)
and is a sequence from 0(T) such that f,, —*f, then we have

TfII =

i.e., Tf, which proves the continuity of T. 0
For a bounded operator T from H1 into H2 the norm is defined by

11Th = inf {C >0: IITfH forall fED(T)} (4.4)

(in Section 4.2 we shall justify the word "norm"). Since for every >0 we
have

(II Thi + f 0(T),

the norm is a bound for T, thus

hiTfhl 11Th IlfIl for all f E 0(T). (4.5)

EXAMPLE I (Continued). A function s: is said to be essentially
bounded from above if there exists a C E such that s(x) C almost
everywhere in M. Each C of this kind is called an essential upper bound of
s. The greatest lower bound of all essential upper bounds is called the
essential supremum of s, in symbols ess sup s. It is itself an essential upper
bound for s. Indeed, if C0 denotes this greatest lower bound, then for every
n E the number C0 + (1/n) is an essential upper bound, i.e., s(x) — C0 —

(1 / n) 0 holds almost everywhere. By letting n x it follows that s(x) —
C0 < 0 almost everywhere. Analogously, we may define the concepts of
essentially bounded from below, essential lower bound, and essential infimum.
A complex-valued function s is said to be essentially bounded, if si is
essentially bounded from above.

(4.6) The operator T from Example 1 is bounded if and only if t is
essentially bounded. We have II TII = ess sup jti.

PROOF. If t is essentially bounded, and C = ess sup I then we have
I

<C almost everywhere. Therefore

IITfI12 =f it(x)f(x)12 dx <c2fIf(x)I2dx = c211f112,
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i.e., T is bounded and 11Th C. If C=0, then we have 11Th =0. If C >0,
then for every E(0, C) the set (x EM : t(x)I > C— } has a positive
measure and for all f E L2(M), that vanish outside we have

II = f (t(x)f(x)12 dx> (C €)2flf(x)12 dx (C - €)211fh12.

Therefore
II > C — €, and thus ii = C.

If t is not essentially bounded, then for every n E the set = (x E
M: t(x) > n } has a positive measure and for every f E D(T), that vanishes
outside we have

Ii > nil

Therefore T is not bounded.

EXAMPLE 2 (Continued). The functional T of Example 2 is bounded if
E since then

I

From Theorem 4.8 (theorem of Riesz) it will follow that T is continuous if
and only if E

EXAMPLE 3. Let M1 and M2 be measurable subsets of W and respec-
tively. Then M2 x M1 is a measurable subset of The points of
can be written in the form (x, y) with x E IRtm, y E W. Assume k E L2(M2 x
M1). By Fubini's theorem

dy < almost everywhere in M2,

i.e., we have k(x, .) E L2(M1) almost everywhere in 1W2. Consequently, for
all f E L2(M1) we can define

(Kf)(x) = dy almost everywhere in M2.

Then we have
1/2

l(Kf)(x)h < IlfIl { y)I2 dy } . (4.7)

For every g E L2(M2) the function h defined by h(x, y) = k(x, y)f(y)g(x) is
integrable on M2 x M1. Therefore by Fubini's theorem the function

g(x)(Kf)(x) = g(x)jk(x,y)f(y) dy = fh(x,y) dy

is a measurable function on M2. If we put = (x EM2: lxi and
= ,

then we can see that XM2 Kf is measurable for every n E I%i.
Consequently, Kf is measurable.
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Because of (4.7) we have Kf E L2(M2) and

IIKfII f f dy dx
M2 M1

Since the mapping f i—* Kf is obviously linear, we have defined a continu-
ous operator K from L2(M1) into L2(M2) such that 0(K) = L2(M1) and

< f f dy dx

Such an operator is called a Hubert-Schmidt operator (cf. also Section 6.2).

EXERCISES

4.1. (a) The reasoning of Example 1 can be carried out completely analogously if
M is replaced by an arbitrary a-finite measure space (X, ii). (A measure
space (X, IL) is said to be a-finite if X can be written as the union of
countably many subsets of finite measure.)

(b) In Example 3 replace M1 and M2 by two arbitrary a-finite measure spaces
(X1, ji1) and (X2, IL2)

Hint: Observe that the set X20= (x E X2 : 5 dILi(y)> 0) is the
union of the countably many sets X2, = (x E X2: 5 fk(x, y)J2 dILi(y)>
1/n) (n E FkJ) with finite measures, and xx2,,, E L2(X2, IL2).

4.2. Let (X1, ILi) and (X2, IL2) be a-finite measure spaces. Let k : X2 X X1—>
C be IL2 X IL1-measurable and let k(x, .) E L2(X1, ILi) almost everywhere in
X2. Then for each f E L2(X1, ILL) the function K0f defined by

K0f(x) = J k(x,y)f(y) dIL1(y)

is IL2-measurable and we have Kof(x)I tIk(x, hf II. By

0(K) = {fEL2(X1, ILi) : K0JEL2(X2, IL2)}

Kf=K0f for fED(K)
an operator is defined from L2(X1, into L2(X2, IL2) (such an operator
is called a Carleman operator; cf. also Section 6.2). There are functions k of
this kind for which D(K) =

4.2 Bounded linear operators and functionals

Theorem 43. Let H1 and H2 be normed spaces. Let T be an operator from H1
into H2.
(a) We have

sup
II

f E 0(T), f
sup (MTfIh :JED(T), hfhl<I}
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(where the value oo is allowed). T is bounded if and only if one of these
values is finite; if one is finite then the others are finite, also, and they are
equal to

(b) If H2 is a pre-Hilbert space and M is a subspace of H2 such that
R(T)CM, then T is bounded if and only if

sup fl<Tf,g>I :fED(T),gEM, IIfIHIIgM= 1)
is finite. This number is then equal to

T is an operator on a pre- Hi/bert space H and D( T) is dense, then T is
bounded if and only if

sup (I<Tf, : f, g E 0(T), = H
= I)

is finite. This number is then equal to Til.

PROOF.

(a) If we define T
to the we denote by c1, c2, c3,

respectively, are all equal to Til. As is a bound for T, we surely
have

1

The inequality c1 > is obvious. If f= 0, then I! TfII =0
If 0< 1ff H <1, then with g=IlfII'fwe have

= 1 and
II IL! 11'II If

Consequently c2 > c3. What remains is to prove that c3> This is
evident if TI! = 0. Therefore suppose

II
>0. For every E(0, 1)

there exists an! E 0(T) such that > (1 — TJI If IL Hence
and for g = [(1 + 'f we have

II <1 and II TgfI
1

1+f
From this it follows that c3 >(1 — c)/(l + TII for all E(0, 1) and
thus c3> 11TH.

(b) By (a) we have II TII = sup { Tf : f E 0(T), f II 1). On the other
hand,

liTfIl = sup fj(Tf,g>f : gEM, lIgH— 1).

Indeed, if Tf=0, this is obvious. If then
1

> I<Tf, g>f for all
g E M such that II gil = 1, and there exists a sequence (ga) from M such
that II = 1 and Tf II — 'Tf, therefore <Tf, > Tf II. These
arguments together give the assertion.

(c) follows from (b) if we choose M = 0(T). 0
An operator T is said to be densely defined if 0( T) is dense. An operator T,
which is densely defined on a pre-Hilbert space H, is said to be symmetric
if for alif, gED(T) we have <Tf, g> Tg>.
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Theorem 4.4. Let T be a densely defined operator on a complex pre-Hilbert
space, or a symmetric operator defined on an arbitrary pre-Hilbert space. T is
bounded if and only if

C = sup Tf>I :fED(T), Ilfi! l} <
If T is bounded, then we have
(a) 2C, if H is a complex Hi/bert space,
(b) TI I = C, if T is symmetric.

PROOF. Let us set = 00 for an unbounded T. Then we only have to
prove inequality (a) and equality (b).
(a) For all f, g E D(T) such that Ifil < 1 and <1, from (1.4) with

s(f, g)= <f, Tg> and from (1.16) it follows that

2C >

= If— gII2+ IIf+ hf—

> g, T(f+g)> — <f— g, T(f— g)> — i<f+ ig, T(f+ ig)>

+i<f— ig, = <f'
The assertion follows from this by Theorem 4.3.

(b) By (1.7) and (1.8) with s(f, g)=<f, Tg>, it follows for alif, gE 0(T)
such that If ii < 1 and ii < 1 that

C > IIgi12} = if—gil2)

> g, T(f+g)> — <f— g, = Re Tg>J.

If we choose a E so that al = I and a<f, Ig> = hold, then
it follows (with h = a*f) that

Tg>j = <h, Tg> = IRe <h, <C.
By Theorem 4.3(c) it follows from this that

If
<C. The inequality

C < is evident by Theorem 4.3(c). 0
Theorem 4.5. Let T be a bounded operator from a normed space H1 into a
Banach space H2. Then there exists a unique bounded extension S of T such
that 0(S)=D(T). We have IS II = TII.
PROOF. Uniqueness: Assume S is a continuous extension of T such that
0(S) = 0(T). 1ff E 0(S), then there exists a sequence from 0(T) such
that As S is continuous, we have Sf= urn S is (if it
exists at all) determined by T uniquely.

Existence: Assume that f E 0( T) and is a sequence from D( T) such
that Then (fe) is a Cauchy sequence. Since T is bounded, the
sequence is a Cauchy sequence, also, for we have — TfmiI <

fmhI Therefore there exists a g E H2 such that This g is
independent of the choice of. the sequence (fe) from D( T) with fn
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Indeed, if (f,) is another sequence of this kind, then the sequence
f2, . . . ) converges to f, also. Hence the sequence

(Tf1, Tf2, is also convergent; the limit has to be equal to g.
Consequently, tends to g, as well. Let us define Sf= g.

S is linear: If f1, f2 E D( T) and (f1 (f2, are sequences in D( T) such
that f1 f2 then for all a, b E it follows that

S(af1 + bf2) = lim T(af1, + = urn (aTf1 + bTf2 = aSf1 + bSf2.

S is bounded and 11511 = ITII: For fE 0(T) and from 0(T) such
that f and

1Sf = lini lim T'M II

II II I II TI obviously holds, the assertion
follows. 0

The set of those bounded operators from H1 into H2, whose domain is
H1, will be denoted by B(H1, H2). By Section 4.1 the set B(H1, H2) is a
vector space.

Theorem 4.6. Let
II . be defined as in (4.4). Then (B(H1, H2), . J) is a

normed space. If H2 is a Banach space, then (B(H1, H2),
I . II) is a Banach

space, too.

PROOF. It is clear that . is a semi-norm. If If Tfj = 0, then I Tf I =0 for all
f E H1 such that If II < 1; therefore Tf= 0 for all f E H1, and thus T= 0,
the zero element in B(H1, 1-12). Consequently,

I . fJ
is a norm. Assume now

that H2 is a Banach space. If (1,) is a Cauchy sequence in B(H1, H2), then
for every f E H1 the sequence is a Cauchy sequence and, conse-
quently, a convergent sequence. Let us define: Tf= urn 7,f. Then T is
linear, because for f, g E H1 and a, b E we have

T(af+ bg) = urn bg) = urn (aT,J+ = aTf+ bTg.

As (7',,) is a Cauchy sequence, (II T,,ff) is convergent, say
f

For all
fE H1 we have

I

TfII = lim ff T,,fJI urn
f

T E B(HI, H2). What remains is to prove that T. For every >0
there exists an n(€) E such that f T,, — Tm

I

c for n, m > n(€). Therefore,
for n > n(€) and for all f E H1 we have

— T)fI = I(T,, — Tm)f II

i.e., TJJ <€forn>n(c). Hence T,,—*T. 0
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Theorem 4.7.
(a) Let H1 and H2 be normed spaces. If T E B(H1, H2), then N(T) is a closed

subspace of H1.
(b) Let T be a linear functional on a Hubert space H such that D( T) = H.

Then T is continuous if and only if N( T) is closed.

PROOF.

(a) Letf E N( T). Then there exists a sequence (fr) from H1 such that
and T is continuous, it follows that Tf= urn

T N(T) is closed by part (a). Let N(T) now be
closed. If N(T)= H, then T=0; consequently T is continuous. If
N( T) H, then N( T) ' (0). Therefore there exists a g E N( T) ' such
that g 0. Because <g, f> =0 for all f E N( T), we have N( Tg) N( T)
for the functional Tgf= <g, f>. By Theorem 4.1 this implies that
T= cTg with some c E Consequently T is continuous. (The proof
can also be carried out analogously to the second part of the proof of
Theorem 4.8, without using Theorem 4.1.) U

REMARK. If H1 and are pre-Hilbert spaces, one may expect that
(B(H1, H2),

1 .
is a pre-Hilbert space, also, i.e., the norm is induced by a

scalar product. This holds true if H1 = or H2 However, this is not
the case if dim H1 > 2 and dim H2> 2; cf. Exercise 4.3.

For T E B(H1, H2) and S E B(H2, H3) the product ST is in B(H1, H3),
since we have

D(ST) = {JEH1: TfED(S)=H2} =H1
and

( 11511 II TII IflI for all f E H1,

i.e., we have ST E B(H1, H3) and

15Th IISU IITII. (4.8)

We write B(H) for B(H, H). For S, T1, T2 E B(H) we have

S(T1 + T2) = ST1 + ST2, (T1 + T2)S = T1S + T2S.

The operator I with D(I) = H and If=f for all f E H obviously belongs to
B(H) and we have

I'll = 1, (4.9)

and IT = TI = T for all T E B( H). The operator I is called the identity
operator on H. The set B(H) is thus an algebra with an identity element. As
the norm on B(H) satisfies relations (4.8) and (4.9), the algebra B(H) is a
normed algebra with an identity element. If H is a Banach space, then B(H)
is complete; we call B(H) a Banach algebra (with an identity element).
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Now we shall study the set of continuous linear functionals defined on a
Hubert space H, i.e., the set B(H, 1K) for a Hubert space H over K. Every
element g E H defines a linear functional Tg such that D( Tg) = H by the
formula

Tg(f) = <g,f>.

As ( 11GM Ufil, the functional Tg is bounded, and ii gil. Since
forf= g we have I = Ii it follows that = II gil. Every continu-
ous linear functional defined on H is actually of this form.

Theorem 4.8 (F. Riesz). Let H be a Hubert space. Every g E H induces a
continuous linear functional on H by Tg(f) = <g, f>. We have = ii

This mapping of H onto B(H, K) is bijective and antilinear, i.e., we have
Tag+bh = a* Tg + b* Th.

PROOF. The first part has already been shown. The antilinearity follows
from

Tag+bh(f) = (ag + bh,f> = a*<g,f> + b*<h,f> = a*Tg(f) + b*Th(f).

As II = Ii the mapping gF-3 Tg is injective. What remains is to prove
that it is also surjective. Let T E B(H, K); we construct a g E H such that
T=

If T= 0, then we can choose g=O. If then the kernel N(T)= {fE
H: T(f) =0) is a closed subspace of H, different from H, i.e., N( T)'
(0). Let gEN(T)' such that Let a=T(g). For everyfEHwe
obviously have T(f)g — T(g)f E N(T). Therefore T(f)g — T(g)f is or-
thogonal to g, i.e.,

0 = <g, T(f)g — T(g)f> = T(f) — a<g,f>,
and thus

T(f) = T(g)<g,f> = <a*g,f>.

Consequently, we have T= Ta*g. (We can also prove this last part with the
aid of Theorem 4.1, cf. the proof of Theorem 4.7(b).) U

EXAMPLE 1 (Continuation of Example 2 from Section 4.1). We can now
show that the continuous function qi : R—*C induces a continuous func-
tional on L2 0(R) by T(f) = fqi(x)f(x) dx if and only if qi E L2(IR). If T is
continuous, then it can be extended uniquely to a continuous functional on

(which we denote by T, as well). By Theorem 4.8 we have T= Tg
with some g E Therefore, we have for all f E L2, that

0 = T(f) - = - g*(x))f(x) dx.

For an arbitrary n E let us define

= fqi*(x)g(x) for IxHn,
'i" / for ixI>n.



62 4 Linear operators and their adjoints

Then for all n it follows that

- dx = - g*(x))f (x) dx =0,

hence

- dx

From this we can infer that t[' g* E L2(R).

EXERCISES

4.3. (a) If H is a Hilbert space, then the norm in B(H, 1K) is defined by a scalar
product (i.e., B(H, K) is a Hilbert space).
Hint: If T1, T2 are the functionals induced by g1, g2 E H, then let <T1, T2>

(b) If H1 and H2 are (pre-) Hubert spaces, then the norm in B(H1, H2) is
induced by a scalar product if and only if dim H1 = 1 or dim H2 = 1.
Hint: If dim H1 > 2 and dim H2> 2, then letf1, f2 E H1, g1, g2 E be such
that = <ge, g,> = and 1f= f>g3 forf E H1,j = 1, 2. For these
two operators the parallelogram identity does not hold.

4.4. For each x0 E [0, 1] there exists exactly one g E W2 1) such that for all
fE W2 1) we have

f(x0) = f' g*(x)f(x) + g'*(x)f'(x)} dx

(cf. Exercise 2.3(b)).
Hint: The functional Tf=f(x0) is continuous on W2, 1).

4.5. The set of Hubert-Schmidt operators on L2(M) (cf. Section 4.1, Example 3) is
a sub-algebra of B(L2(M)). It is a Banach algebra with the Hubert-Schmidt
norm

1/2

IIIKIII = {IMIMIk(x,y)2dxdy}

Hint: If the Hubert-Schmidt operators K and H are induced by the kernels k
and h, then L = HK is induced by the kernel

1(x,y) = z)k(z,y) dz.

4.6. (a) Theorem 4.4 does not hold true for non-symmetric operators in real (pre-)
Hilbert spaces. There are non-vanishing operators T such that the
quadratic form = <f, Tf> vanishes on D(T).

(b) Show that the constant 2 C in Theorem 4.4(a) is optimal.
(c) In a complex (pre-) Hubert space H the quantity = sup Tf>f : f

ED(T), lfIl 1) is a norm on B(H). We have 11TH

4.7. Let T be a bounded operator from a Hubert space H1 into a Banach space H2.
Then there exists an extension S E B(H1, H2) of T such that IISII = II
Hint: Define Sf= 0 for f E D( T)'.
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4.8. If H is an infinite dimensional Hilbert space, then B(H) is not separable.
Hint: Let : n E be an ONS in H; for every sequence a = (ar) from
{O, I) let Ta E B(H) be defined by this is an uncountable
set of operators such that II Ta — = 1 for a

4.9. Let H be a Banach space. There are no operators A, B E B(H) such that
AB—BA=I.
Hint: From AB—BA=I it follows that for all
n E therefore 2/(n + l)IIA II PB liii i.e., = 0 for large n; this
implies.that 0= BPZ = = ... = B°= J.

4.3 Isomorphisms, completion

Let H1 and H2 be normed spaces. An operator U from H1 into is called
an isometry, if 0(U) = H1 and = IIfPI1 for all f E H1. An isometry U
from H1 into H2 is called an isomorphism of H1 onto H2 if R( U) = H2. Every
isomorphism U of H1 onto H2 is injective and U' is an isomorphism of
H2 onto H1.

If H1 and H2 are pre-Hilbert spaces and U is an isomorphism of H1 onto
H2, then it follows from the polarization identity that <Uf, Ug>2 = <f, g>1
for all f, g E H1. (The subscripts of the norms and scalar products will be
omitted in the sequel, as it will be always clear from the context, to which
spaces the elements belong.) Two normed spaces H1 and H2 are said to be
isomorphic (or equivalent) if there exists an isomorphism of H1 onto H2.

Theorem 4.9. Let H1 and H2 be isomorphic normed spaces. H1 is a Banach
space (Hubert space) if and only if H2 is a Banach space (Hubert space).

PROOF. Let H1 be a Banach space and let U be an isomorphism of H1 onto
H2. If is a Cauchy sequence in H2, then (U — 'f,1) is a Cauchy sequence
in H1; hence there exists agE H1 such that Withf= Ug E H2 we

i.e., H2 is complete. If H1 is a Hubert space, then is complete
and since II U - = for all f E H2, the parallelogram identity holds in
H2, i.e., the norm of H2 is defined by a scalar product. As U' is also an
isomorphism, we can prove analogously the reverse direction. fl

Theorem 4.10. Let H be a Hubert space, and let A be a set, the cardinality of
which equals the (Hilbert space) dimension of H. Then H is isomorphic to
12(A). In particular, all infinite dimensional separable Hubert spaces are
isomorphic to 12. Hilbert spaces having the same dimension are isomorphic to
each other.

PROOF. Let : a E A) be an ONB of H. For every f= E H let Uf
be the function with (Uf)(a) fce It is easy to see that U is an
isomorphism of H onto 12(A). All the other assertions are obvious con-
sequences of this. fl
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It is often useful to know that every normed space (pre-Hilbert space)
can be considered as a dense subspace of a Banach space (Hilbert space).
If H is a normed space (pre-Hilbert space), and A is a Banach space
(Hubert space), then A is called a completion of H provided that H is
isomorphic to a dense subspace of A.

Theorem 4.11. For each normed space (pre-Hilbert space) H there exists a
completion A. Two arbitraiy completions are isomorphic.

PROOF. We construct a completion A. For this let % be the set of all
Cauchy sequences in H. Two Cauchy sequences (In) and (ga) from are
considered equivalent (in symbols if — This obvi-
ously defines an equivalence relation (since we have (f,j'—'(fj, from

it follows that and and imply
Let A be the set of all equivalence classes. The elements of A

will be denoted by I, We shall write in particular f= [(fm)] (In)
belongs to the equivalence class f and f= [I] if f is the equivalence class of
the sequences that converge to f E H (notice that and
imply

With = + bg,j] the set A becomes a vector space;
the zero element is 0= [0]. We show that a norm can be introduced on A
by putting

= urn

For this, we have to notice that the sequence (II is convergent (cf. the
proposition preceding Example I of Section 2.1) and the limit does not
depend on the choice of representatives, since for we have

The properties of a semi-norm obviously
hold. If = 0, then i.e., we have [(Ia)] = 0; consequently, we
have defined a norm.

If H is a pre-Hilbert space, then we define a scalar product by

[(ga)]> = urn

This is obviously a semi-scalar product; since it induces the above norm, it
is a scalar product. Therefore A is a normed space or a pre-Hilbert space,
respectively.

Now let [H] = {[f] E A : f E H). The set [HI is obviously a subspace of
A. The space H is isomorphic to [H], since by UI= [f] an isomorphism of
H onto [H] is defined.

[H] is dense in A: Let f= E A. For each >0 there exists an
n(€) E FkJ such that fmII c for n, m > n(€). Therefore for m > n(€) we
have

II! [fm]II limlIfnfmII

i.e., / is a contact point of [H].
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It remains to prove that A is complete. Let be a Cauchy sequence in
A. Since [H] is dense in A, for every n E there exists a E H such that

1/n. Since we have

—gmII =

as n, the sequence (ga) is a Cauchy sequence. We have

— < — [ gk]ll + lIE gk] —

urn
k

as consequently,
Now let A and ft be two completions of H and let 0 and U be the

corresponding isomorphisms of H onto the dense subspaces U(H) and
U(H) of A and R, respectively. Then V0 = OU is an isomorphism of
U(H) onto U(H). By Theorem 4.5 V0 can be extended to an element V of
B(R, A). For every f E H there exists a sequence from U(H) such that

We have

Vu = lim = lim IV0f,Jl = lim II.fnII

i.e., V is an isometry. In order to prove that V is an isomorphism of ft onto
A we have to show that R( V) = A. Let f E A. Then there exists a sequence
(In) from 0(H) such that If we put = then (Qis a
Cauchy sequence in ft. Therefore there exists an f E ft such that
Then we have

Thus I E R( V), i.e., A and ft are isomorphic. 0
Proposition. Let H1 and be normed spaces (pre-Hilbert spaces) and let H1
be isomorphic to a dense subspace of If A1 and A2 are completions of H1
and respectively, then A1 and A2 are isomorphic.

PROOF. Let U be an isomorphism of H1 onto the dense subspace U(H1) of
H2, and let V be an isomorphism of H2 onto the dense subspace V(H2) of
A2. Then VU(H1) is a dense subspace of A2, hence H1 is isomorphic to a
dense subspace of A2, i.e., A2 is a completion of H1 and, consequently, it is
isomorphic to A1. LI

Theorem 4.12. Let H be a pre-Hilbert space, and let T1,.. ., T,, be linear
functionals such that = H and L(T1,..., n B(H, K) = (0). Then

n

M= flN(7,)=(fEH:T1f=0 for j=1,...,n)
j=rl
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is a dense subspace of H. In particular, the kernel of an unbounded functional
is dense.

PROOF. Without loss of generality we may assume that H is a dense
subspace of a Hilbert space (H0, <. , .>). (If A is a completion of H and U
is an isomorphism of H onto a dense subspace of A, then we replace H by
U( H) and 7) by 7) U the following proof shows that U( M) is dense in
U(H); consequently M is dense in H.)

Since M is surely a subspace, it is enough to show that M is dense in H0,
i.e., M-1- = (0). Let g E Ma-. Then for the continuous functional Tg:
K, 7f= <g, f> we have M C N(Tg). Hence by Theorem 4.1 we have
Tg E L(T1,..., Ta). By assumption Tg = 0; consequently g =0. D

EXERCISES

4.10. Let H be a pre-Hilbert space with an orthonormal basis {ea : a E A). Then
l2(A) is a completion of H. (In particular, we obtain that 12 is a completion of
any infinite dimensional separable pre-Hilbert space; in proving this we do
not need Theorem 4.11).

4.11. Let H be a pre-Hilbert space over A mapping A : is said to be an
antilinear functional, if for allf, g E H and a, b E l( we have A(af+ bg) = a*Af
+ b*Ag. The functional A is said to be bounded, if there exists a C 0 such
that hA! ChIfhI for all f E H. Let be the set of bounded antilinear
functionals on H.
(a) An antilinear functional is continuous if and only if it is bounded.
(b) H + becomes a Banach space with the norm hA = sup (IA! : f E H,

(c) To each g E H there corresponds an Ag E H + defined by Agf=
The mapping E: is isometric.

(d) E(I-l) is a_completion of H.
(e) We have E(H)=Ht

Hint: Use Theorem 4.5 and 4.8. (This exercise provides a completion for
all pre-Hilbert spaces without reference to Theorem 4.11.)

4.12. (a) Let H1 and H2 be isomorphic normed spaces. Then H1 is separable if and
only if

H is separable if and only if one (and then each) of its
completions is separable.

(c) Every infinite dimensional separable pre-Hilbert space is isomorphic to a
dense subspace of l2 (cf. also Exercise 4.10).

4.13. Let H1 be a normed space, H2 a Banach space and a completion of H1.
Then B(H1, H2) and B(R1, H2) are isomorphic.

4.14. Let H1 and H2 be Hubert spaces. If U is an isomorphism of H1 onto H2, then
for every subset M of H1 we have

4.15. Let G c iir be open and let L2, be as in Exercise 2.6(a). Assume that
G—.*C are locally square integrable (i.e., square integrable on

each compact subset of G) and that L(4i1, . . . , L2(G)= (0). Then
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M= (fE L2,0(G): 5 &Pj(x)f(x) dx =0 for J= 1, .. . , n) is a dense sub-
space of L2(G).

4.16. Let T be a bounded operator from a pre-Hilbert space H1 into a Banach
space H2. Then there exists an extension S E B(H1, H2) of T such that
liSit= PiTh.
Hint: Use Exercise 4.7.

4.17. Let tim = (x E : lxi = 1) be the unit sphere in and let C(tim) be the
space of continuous functions on tim.
(a) By g> = dOm(W) a scalar product is defined on C(tim)

(here denotes the surface element of Let this pre-Hilbert
space be denoted by C2(tim).

(b) Let the measure (cf. Appendix A) be defined for every interval J C
by pm(J) = the surface of that part of ti,,, which lies in J. The space
L2(R, Pm is a completion of C2(tim); we shall denote it simply by
L2(tim).

(c) L2(t2m) is separable.
(d) The space of infinitely many times continuously differentiable functions

(i.e., the set of the restrictions of infinitely many times continuously
differentiable functions defined on is dense in L2(tim).

4.4 Adjoint operator

Assume that H1 and H2 are Hubert spaces, T is an operator from H1 into

H2, and S is an operator from H2 into H1. The operator S is called a formal
adjoint of T if we have

<g, Tf> = <Sg,f> forall fED(T),gED(S).
T is then a formal adjoint of 5, also. We say that S and T are formal
adjoints of each other. The operator such that 0(S0) = (0) is a formal
adjoint of every operator from H1 into H2.

If S is a formal adjoint of T, then for every g E D(S) the linear
functional Lg with

D(Lg) =D(T),Lgf= <g, Tf>

is continuous, since for all f E D(Lg) we have

Lg is the restriction, to D( T), of the continuous functional Tsg induced
by Sg.

If D( T) is dense, and the functional Lg is continuous, then by Theorem
4.5 this functional can be extended to H1 = D( T) in a unique way, i.e.,
there exists an element hg E H1, uniquely determined by g and T via

<g, Tf> = Lgf= <hg,f> forall fED(T).



68 4 Linear operators and their adjoints

If S is a formal adjoint operator of T, and g E 0(S), then we surely have
Sg = hg. Therefore in this case every formally adjoint operator of T is a
restriction of the adjoint operator T* to be defined below.

Let T be a densely defined operator from H1 into H2, and let

D* = (g E H2: the Tf> is continuous on 0(T))

= { g E H2 : there exists an hg E H1 such that <hg, f> = <g, Tf>

for allfED(T)}.

The element Jig is uniquely determined: If <h1, f> = <g, Tf> = <h2, f> for all
fE 0(T), then h1 — h2E D(T)' = (0), consequently, h1 = h2.

is a subspace of H1 and the correspondence 0* H1, g hg is a linear
transformation, since for g1, g2 E and a, b E K we obviously have

hagt +bg2 = ahg1 + bhg2•

Thus by 0(T*) = D*, T*g = hg for g E D(T*) a linear operator T* from H1
into is defined. The operator T* is a formal adjoint of T and is an
extension of all formal adjoints of T.

Theorem 4.13. Let T be a densely defined operator from H1 into H2.
(a) If T* is also densely defined, then T* * is an extension of T.
(b) We have N(T*)__R(T)H

PROOF.

(a) As T and T* are formal adjoints of each other, T is a restriction of the
adjoint operator T** of T*.

(b) We have g E N(T*) if and only if g E D(T*) and T*g = 0 hold. Since
D( T) is dense, this is equivalent to the relation

<Tf, g> = <f, = 0 for all f E 0(T).

This holds if and only if g E R(T)'. U

Theorem 4.14. Let T be a densely defined operator from H1 into H2.
(a) T is bounded if and only if T* E B(H2, H1).
(b) If T is bounded, then

II TI
I = I

T*
(c) If T is bounded, then T** is the (by Theorem 4.5 uniquely determined)

continuous extension of T to the whole space H1. For T E B( H1, H2) we
have T**= T.

PRooF.
(a) and (b): Let T be bounded. Then for all g E H2 and f E 0(T) we have

ILg..fI = II II

i.e., Lg is continuous for all g E H2. Therefore D( T*) = H2.
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By Theorem 4.3(b) we have

= sup :fED(T),gEH2, IIfIl= 1, IIglI= 1}

= sup (I<g, Tf>I :fED(T),gEH2, IglI=1) = ITII.

If T* E B(H2, H1), then T** belongs to B(H1, H2). Hence the restriction
T of T** is also bounded.

(c) By Theorem 4.13 (a) we have T C T* By part (a) we have T* * E
B(H1, H2). As T is densely defined and continuous, the assertion
follows from Theorem 4.5.

EXAMPLE 1. Let M1 and M2 be measurable subsets of and respec-
tively. Let K denote the Hubert-Schmidt operator from L2(M1) into L2(M2),
induced by k E L2(M2 x M1). (cf. Section 4.1, Example 3):

(Kf)(x) = fk(x, y)f(y) dy for f E L2(M1).

For alif E L2(M1) and g E L2(M2) the function g(x)k(x, y)f(y) is integrable
on M2 x M1. Therefore by Fubini's theorem we have

<g, Kf> = f g(x)*{fk(x,y)f(y) dY} dx

fM2k(x, y)*g(x) dx
}

* dy = <Hg f>

where H is the Hubert-Schmidt operator induced by the kernel h(y, x) =
k(x, y)*. If we define the adjoint kernel k* of the kernel k by

k*(y, x) = k(x,y)*,

then K* is the operator induced by k*.

EXAMPLE 2. Let T be a continuous linear functional on a Hilbert space H,
i.e., a continuous operator from H into We want to compute T*. There
exists a uniquely determined g E H such that

Tf = <g, f> for all f E H.

Hence for all z E 1K and all f E H we have

z*Tf= <zg,f>,

i.e., T*z = zg for all z E 1K.

EXAMPLE 3. This example shows that D(T*) = (0) may be true. To prove
this, for every k E let the sequence of positive integers be
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chosen in such a way that

U

(we leave the construction of such sequences to the reader). With these
sequences let us define the operator T on 12 by

D(T) = 120

Tf
= =1=1 1=1 /=1

Let us observe that here all the sums occurring are finite. Moreover, we
have Tf E 12, Therefore the operator T is well-defined.

We show that g E D(T*) implies g=0. Let D(T*) and h
= T*g. Then for ailfE D(T)=120 we have

= <g, Tf> = <T*g,f> = =
k I k /

(here one should notice that all sums are finite). If we choosef equal to the
unit vector eflkl (thus fflk 1= and = 0 for n nk 1). then it follows that

hflk = for all / E k E

As h E 12, this is only possible if h =0. From this it follows that g =0.

Let T be an operator from H1 into H2. The graph of T is the subset

G(T) = {(f, Tf) :fED(T)}

of H1 x H2, where H1 x H2 can be considered as a Hubert space in the
sense of Section 3.1: H1 x H2 = H1 H2.

Theorem 4.15. A subset G of H1 x H2 is the graph of an operator from H1
into H2 if and only if G is a subspace possessing the following property:
(0, g) E G implies g =0. Each subspace of a graph is a graph.

PROOF. If T is an operator from H1 into H2, then G(T) is obviously a
subspace, as for (j, g,) E G(T), a, E (i = 1, 2) we have

a1(f1, g1) + a2(f2, g2) = a1(f1, Tf1) + a2(f2, Tf2)

= (a1f1 + a2f2, T(a1f1 + a2f2)) E G(T).

If (0, g) E G(T), then it follows that g = TO = 0.

Let G now be a subspace of H1 x H2 having the above mentioned
property. We construct an operator T for which G = G(T) holds. For this,
let

D(T) = (JEH1: there exists agEH2 such that (f, g)EG).
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For every f E 0(T) there exists exactly one g E H2 such that (f, g) E G, as
(f, g1) E G and (f, g2) E G imply (0, g1 — g2) E G (by G being a subspace),
consequently, g1 — g2 = 0. Therefore we can define a mapping T from 0(T)
into by

Tf—g for (f,g)EG.

T is linear: 1ff1, f2 E 0(T) and a1, a2 E then we have (f,, Tf,) E G for
i= 1, 2. Hence (as G is a subspace) (a1f1 + a2f2, a1Tf1 + a2Tf2)E G. By the
definition of T we have

T(a1f1 + a2f2) = a1Tf1 + a2Tf2.

By construction, we also have G = G( T). The last assertion can be ob-
tained from this immediately. U

In the sequel we shall use the mappings

U: H1 X —*H2 x H1, f2) = (f2, —f1)

V: H1 X x H1, V(f1,f2) =

U and V are obviously isomorphisms of H1 onto H1. The inverse
operators U and are given by

U': H2 X H1 x U'(f2,f1) = (—f1,f2),

V1 : H2 X H1 x H2, = (f1,f2)•

Theorem 4.16. Let T be a densely defined operator from H1 into H2. Then we
have

G(T*) = u(G(T)') = (UG(T))'

(here the symbol I has to be understood in the sense of H1 H2, respectively

H2EB H1).

PROOF. By the definition of T* we have

G(T*) = {(g,h)EH2xH1 : <g, Tf)'2=<h,f>1 forall JED(T)}
= {(g,h)EH2xH1 : <(g,h), (Tf, —f))=0 forall (f, Tf)EG(T)}
= (UG(T))' = u(a(T)').

The last equality follows simply from the definition of U (cf. Exercise
4.14).

Theorem 4.17. Let T be a densely defined infective operator from H1 into H2.
(a) We have G(T')= VG(T).
(b) If R( T) is dense, then T* is also infective, and we have T*1 = T —'i.

PROOF. Part (a) is obvious.
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(b) By Theorem 4.13(b) we have N(T*)= = fO}, i.e., T* is injective.
As G(T 1) = VG(T), it follows (cf. Exercise 4.14) that

= U'(G(T')') = U'v(G(T)')
= v'u(G(T)') = D

An operator T on a Hubert space H is said to be Hermitian, if it is a
formal adjoint of itself, i.e., if we have

<Tf,g> = <f, Tg> forall f,gED(T).

An operator T on H is symmetric (cf. Section 4.2) if it is Hermitian and
densely defined. Since a densely defined operator T is Hermitian if and
only if it is a restriction of T*, we have: an operator T is symmetric if and
only if T is densely defined and T c T*. An operator T on H is said to be
seif-adjoint, if T is densely defined and T= T*.

REMARK. For operators from B(H) the notions of Hermitian, symmetric,
and self-adjoint are equivalent.

Theorem 4.18. An operator T on a complex Hi/bert space H is Hermitian if
and only if the quadratic form q(f) = Tf> defined on D(T) is real.

PROOF. By definition, T is Hermitian if and only if the sesquilinear form
s(f, <f, Tg> is Hermitian on D(T). The assertion follows from this by
Theorem 1.3(a). Li

A characterization of symmetric and self -adj oint operators may be
obtained immediately from Theorem 4.16; where U is defined by U(f, g)
=(g, —f) on HEI3H.

Proposition. Let T be a densely defined operator on the Hubert space H.
(a) T is symmetric if and only if

G(T) c U(G(T)') or UG(T) cG(T)'.
(b) T is seif-adjoint if and only if

G(T) = U(G(T)') or UG(T) =G(T)',
i.e.,

G(T)± UG(T) and G(T)EB UG(T) =HEEH.

Proposition. If T and S are densely defined operators from H1 into H2 and
T C S, then we have S* C T*.

Theorem 4.19. Let T1 and T2 be densely defined operators from H1 into H2
and from H2 into H3, respectively.
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(a) If T2 T1 is densely defined, then we have TjK C (T2T1)*.
(b) If E B(H2, H3), then we have (T2T1)* =

PROOF.

(a) We have to show that the operators and T2T1 are formal

adjoints of each other. Let f E and g E D(T2T1). Then f E
D( E D( Ti), g E D( T1), and T1 g E D( T2). Consequently, from
the definition of the adjoint operator it follows that

= T1g> = <f, T2T1g>.

(b) Because of part (a) we only have to prove that D((T2T1)*) C
Letf E D((T2T1)*). As E B(H3, H2), for all g E D(T2T1)= D(T1), we
have

<(T2T1)*f,g> = T2T1g> = T1g>.

By the definition of the adjoint operator it follows from this that
i.e.,fE

T be operators from H1 into H2,
(a) If T is densely defined, then we have (aT)* = a* T* for all a E such

that a 0.

(b) If T + S is densely defined, then (T + S)* T* +
S E B( H1, 1-12) and T is densely defined, then we have (T + S )* =

+s*.

PROOF.

(a) is evident (it follows from Theorem 4.19).
(b) Letf E D(T* + S*) = D(T*) n D(S*), Then for all g E D(T+ S) = D(T)

n 0(S) we have by the definition of the adjoint operator that

= <T*f,g> + <S*f,g> = Tg> + Sg>

= (T+ S)g>,

i.e.,fED((T+S)*) and (T+S)*f= T*f+S*f.
(c) Because of part (b) we only have to prove that D((T+ S)*) c D(T* +

S*)= D(T*). Let f E D((T+ 5)*). Then for all g E 0(T+ S)= 0(T)
we have

=<f,(T+S)g>—<f,Sg> —<f,Tg>.

From this it follows thatf E D(T*).

Theorem 4.21. Let T be seif-adjoint and injective. Then T' is seif-adjoint,
too.

PROOF. R(T) is dense, since we have {0} = N(T)= N(T*)= R(T)'. Thus
the assertion follows from Theorem 4.17(b). LI
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EXERCISES

4.18. Let S and T be densely defined operators from H1 into H2, and from H2 into
H3, respectively. Assume that TS is densely defined, S is injective and

1 B(H2, H1). Then we have (TS)* = 5"* T*.

Hint: By Theorem 4.19(a) we only have to show that D((TS)*) c D(S* T*)
holds; for allfE D((TS)*) and gE D(TS)— S 'D(T) we have TSg> =
<(S - I)*(TS)*f, Sg>.

4.19. Let TEB(H1, H2).
(a) We have T*TEB(H1), TT*EB(H2) and
(b) T* T and TT* are seif-adjoint.

4.5 The theorem of Banach-Steinhaus,
strong and weak convergence

We first prove the theorem of Banach-Steinhaus, which is also known as
the uniform boundedness principle.

Theorem 4.22. Let H1 and H2 be Banach spaces, and let M be a subset of
B(H1, H2). If M is pointwise bounded (i.e., for each f E H1 there exists a
C(f)> 0 such that Tf II C(f) for all T E M), then M is bounded (i.e.,
there exists a C > 0 such that II T E M).

PROOF. 1. step. It is enough to show that there exist anf0 E H1, a p> 0, and
a C'> 0 such that

1

C' for alif E K(f0, p) and for all T E M. Indeed,
if f0, p, C' have these properties, then for all g E K(0, p) and for all T E M
we have

= < + IITf0JI <C'+ C(f0) = C",

sincef0 + g E K(f0, p). Consequently, for all g E K(0, 1) and T E M we have

<p'C" = C,

i.e., MTU<Cfor all TEM.
2. step. What remains is to prove the existence of f0, p, and C' with the
above properties. We assume that no such elements exist, i.e., for each
f0 E H1 and for each p >0 the set (U Tf : T E M, f E K(f0, p)) is un-
bounded. In particular, the set (H Tf : T E M, f E K(0, 1)) is unbounded.
Therefore there exist an f1 E K(0, 1) and a T1 E M such that T1f111> 1.
Since T1 is continuous, there exists a p1, 0 < <2 1 such that

k(f1,p1) cK(0, 1) and > 1 forall fEk(f1,p1).

Since Tf : T E M, f E K(f1, Pi)} is unbounded, there exist an f2 E
K(f1, and a T2 E M such that T2f211 >2. As T2 is continuous, there
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exists a P2' 0< p2 <2—2 such that

k(f2, P2) cK(f1, p1) and
1

> 2 for all f E k(f2, p2).

In this way, by induction we obtain a sequence from H1, (Ta)
from M, and (pa) from (0, 1) such pa),
and > n for all f E p,j. In particular, we have

IL fmII for n, m n0.

Since it follows from this that is a Cauchy sequence. Thus
there exists an f E H1 such that —*f. Since for n > m we have

f E 1k(fm, Pm) for all m E I%i. Consequently II Tmf II

> m is true for m E which contradicts II <C(f). 0
Let H1 and H2 be normed spaces. A sequence (Ta) from B( H1, H2) is said

to be strongly convergent to T E B(H1, H2), if for all f E H1 we have
Tf= urn For this we shall write T= s — urn
T is called the strong limit of the sequence (Ta). It is obvious that every
sequence (Ta) in B(H1, H2) has at most one strong limit. A sequence (Ta)
from B(H1, H2) is said to be a strong Cauchy sequence, if for every f E H1
the sequence (TJ) is a Cauchy sequence in H2. Every strongly
convergent sequence is a strong Cauchy sequence.

Theorem 4.23. Let H1 and H2 be normed spaces.
(a) If (Ta) is a strongly convergent sequence in B( H1, H2) and T S —

lim then If Tff <urn inf
(b) If the sequence (Ta) from B(H1, H2) is bounded and (Tag) is a Cauchy

sequence for every g in a dense subset M of H1, then (Ta) is a strong
Cauchy sequence.

(c) If H1 is a Banach space, then every strong Cauchy sequence in B(H1, H2)
is bounded.

(d) If H1 and H2 are Banach spaces and (Ta) is a strong Cauchy sequence in
B( H1, H2), then there exists a T E B( H1, H2) such that T.

PROOF.

(a) Let C = urn inf 7',, f. Then there exists a subsequence (Ta) of (T,,)
such that T,, II—*C as Hence for alifE H1 we have

II
TJ'JJ = urn If < urn

II IIfII = CII

f E H1, €>0. We have to show that there exists an n0 E such that
II Tmf II < for all m, n > n0. As M is dense, there exists a g E M
such that If— <€/3 (with C = sup fJl : n E RID. If we now
choose n0 in such a way that It T,,g — </3 for all n, m > n0, then
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we have

IITJ— < + +
<c for n,m>n0.

(c) For every f E H1 the sequence is a Cauchy sequence and thus it
is bounded. Consequently, by Theorem 4.22 there exists a C such that

for all
(d) For every f E H1 the sequence is a Cauchy sequence, so it is

convergent in Let us define T by Tf= urn Then D(T)= H1.
The operator T is linear, since for all f, g E H1 and a, b E 1K we have

T(af+bg) = urn = = aTf+ bTg.

By part (c) there exists a C > 0 such that <C for all n E
Consequently, we have

JJTf = lim
II Till

i.e., T E B(H1, H2). By construction, we obviously have T. 0
EXAMPLE 1. Let the operators E B(12) be defined by

) = . . .).

Then for all f E 12 we obviously have i.e., 0. For all f E 12 we
have II Till < If II, consequently < I. Moreover, for = we have

= Therefore
II

= 1. From this it follows that strong conver-
gence does not in general imply convergence in the norm of B(H1, H2).

Let H be a pre-Hilbert space. A sequence from H is said to converge
weakly to f E H if for all g E H we have g> g>. For this we write
f= w — or f is called the weak limit of the
sequence Every sequence has at most one weak limit. A sequence
from H is called a weak Cauchy sequence, if for every g E H the sequence

g>) is a Cauchy sequence in 1K. Every weakly convergent sequence is
a weak Cauchy sequence.

Theorem 4.24. Let H be a pre-Hilbert space.
(a) If (f,,) is a weakly convergent sequence in H, andf= w — then we

have llfIl <lim inf
(b) If the sequence is bounded in H and g)) is a Cauchy sequence

for all g from a dense subset M of H, then (f,,) is a weak Cauchy
sequence.

(c) If H is a Hilbert space, then every weak Cauchy sequence is bounded in
H.

(d) if H is a Hubert space and is a weak Cauchy sequence in H, then
there exists an f E H such that f,, —p f.
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The proof immediately follows from Theorem 4.23, if we notice that the
weak convergence of (f,j is equivalent to the strong convergence of the
sequence of the linear functionals induced by In part (d) we have
to use Riesz' theorem (Theorem 4.8). The details are left to the reader.

Theorem 4.25. Let H be a Hubert space. Every bounded sequence in H
contains a weakly convergent subsequence (fflk)•

PROOF. Let M= : n E %i}. Then is dense in H. For every
k E the sequence is bounded. Consequently, by induction
we can find, for all j E a subsequence of such that

is a subsequence of and is convergent.
With the diagonal sequence = the sequence is then
convergent for all j E Since for f E we have f> =0 for all
1 E I%J, the sequence f from the dense
subspace M M '. Therefore by Theorem 4.24(b) and (d) is weakly
convergent. LI

EXAMPLE 2. Every orthonormal sequence weakly converges to zero.
This follows from the Bessel inequality If j2 In particular,
the sequence of unit vectors = in 12 tends to zero weakly. This
example also shows that weak convergence does not imply strong conver-
gence in general.

EXAMPLE 3. For every f= E 12 let the sequence be defined by
= Then converges weakly to zero, since for all g =

we have
2

ii) 2 2 2
<P = IfII

j=n±1
as

EXAMPLE 4. In the pre-Hilbert space 12 the sequence (kek) (with ek = (8nk))
weakly converges to 0. However, it is unbounded.

Let H1 and H2 be pre-Hilbert spaces. A sequence (Ta) from B(H1, H2) is
said to converge to T E B(H1, H2) weakly, if for all f E H1 the sequence

in H2 weakly converges to Tf, i.e., g> f
g E H2. In this case we shall write T= w — urn T

the weak limit of the sequence (Ta). A sequence (Ta) from B(H1, H2) is said
to be a weak Cauchy sequence if is a weak Cauchy sequence in H2 for
eachfE H1.

Theorem 4.26. Let H1 and H2 be pre-Hilbert spaces.
(a) If (Ta) is a weakly convergent sequence in B(H1, H2) and

T = w — lim then we have II T I <lim inf II II.
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(b) If the sequence (Ta) from B(H1, H2) is bounded and (<TJ, g>) is a
Cauchy sequence for every f E M1 and every g E M2, where M1 and M2
are dense subsets of H1 and H2, respectively, then (Ta) is a weak Cauchy
sequence.

(c) If H1 and H2 are Hi/bert spaces, then every weak Cauchy sequence (Ta)
from B( H1, H2) is bounded.

(d) If H1 and H2 are Hi/bert spaces, and (Ta) is a weak Cauchy sequence in
B(H1, 1-12), then there exists a T E B(H1, H2) such that T.

PROOF.

(a) Let C = tim inf and let (Ta) be a subsequence such that II
H

C. Then for all f E H1 and g E H2 we have

I<Tf, = tim I<Tnkf, urn
H HJH II = Cilfll Ii gil.

The assertion follows from this by Theorem 4.3.
(b) We have to prove that for arbitrary f E H1, g E H2, and c >0 there

exists an n0 such that

for n,m >n0.

Let C= 1 +(1 + if ii + Ii
sup {ii : n E f%I). Since the sets are

dense in (j = 1, 2), there exist f0 E M1 and g0 E M2 such that

llf-f0ll ilg-goiI llfoIi ilfiJ + 1.

If we choose n0 E in such a way that for n, m > n0 we have —

Tm)f0, g0>j then for n, m >n0 it follows that

— Tm)f, g>j

+ <T,Jo, g0— g>I + g>I

(c) For everyf E H1 the sequence is a weak Cauchy sequence in H2.
Since H2 is a Hubert space, the sequence is bounded by Theorem
4.24(c). The boundedness of the sequence (II II) follows from this via
Theorem 4.22, as H1 is also a Hubert space.

(d) For every f E H1 the sequence is a weak Cauchy sequence,
therefore by Theorem 4.24(d) it is weakly convergent in H2. We define
T by Tf w — urn for alif E H1. We can prove the linearity of T, as
in the proof of Theorem 4.23(d). By part (c) there exists a C > 0 such
that H C for all n E i%i. It follows that

urn forall fEH1,gEH2.

Consequently T is bounded. By construction, we obviously have
0
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Proposition.
(a) T implies T; T implies T.

(b) If H1 and H2 are Hubert spaces, then T T T*.

EXAMPLE 5. Let us consider the operators from Example 1. The adjoint
operators are obviously defined by

forall

By Example 3 we have T 0. However, we do not have T 0.

Therefore, strong convergence does not imply the strong convergence of
the adjoint operators.

Theorem 4.27. Let H1, H2 be Hi/bert spaces, and let T be an operator from
H1 into H2 such that D( T) = H1. Then the following assertions are equivalent:
(i) T is bounded (i.e., f,, implies Tf),
(ii) f,, implies Tf,

(iii) implies Tf.

PROOF. (i) implies (ii): If then for every g E (notice that T* exists
and T* E B(H2, H1)) we have

<g, = <T*g,f> = <g, Tf>,

i.e.,

(ii) implies (iii): This is obvious, as implies
(iii) implies (i): Let us assume that T is not bounded, i.e. there exists a

sequence from H1 such that < 1 and >n2. Then we have
(1/ 0. Therefore from (iii) it follows that (1 / n) 0. By Theorem
4.24(c) the sequence is thus bounded. This contradicts the fact
that

n

Theorem 4.28. Let H be a Hubert space and let (Ta) be a bounded sequence
of symmetric operators from B(H).
(a) If Tfor some T E B(H), then T is also symmetric.
(b) If the sequence (<f' TJ>) is non-decreasing for every f E H, then there

exists a T E B( H) such that T. The same holds true if the sequence
Ti>) is non-increasing for every f E H.

PROOF.

(a) For all f, g E H we have

<f,Tg> =lim<T,.,f,g> =<Tf,g>.

Therefore, T is symmetric.
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(b) The sequence Ti>) is non-decreasing and bounded for every
f E H, consequently it is convergent. If C =2 sup II: n E then

— <C for all n, m E The Schwarz inequality applied to the
non-negative sesquilinear form s( g, f) = <g, — Tm)f> shows that
for all f E H we have

<('k- Tm)f, Tm)f>'/2 =

Tm)f,

Tm)f, Tm)2f><f,

- - Tm)2f11'/4<f, - Tm)f>'14

< (Ta— as n, m

So is a Cauchy sequence for every f E H, consequently (Ta) is
strongly convergent. U

EXERCISES

4.20. Let H1, H2 and H3 be normed spaces, and let S E B(H2, 1-13), T E
B(H1, 5,, S, T.

(a) If the sequence (S,,) is bounded, then S,,, T,, ST.

(b) If H2 is a Banach space, then T,, ST.

4.21. (a) Let H be a Hubert space. If in H and If!I > urn sup then

Hint: Treat IlL _f112.

(b) Let H1 and H2 be Hubert spaces, and let T,, and T be isometries from H1
into H2 such that T,, T. Then we have T,, T.

4.22. Let H1, H2 and H3 be Hubert spaces, and assume S,,, S E B(H2, H3), T,,, T E
B(H1, H2).

(a)

(b) not imply
Hint: Let H1 = H2 H3 12, = S,, = Then we have

S,,T,,—il.

(c)

4.23. Let H1 and H2 be Hubert spaces, and take A,,, A, from B(H1, H2) and B
from B(H2, H1). Then A,, A, A therefore —* A

4.24. (a) If H is a finite dimensional Hubert space, then f,, is equivalent to

(b) If H1 and H2 are Hubert spaces, and is finite dimensional, then for
T from B(H1, H2) the statements T,, T and T,, T are equivalent;

this holds true in particular for linear functionals on a Hubert space.
(c) If and H2 are finite dimensional, then for T,,, T from B(H1, H2) the

statements T,, T, 7'., T, T,, T are equivalent.
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4.25. Let H be a Hubert space.
(a) If M is a closed subspace of H and (f,j is a sequence in M such that

f,, —j, then we have f E M (we say that M is weakly closed).
(b) If is a sequence in H such then there exists a subsequence

of (f,,) such that as m—*oo.

Hint: Treat the case 0 first and choose the subsequence (fflk) such
that for k <j we have 1

(c) A convex subset M of H is closed if and only if it is weakly closed.

4.26. Let H1, be Hubert spaces and let H1 be separable. If (Ta) is a bounded
sequence from B(H1, H2), then there exists a weakly convergent subsequence

4.27. Let H be a complex Hubert space and assume that (Ta) is a sequence in B(H)
such that (<ft Ti>) is bounded for every f E H. Then the sequence (Ta) is
bounded in B(H). (For symmetric operators T,, this holds also in real Hubert
spaces.)

4.28. Let H1 and H2 be Hubert spaces. Assume that (Ta) is a bounded sequence
from B(H1, 1-12), T E B(H1, H2), and M1 and M2 are dense subsets of H1 and
H2, respectively. If Tf f
for all f E E M2), then it follows that T (respectively —b T).

4.6 Orthogonal projections, isometric and unitary
operators

Let H be a Hubert space and let M be a closed subspace of H. By Theorem
3.2 every f E H can be uniquely represented in the form f= g + h with
gEM and hEM-'-; g is called the orthogonal projection off onto M. If we
define the mapping by D(PM) = H and g, then is a linear
operator on H such that D(PM) = H, since for f1 = g1 + h1 and f2 = g2 + h2
with and hJEM-'- we have af1+bf2=(ag1+bg2)+(ah1+bh2) with
ag1 + bg2 EM, ah1 + bh2 E M-'-, therefore PM(afl + bf2)— ag1 + bg2= aPd1
+ bPMJ2. The operator is called the orthogonal projection onto M.

Because !1f112= we have = fgJJ IfM for all fE H,

i.e., we have < 1. If M= (0), then it is obvious that If
(0), and f E M, 0, then P,,,J=f, hence = 1. As

f E M, it follows that = = i.e., is idempotent. We have
E M for all f E H and PMJ=f for all f E M, therefore R(PM) = M. As

0 if and only if f E M-, we see that N(PM) M-'-. An operator P on
H is called an orthogonal projection if there exists a closed subspace M such
that

Theorem 4.29. For an operator P E B(H) the following statements are
equivalent:

(i) P is an orthogonal projection,
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(ii) I — P is an orthogonal projection,
(iii) P is idempotent and R(P) =
(iv) P is idempotent and seif-adjoint.
We have R(P)=N(I—P) and N(P)=R(I—P).

PROOF. (i) and (ii) are equivalent: From the definition of orthogonal
projections it follows immediately that P is the orthogonal projection onto
M if and only if I — P is the orthogonal projection onto M -'. From this it
also follows that N(P)=M-'- =R(I—P).

(i) and (iii) are equivalent: Using the above reasoning we only have to
show that (iii) implies (i). As R(P) = N(P)', the range R(P) is a closed
subspace. For all g E R(P) we have Pg = g, as P is idempotent. If we write
f E H in the form f= g + h, where g E R(P) and h E R(P)' = N(P), then
we have Pf= Pg + Ph = g, i.e., P is the orthogonal projection onto R(P).

(iv) follows from (i): P is idempotent, as (iii) follows from (i). For all
f1 = g1 + h1, f2 = g2 + h2 with E R(P), h3 E we have

<Pf1,f2> = <g1, + h2> = <g1, g2> = <g1 + h1, g2>

= <f1,

P is self-adjoint.
(iii) follows from (iv): We only have to prove that R(P) = N(P)'. If

fE R(P),f= Pg, then (I— P)f=O, consequentlyfE N(I— F). 1ff E N(I—
P), then f— Pf= 0, consequently f E R(P). Therefore we have R(P) = N(I
— P) and thus R(P) is closed. From this it follows that R(P) = R(P)'

D

Theorem 4.30. Let M and N be closed subspaces of a Hubert space H, and let
M and

orthogonal projection and only = holds;
then we have We have MI N if and only if (or

(b) Q = + is an orthogonal projection if and only if MI N, then we
have

(c) R = — is an orthogonal projection if and only if N c M; we then
have R =

PROOF.

(a) If P = is an orthogonal projection, then P is self-adjoint. Conse-
quently, = /3 = /3* = (PMPN)* = = Let =

hold. Then it follows that P2 = = =
= = and = (PMPN)* = (PNPM)* = = = P.
Therefore P is an orthogonal projection by Theorem 4.29. Since

= PMPN = we have R(P) c R(PM) n R(PN) = M fl N. On the
other hand, if f E M n N, then we have Pf= therefore
Mn Nc R(P). Consequently, Mfl N= R(P). It is obvious that
= 0 if and only if g E R(PM)1 = M -'- holds for all g E N, i.e., if
NI M. The other assertion follows similarly.
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(b) If Q = + is an orthogonal projection, then If112> lQtil2
f> = f> + <PI.IJ, f> = 112 + For f= it

follows that + Therefore =0 for
all g E H, i.e., =0. It follows analogously that =0. Conse-
quently, by part (a), MI N holds. We obviously have R(Q) c R(PM) +
R(PN)=ME9N. Conversely, if with gEM, hEN,
then Qf= Qg + Qh = + PNh = g + h =f. Therefore R(Q) = M N.
If MI N, then by part (a), we have = =0, consequently

Q an orthogo-
nal projection.

(c) If R = — is the orthogonal projection onto the subspace L, then,
because of the equality = L N

L N M e N, i.e., R is the orthogonal projec-
tion onto M 9 N. Conversely, if N C M and L = M 9 N, then by part (b)
we have = + hence R = — = is an orthogonal
projection. 0

For two symmetric operators A, B E B(H) we write A <B (or B >A) if
for all f E H we have <Af, f> <<Bf, f> (by Theorem 4.18 <Af, f> and
<Bf, f> are real). A is said to be non-negative if A 0.

Theorem 4.31. Let M and N be closed subspaces of the Hubert space H, and
let M and N, respectively.
(a) We have 0 <PM <'
(b) The following statements are equivalent:

(i) <"N, (iii) =
(ii) M C N, (iv) =

PROOF.

(a) For all f E H we have <Of, f> = 0< PMf 112 = <PMI, f> < 11f112 =

(b) (i) implies (ii): then II

II f E H. Therefore N(PN) c N(PM) and thus M = R(PM)
= C = R(PN) = N.

(ii) implies (iii): By Theorem 4.20 (a) and (b), with L = N 9 M we have
= + PL)PM = =

(iii) implies (iv): As is an orthogonal projection (namely EM)' by
Theorem 4.30 (a) we have = =
(iv) implies (i): Because of the equality = we have, for all
JEH, that

<PMI'f> = IP,1112 = IIFMFNfII2 < =

A sequence (T,,) of symmetric operators E B(H) is said to be mono-
tone (non-decreasing or non-increasing, respectively) if for every f E H the
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sequence f>) is monotone (non-decreasing or non-increasing, re-
spectively). Theorem 4.28(b) says that any bounded non-decreasing
sequence of symmetric operators is strongly convergent. For sequences of
orthogonal projections we have

Theorem 4.32.
(a) If (Pa) is a monotone sequence of orthogonal projections acting on the

Hubert space H, then there exists an orthogonal projection P acting on H
such that P.

(b) If (Pa) is non-decreasing (i.e., then P is the orthogonal
projection onto U ,, NR(Pfl).

(c) If (Pa) is non-increasing (i.e., P the orthogonal
projection onto n

PROOF.

(a) Because of Theorem 4.28(b) there exists a seif-adjoint operator P E
B(H) such that P,, P. As (P2f, g> = <Pf, Pg> = urn Pug> =
lim <P,j, g> = <Pf, g> for all f, g E H, the operator P is idempotent
and thus it is an orthogonal projection.

(b) If fi then 0 for all n E consequently Pf= urn
= 0. 1ff E U then f E R(PflQ) for some n0 E I%I. Since

c for all n n0, we have Pj for n n0. Therefore Pf=f,
i.e., U C R(P). As R(P) is closed, it follows that U
=R(P).

(c) The sequence with = I — is non-decreasing; Q = urn is
therefore the orthogonal projection onto U U
Then P = I — Q is the orthogonal projection onto U =

= U

In the calculation of the norm of the difference of two orthogonal
projections the following theorem is often useful.

Theorem 4.33. Let P1 and P2 be orthogonal projections acting on the Hilbert
space H. Then we have

IF1 — P211 = max {P12' P21).
where

Pik = : lihil <1).

PROOF.

(a) By the definition of the norm of an operator we have (notice that
R(Pk)' = N(Pk))

— P2II = sup (IKP1—P2)fII :fEH, IIfII <1)
> sup fIRP1-P2)fII :fER(P1)', IIfII '}

sup :fER(P1)', IfII <1) = P21•
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The inequality liP1 — P2ii > P12 follows in a similar way.
(b) We have P1—P2=P1(J—P2)—(I—P1)P2. As (I—P2)fER(P2)1, for

all f E H it follows that

P2)fII < P121i(I P2)fIl.

Moreover, since (I — P1)P2f E R(P1)1, we have

ii(I—P1)F2f112 = <(I—P1)P2f, (I—P1)P2f> = <P2(I—P1)P2f, P2f>

1L.P2(I— P1)P2f11 IiP2fti p21iK'—
consequently

K' P1)P2f11 <

This implies for all f E H

— P2)f112 = P2)f— (I— P1)F2f 12

= P2)f112 + 11(1— 112

P1211(' +
max P21}(lI('— + lIP2flI2)

= max

therefore

lIP1 — max {P12' o

Let H1 and H2 be Hubert spaces. An operator U from H1 into H2 such
that 0(U) = H1 is called an isometry if Uf II = lifU for all f E H1. If U is an
isometry and R( U) = H2, then U is an isomorphism of H1 onto H2. In this
case U is called a unitary operator. An operator U from H1 into H2 such
that D( U) = H1 is called a partial isometry if there exists a closed subspace
M of H1 such that

llUfII = ilfll for JEM, Uf=O for

We have R( U) = UM; this shows immediately that R( U) is closed (if
E then (Pd,) is a Cauchy sequence in M; therefore we have

E M, and thus Uf= g E R( U)). The closed subspaces M and
R( U) are called the initial and final domains of U, respectively.

Theorem 4.34. Let H1 and H2 be Hubert spaces and let U be an operator
from H1 into H2 such that D( U) = H1.

(a) The following assertions are equivalent:
(i) U is a partial isometry with initial domain M and final domain N,
(ii) R(U)=N and <(If, for all f,gEH1,

(iii) U* U= "M and UU* =
(iv) U* is a partial isometry with initial domain N and final domain M.
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(b) The following assertions are equivalent:
(i) U is unitary,

(ii) R(U)= H2 and <Uf, Ug> g> for all f, g E H1,
(iii) U* U = and UU* = 'H2' i.e., U ',

(iv) U* is unitary.

PROOF.

(a) The equivalence of (i) and (ii) follows by (1.8) in the real case and by
(1.4) in the complex case.
(i) implies (iv): We have N( U*) R( U)' = N' and (because (i) implies
(ii)) U*UfjI = II for alifE H1, therefore

1
= MhM for

all h E R( U) = N. Hence the operator is a partial isometry with
initial domain N. If we interchange the roles of U and U* in this
reasoning, then it follows that the final domain of U* is equal to the
initial domain of U** = U, and, consequently, it is equal to M.
(iv) implies (i) for the same reason.
(i) implies (iii): As (i) implies (ii), it follows that U* U = As (i)
implies (iv), it follows similarly that UU* =
(iii) implies (ii): We have R( U) D R( UU*) = R(PN) = N. Since 1 U*f 112

= <UU*f, f> we have N(U*) = N' and thus R(U)
c N(U*)' = N. Summing up, it follows that R(U)= N. Moreover, we
have <Uf, Ug> = Uf, g> = <PMf, g> for all f, g E H.

(b) This is a special case of part (a). 0
Theorem 4.35. If P and Q are orthogonal projections on the Hubert space H
such that P — Q <1, then we have
(a) dim R(P) = dim R(Q), dim R(I — P) = dim R(I —

(b) P and Q are unitarily equivalent, i.e., there exists a unitary operator U in
Hsuch that Q= andP= U'QU.

PROOF.

(a) We have R(P)fl R(Q)' = (0}, because forf E R(P)n we
would have l(P — Q)f II = IlPf II = If II, consequently — Q II

I

would hold. By Theorem 3.11 it follows from this that dim R(P) <
dim R(Q). The opposite inequality follows by symmetry. Hence
dim R(P) = dim R(Q). Replacing P and Q by I — P and I — Q, respec-
tively, we obtain that dim R(I — F) = dim R(I — Q).

(b) By part (a) of Theorem 4.10 there exist unitary operators V and W
from R(P) onto R(Q) and from R(I — F) onto R(I — Q), respectively.
Then the operator U = VP + W(I — P) is a unitary operator on H such
that U' = V - 'Q + W '(I — Q). We have

UPU' = (VP+ W(I—P))P(v'Q+ W'(I—Q))
= VPV'Q =

since for g E R( Q) we have VP V 'g = g. From this P = U 'Q U
follows immediately. 0
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EXERCISES

4.29. (a) Let H1 and be Hubert spaces. If there exists a surjective mapping
T E B(H1, 1-12), then dim H2 dim H1.

Hint: See Exercise 3.7.
(b) Give another proof for Theorem 4.35(a).

Hint: From jJP — Q <1 it follows that R(PQ) = R(P) and R(QP)
=*R(Q).

4.30. (a) If (Urn) is a sequence of isometric operators and Urn U, then U iS

isometric.
(b) The strong limit of a sequence of unitary operators is not necessarily

uuitary.
Hint: Consider the unitary operators Urn on 12 defined by

= (fm,fi,f2,f3,.. ,fm.-I,fm+l'frn+2'...) for E 12.

We have U, where

= (0,f1,f2,f2,...) for E '2.

4.31. Let M and N be closed subspaces of the Hilbert space H such that dim M <
dim N. Then we have M' n
Hint: If denotes the orthogonal projection onto N, then we have n N
= NePNM.

4.32. Let H be a Hubert space.
(a) If M and N are closed subspaces of H, then M + N is not necessarily

closed.
(b) If M is a closed subspace and P is an orthogonal projection, then PM is

not necessarily closed.
Hint: Choose, for example, H= 12, for M the subspace of the elements
(x1, x1, x2, 2x2, x3, 3x3,. ..), for N the subspace of the elements (O'yi' 0,
Y2' 0, y3,.. .), and for P the projection onto N-'-.



Closed linear operators

5.1 Closed and closable operators,
the closed graph theorem

In what follows H, H1 and H2 will always be Hubert spaces. As long as no
adjoint operators (in particular no symmetric or seif-adjoint operators) are
treated, we could also consider Banach spaces; the proofs may be some-
what harder, in this case. An operator T from H1 into H2 is said to be
closed if its graph G(T) (cf. Section 4.4) in H1 X H2 is closed. An operator
T is said to be closable if G( T) is a graph. From the proof of Theorem 4.15
we know that there exists then a uniquely determined operator T such that
G( T) = G( T); T is closed and is called the closure of T.

Let T be a closed operator. A sub space 0 of D( T) is called a core of T
provided that for S = TI0 we have T= S. One should notice_that by
Theorem 4.15 the operator S is surely closable, since we have G(S)c G(T).
If T is a closable operator, then 0(T) is obviously a core of T.

Proposition.
(a) T is closed if and only if the following holds: If (fe,) is a sequence in D( T)

that is convergent in H1 and the sequence is convergent in H2, then
we have E 0(T) and
T is closable if and only if the following holds: If (f,j is a sequence in
0( T) such that f,, —.O, and the sequence in H2 is convergent, then we
have urn =0.

88
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(c) If T is closable, then

D( { f E H1: there exists a sequence from D( T) such that

—÷f and for which is also convergent),

Tf = tim f E D( T).

(d) If T is closed, then N( T) is closed.

(e) If T is infective, then T is closed if and only if T closed.

Parts (a), (b) and (c) are reformulations of the definitions. Part (d) follows
immediately from Part (a). Part (e) follows from the equality G( T ') =
VG(T).

Theorem 5.1. Let T be an operator from H1 into H2. On 0(T) by

<f,g>T = <f,g> +<Tf, Tg>, IIf!IT =

a scalar product and the corresponding norm (T-norm or graph norm) are
defined. T is closed if and only if (D(T), <., is a Hi/bert space.

PROOF. The properties of a semi-scalar product are obviously satisfied.
Because of the inequality f>T> f> the semi-scalar product <., . >T
is positive, thus it is a scalar product.

If T is closed and is a T-Cauchy sequence in 0(T) (i.e., a Cauchy
sequence with respect to the T-norm), then (fr) and are Cauchy
sequences in H1 and respectively; therefore there exist f E H1 and
g E such that By part (a) of the above proposition we
have f E 0(T), Tf= g. We also have

4' t — I t 2 fl1/2
I ifl - JIlT - -fIl - 0

as n—*oo, is convergent in (0(T), <. ,

Suppose now that (0(T), <., .>T) is complete. If (f,,) is a sequence in
0(T) and E H1, E H2, then (fe) and are Cauchy
sequences. Consequently, (f,j is a T-Cauchy sequence, i.e., there exists an
f0 0(T) such that —f011 follows from this that

thereforef=f0eD(T) and Tf= Tf0—g. LI

Theorem 5.2. Every bounded operator is closable. A bounded operator T is
closed if and only if D( T) is closed. If T is bounded, then we have
0(T) = 0(T); the closure T is the bounded extension of T onto D( T),
constructed in Theorem 4.5.

PROOF.

1. Let (f,j be a sequence in D(T) such that and Then we
have II 11TH Therefore g = 0.
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2. For alifE D(T) we have

.e c li 2\1/2
J J I

Therefore is a Cauchy sequence (converging to f E D(T)) if and
only if is a T-Cauchy sequence (T-converging to f). Consequently,
(D(T), . is complete if and only if (D(T),

1 H T) is complete. From
this the assertion follows_via Theorems 2.4 and 5.1.

3. The equality 0(T) = D( T) immediately follows from part (c) of the
above proposition. Part (c) also says that T is the extension occurring in
Theorem 4.5. 0

Proposition. Let T be closable and infective._The operator T' is closable if

and only if T is infective._We then have T 1= T If T is continuous,
then we have R(T) = R(T).

PROOF. If T is injective,_then T' is a closed extension of T If T 1

is

closable, then VG(T) = VG( T)= G( T ') is a graph, i.e., T is injective, and
we have T' = T If is continuous, then by Theorem 5.2 we have
R(T)=D(T)=D(T')=D(T')=R(T). 0
Theorem 5.3. Let T be a densely defined operator from H1 into H2.
(a) T* is closed.
(b) T is closable if and only if T* is densely defined; we then have T=

T is closable, then (T) * = T*.

PROOF.

(a) By Theorem 4.16 we have G( T*) = (UG( T)) Therefore G( T*) is
closed.

(b) Since

= (u1G(T*))'
={(f,g)EH1xH2:<f,T*h>_<g,h>=0 forallhED(T*)},

we have (0, g) E G(T) if and only if g E D(T*)J.. Therefore

(0, g) E G(T) implies g = 0 if and only if H2. Consequently,

G( T) is a graph if and only if T* is densely defined. If
D(T*) is dense,__then we have G(T**) = U — l(G(T*)±)
U'U(G(T)11)=G(T)= G(T).

(c) If T is closable, then we have G(T*)= U(G(T)') = U(G(T)')=
= G((T)*). Therefore T*=(T)*. 0

EXAMPLE 1. The operator T from Section 4.4, Example 3 is not closable, as
D(T*)= {0}.
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Theorem 5.4.
(a) An operator T from H1 into H2 is closable if and only if there exists a

closed extension of T.
(b) Every symmetric operator T on the Hubert space H is closable; T is also

symmetric.

PROOF.

(a) If T is closable, then we have T c T. Therefore T is a closed extension
of T. If S is a_closed extension of T,_then we have G(T) C G(S)
= 0(S), hence G(T)c 0(S), and thus 0(T) is a graph (cf. Theorem
4.15).

(b) By part (a) the operator T is closable, since T c T* and T* is closed.
For all f, g E D(T) there exist sequences and (ga) from 0(T) such
that -9.f, g, Tf T is symmetric, we have

<Tf,g> =<f,Tg>.

Since 0(T) is dense, the operator T is symmetric. EJ

EXAMPLE 2. Let us consider on L2(M) the maximal operator T of multi-
plication by a measurable function t : (cf. Section 4.1, Example I).
This is the operator defined by

0(T) = (f E L2(M) if E L2(M)} and Tf = if for f E 0(T).

(5.1) T* is the maximal multiplication operator induced by the function
(where t(x)*), in particular, we have 0(T*) = D(T).

PROOF. It is obvious that 0(T) is also the domain of the maximal
multiplication operator induced by Since for all f, g E 0(T) we have

<g, Tf> = dx = J (t*(x)g(x))*f(x) dx =

the maximal operators of multiplication by t and are formal adjoints of
each other. What remains is to prove that for g E 0( T*) we have t*g E
L2(M). Let g E D(T*). Then for alif E 0(T) we have

<T*g,f> = <g, Tf> = dx,

thus

f(T*g(x) — g(x)t(x)*)*f(x) dx = 0 for all f E D(T). (5.2)

Let us define, for all n E the subsets M by = fx E M: It(x)(
n}. Then we obviously have M— U 1Mg. For every f E L2(M),
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belongs to D(T), consequently we have

— dx = 0 for all f E L2(M).

Since — t*g) E L2(M), it follows that T*g(x) = t*(x)g(x) almost
everywhere in Since this holds true for all n E we have T*g = t*g,
therefore t*g E L2(M). D

(5.3) T is closed.

PROOF. T is the adjoint of the maximal multiplication operator induced by
hence T is closed by Theorem 5.3(a). 0

(5.4) The following assertions are equivalent:
(a) T is self-adjoint,
(b) T is symmetric,
(c) t is real-valued (i.e., t(x) is real almost everywhere in M).

PROOF. (b) obviously follows from (a).
(b) implies (c): If t is not real, then at least one of the sets M1 = (x E
M: Im t(x) >0) or M2 = {x E M: Im t(x) <0) has positive measure. If M1
is of positive measure, then for all f E D( T), different from zero and
vanishing outside M1, we have

Im Tf> = Im t(x) dx >0.

By Theorem 4.18 the operator T is therefore not symmetric. We can argue
similarly if M2 has positive measure.
(c) implies (a): Since t= we have T= T* by (5.1). 0
(5.5) If M is an open subset of Rm and t is locally bounded on M (i.e., t is
essentially bounded on any compact subset of M), then M) and L2, o( M)
are cores of T.

PROOF. We obviously have c L2, 0(M) c D(T). We prove the asser-
tion for C000(M); the other assertion follows from this. We have to prove
that for each f E D( T) and for each >0 there exists an f E C000(M) such
that —f II + I! Tf

II
if (Ma) is a sequence of open bounded

subsets of M such that c and M= U then for all n E let us
define

= f(x) on 0 on

We obviously have E L2 0(M), and Tf. Therefore there
exists an n0 E such that + Tg,,0 — Tf

II
On the other

hand, there exists a sequence fm E ci such that
Then we also have that So there exists an m0 E such that
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lIfm0 — + — €/2. assertion follows from this by taking
f€fm0 0

Let T and S be operators from H1 into H2 and from H1 into H3,
respectively. The operator S is said to be T-bounded if D( T) C D(S) and
there exists a C > 0 such that II Sf11 c If II T for all f E 0(T), i.e., if 5, as
an operator from (0(T), <., into H3, is bounded. Then for all f E
0(T) we have

IISfII C(lIfll + II TflI).

If S is T-bounded, then the infinum of all numbers b > 0 for which an
a > 0 exists such that

ISfil <al(fll+blITfll forall fED(T),

is called the T-bound of S. One should notice that if c is the T-bound of S,
then in general there exists no a> 0 such that for all f E 0(T) we have
lISfIl + Cl! TflI (cf. Exercise 5.4).

Proposition. If T is an arbitrary operator from H1 into H2 and S E B( H1, H3),
then S is T-bounded with T-bound 0.

Theorem 5.5. Let T and S be operators from H1 into H2, and let S be
T-bounded with T-bound less than 1. Then T + S is closed (closable) if and
only if T is closed (closable); we have D(T + 5) = 0(T).

PROOF. As the T-bound of S is less than 1, there exist a b < 1 and an a >0
such that 11Sf II ailfil + bII Tf II for all f E D(T). Consequently, for all
fE 0= 0(T)= D(T+ S) we have

— alIfjl + (1 — b)ll TfIl ( — IISflI J(T+ S)f II

lITfil + ISfIl <alifil + (I + b)fITfII.

From this it follows with a properly chosen C > 0 that

II TfII c(IIflJ + Il(T+ (5.6)

ll(T+ S)f II < C(Ilfll + II TfIl) (5.7)

for all f E 0. Hence there exists a K > 0 such that

<KIIfllT+s and IfIlT+s

From this it follows that (0, <. , .>T+s) is complete if and only if (0,
•>T) is. Let T be closable. If is a sequence from D(T+ 5) = D(T)

such that and for which ((T+ is convergent in H2, then by (5.6)
the sequence is a Cauchy sequence. Hence because T is
closable. Because of (5.7) from this it follows that (T+ S is
also closable. One can show in an analogous way that T is closable
provided that T + S is closable. By part (c) of the proposition preceding
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Theorem 5.1 we have f E D( T + 5') if and only if there exists a sequence
from D(T+ S)= D(T) for which and ((T+ is convergent.

Since because of (5.6) and (5.7)_((T+ is convergent if and only if
is convergent, we have D( T + 5) 0(T). El

Theorem 5.6 (Banach; closed graph theorem). Let H1 and be Hi/bert
spaces and let T be an operator from H1 into H2. Then the following
statements are equivalent:
(a) T is closed and D( T) is closed,
(b) T is bounded and 0( T) is closed,
(c) T is bounded and closed.

PROOF. (a) implies (b): We have to show that T is bounded. Without loss
of generality we may assume that D(T) = D(T)= H1 (otherwise we could
consider T as an operator from the Hubert space D( T) into H2). Conse-
quently, T* is defined. For all g E D(T*) such that I we have

liTfil forall fEH1.

For the linear functionals (Lg : g E D(T*), II gil < 1) on H1, where Lgf=
<T*g, we therefore have

V'g(f)I Tff! for all f e H1;

consequently they are pointwise bounded. By Theorem 4.22 there exists a
C 0 such that

= V'gII C for all g E D(T*) such that gil 1.

Therefore T* is bounded and T is closed (consequently
closable), 0(T*) is dense and, by Theorem 5.2, closed. We therefore have
D(T*) = H2, i.e., T* E B(H2, H1). Since T is closed, this implies that T= T
=T**EB(H1, H2).

The assertions "(b) implies (c)" and "(c) implies (a)" are contained in
Theorem 5.2. El

Theorem 5.7. Let H1 and H2 be Hubert spaces and let T be an operator from
H1 into H2 such that D( T) H1 and D( T*) is dense in H2. Then T belongs to
B(H1, H2). In particular, every symmetric operator T on the Hilbert space H
such that D( T) = H is bounded (Hellinger-Toeplitz).

PROOF. By Theorem 5.3 the operator T is closable. Because D(T) = H1, we
have 0(T) = 0(T), i.e., T= T. Therefore T is closed and D(T)= H1. Then
T is bounded by Theorem 5.6. El

Theorem 5.8. Let H1 and H2 be Hi/bert spaces and let T be an injective
operator from H1 into such that R( T) = H2. The operator T is closed if
and only if T - 1E B(H1, H2).
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PROOF. By Part (e) of the proposition preceding Theorem 5.1 the operator
T is closed if and only if T closed. The assertion follows immediately
from this and from Theorem 5.6. 0
Theorem 5.9. Let H1, H2 and H3 be Hi/bert spaces, let T be a closed operator
from H1 into H2, and let S be a closable operator from H1 into H3 such that
D(S)DD(T). Then S is T-bounded.

PROOF. On account of Theorem 5.6 it is enough to show that the operator
S0 from (D(T), <., into H3, defined by D(S0)= D(T) and S0f= Sf for
f E D( T), is closed. As D(S0) = D(T), it is enough to show that S0 is
closable. Let be a sequence in D(T) for which and is
also convergent. Since implies and since S is closable,
we obtain from this that = thus is closable. 0

EXERCISES

5.1. (a) Every Carleman operator (cf. Exercise 4.2) is closable.
(b) Any Carleman operator, defined on the whole of L2(M), is bounded.

5.2. (a) Any densely defined operator T on the Hubert space H such that
Re <f, Tf> >0 for_ailfE 0(T) is closable.
Hint: If (0, g)E G(T), then Re <f, Tf+ zg> >0 for all fE 0(T) and
z E K. One infers from this that g> =0 for all f E 0(T).

(b) The numerical range of an operator T on H is defined by W( T)=
Tf> : f E 0(T), = 1). The set W(T) is convex (cf. for example,

P. R. Halmos [14], Problem 166). If 0(T) is dense and K, then T
is closable.

5.3. (a) Let H be a Hilbert space, and let T be a densely defined operator from H
into Ctm. The operator T is bounded if and only if it is closable (this holds
true for linear functionals in particular).

(b) In the Hilbert space 12 let the functional T be defined by 0(T) = 12 0'
forfE D(T). Then T is not closable.

5.4. Let T and S be on the maximal operators of multiplication by t(x) = x2
and s(x) = x2 + x, respectively. The operator S is T-bounded with T-bound 1.
However, there exists no a> 0 such that

1

TfII + for alif E 0(T).

5.5. Prove the results of (4.3) with the aid of the closed graph theorem,
(4.1), (4.2), (4.6), and (5.3).

5.6. Let H2 and be Hubert spaces, let S E B(H1, H2), and let T be a closed
operator from into H3 such that R(S) C 0(T). Then we have TS E
B(H1, H3).

Hint: Show that TS is closed, and D(TS) = H1.

5.7. Assume that H1, H2 and H3 are Hilbert spaces, T is a closable operator from
H1 into H2, and S is a T-bounded operator from H1 into If the sequence

(fr) from 0(T) is such and then we also have Sf,,
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5.8. Let H be a Hubert space. An operator P on H is an orthogonal projection if
and only if P is symmetric, D(P)— H, and P2= P.
Hint: Use Theorem 5.7 (Hellinger-Toeplitz).

5.9. Let H be a vector space, and let <., and <. , .>2 be scalar products on H
such that (H, <. , and (H, <. , are complete. If there exists a C such
that . . 112' then there also exists a C' such that

1 . <C'II Iii.

5.10. Let the vector space H be endowed with two scalar products, consequently
with two norms . and II . 112. These norms are said to be coordinated if we
have: (k12) from and — x112—+0 it follows that x = 0, or (k21)
from and it follows that x=0.
(a) The assumptions (k12) and (k21) are equivalent.
(b) If the norms . and . are coordinated, and (H, II . III)

(H, II 112) are complete, then there exist c1, c2 > 0 such that .

ciii <C2!I Iii.
Hint: The identity map from (H, II . into (H, ii is closed.

5.11. (a) Let H1 and H2 be Hilbert spaces. Assume that H1 is finite dimensional.
Every operator T from H1 into H2 is continuous.
Hint: If {e1, . . . ,e,,,) is an ONB of D(T), then for all
fE D(T).

(b) If and <., are scalar products on a finite dimensional vector
space H, then there exist constants c1, c2>0 such that . .

c211 . (II . denotes the norm defined by <. ,

5.12. Let T be an operator from H1 into H2, and let S be a continuously invertible
operator from H2 into H3. If S and T are closed (closable), then ST is also
closed (closable).

5.13. If S is T-bounded with T-bound b, then for any >0 there exists an a >0
such that 11Sf 112 a211f112+ (b2 ± Tf112 for alif E 0(T). If we have II Sf 112

a211f112+b2IiTfii2, then we also have liSfil

5.2 The fundamentals of spectral theory

In what follows an operator T from H1 into H2 will be said to be bUective if
T is injective and R( T) = H2.

Theorem 5.10. Let S and T be bjjective operators from H1 into H2. If
0(S) C 0(T), then

T' — S = T'(S—
If D(S) = D(T), then

T' — = = T)T'

PROOF. It is enough to prove the first assertion. We shall prove that
T -' = S 1+ T - 1(S — T)S '. Since T - 'Tf= f for all f E 0(T) and



5.2 The fundamentals of spectral theory 97

SS — = g for all g E H2, it follows that

S'+ T'(S—T)S1 = T1(S—T)S'
= T'(T+S—T)S' = T'SS' = T'.

Now we show that a closed bijective operator remains bijective even
after the addition of a "not too big" operator.

Theorem 5.11. Assume that H1 and are Hi/bert spaces, T is a closed
bjjective operator from H1 into H2, S is an operator from H1 into H2 such that
D(S)DD(T), and Then T+S is also and we have

(T+ S)' = = (5.8)

the series are convergent in the norm of B(H2, H1).

PROOF. For allfE 0(T) we have

= '7111 < ISJ''II H 7f11,

i.e., S is T-bounded with T-bound less than 1. By Theorem 5.5 the
operator T+ S is closed, too. Moreover, T+ S is injective, because

IKT+ > II — IISfII > (1 — IJST 'u)H TfIj > 0

for all fE D(T+ S)= 0(T),
The two occuring series are obviously identical term by term. Let us

define

= p E

Then for q >p we have

- (- l)nT1(ST1)1
n=p+ I

q—p— 1

11T'H
n=o

11T'II IIST'Hn

where C= From this it follows that (Ar) is a Cauchy
sequence in B(H2, H1), consequently there exists an A E B(H2, H1) such
that

We have (T+ S)A = I:

(T+
=

= I + (— I,
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as p co. Therefore for all g E H2 we have

and

(T+ S) S) and (T+ S)Ag = g, i.e., (T+ S)A = I.
In particular, R(T+ S) = H2, hence T+ S is bijective and we have A =
(T+S)'. 0

Corollary. The statements of Theorem 5.11 hold in particular if S is bounded
and < 11T'IP' (then we have < ISII <1).

Corollary. Let H1 and be Hubert spaces and let T and (n E N) be
linear operators from H1 into such that D( T) C D( for all n E N.
Assume that T is closed, b(jective, and I (T — T 'J as n —* oo. Then
there exists an n0 E N such that is bijective for n > n0 and T
—+0 as n —÷ oo. (The assumptions on hold in particular if the operators
T— are bounded and T—

T as n—+oo. Therefore there
exists an n0 E N such that T _hII < 1/2 for n n0. Hence by Theorem
5.11 the operator = T+ is bijective for n n0 and we have

- T'I! IIT'II 21-rn 0
m=1 m=1

0

In what follows let H be a Hubert space over K and let T be an operator
on H. The number z E K is called an eigenvalue of T if there exists an
fED(T),f=,=0 such that Tf=zf, i.e., if the operator z— T=zI— Tis not
injective, N(z — T) is called the eigenspace of
z, the dimension of N(z — T) is called the multiplicity of the eigenvalue.
The element f is called an eigenelement or eigenvector of T belonging to the
eigenvalue z. If z is not an eigenvalue (i.e., (z — T) is injective), then the
operator

R(z, T) = (z— T)'
is well-defined. The set

p(T) = K : z — T is injective, and R(z, T) E B(H)} (5.9)

is called the resolvent set of T. If T is not closed, then z — T and R(z, T)
are not closed, consequently p( T)= 0. This is why in most of the following
cases we shall assume the closedness of T. For a closed operator T on
H we have by the closed graph theorem that

p(T) = (zEK z— T isbijective}. (5.10)
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The function
R(., T) R(z, T)

is called the resolvent of T. For any z E p( T) the operator R(z, T) is called
the resolvent of T at the point z. The set

a(T) = 1K\p(T) = (5.11)

is called the spectrum of T. The set of all the eigenvalues of T is
obviously contained in a( T). The set T) is called the point-spectrum of
T.

Theorem 5.12. Let T be a densely defined operator on H. Then a(T*) =
a(T)* and p(T*) = p(T)* (here for any subset M of the complex numbers
M* = {z* : z E M}).

PROOF. Because of (5.11) it is enough to prove that p(T) =p(T*)*. To
prove this it is enough to show that p(T) Cp(T*)*, since because of the
equality T** = T we also have p(T*) Cp(T)*, and thus p(T*)* cp(T).

Let z E p( T). Then z — T is densely defined and bijective. By Theorem
4.17(b) the operator — T* = (z — T)* is therefore injective, also, and we
have (z* — = ((z —

1)* E B(H). Hence — T* is bijective, i.e.,
z Ep(T*)*. 0

Theorem 5.13. Let S and T be closed operators on H.
(a) For all z, z' E p( T) we have the first resolvent identity

R(z, T) — R(z', T) = (z' — z)R(z, T)R(z', T)

= (z' — z)R(z', T)R(z, T);

in particular, R(z, T) and R(z', T) commute.
(b) If 0(S) c 0(T), then for all z E p(S) fl p(T) we have

R(z, T) — R(z, S) = R(z, T)(T— S)R(z, S).
(c) If 0(S) = D(T), then for all z E p(S) n p(T) we have the second re-

solvent identity

R(z, T) — R(z, S) = R(z, T)(T— S)R(z, S)

= R(z, S)(T— S)R(z, T).

PROOF. The first resolvent identity follows from Theorem 5.10 if in there
we replace T by z — T and S by z — T. The second resolvent identity
follows similarly if T and S are replaced by z — T and z — S, respectively.

0
Theorem 5.14. If T is a closed operator on the Hilbert space H, then p( T) is
open, consequently a( T) is closed. More precisely, if z0 E p( T), then z E p( T)
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for allzEK such that Iz—zoI< IR(zo, and for these z we have

R(z, T) =

T E B( H), then we have { z E Il( : z > I TI
I } C p( T); the spectrum a( T) is

compact. Furthermore,

R(z, T) = for IzI> lIT!!; (5.12)

this series is called the von Neumann series.

PROOF. Let z0 E p( T), and let
I

z — zol <II R(z0, T) II
'. If in Theorem 5.11

we replace T by z0 — T and S by (z — z0)I, then it follows that z — T = —

T+ (z — z0) is bijective, consequently z Ep(T). Moreover,.by Theorem 5.11
we have

R(z, T) = ((z0 — T) + (z — z0))
1

=
(z0 —

T let Izi> II Til. If in Theorem 5.11 we replace T by zI
and S by T, then it follows that z — T is bijective, therefore z Ep(T), and

(z— T)'

Hence a(T) c {z E Izi TI!). As a(T) is closed, the compactness of
a(T) follows from this.

Theorem 5.15. Let T be a closed operator on the Hubert space H. The
resolvent R(., T) : is a continuous function (i.e., for any z0 E
p(T) and any sequence (zn) from p(T) such that we have I! T) —
R(z0, T)lI If a(T) is non-empty, then for every z E p(T) we have

IIR(z, T)II > d(Z, a(T))'.

For every sequence (zn) from p( T) such that z0, z0 E a( T) we therefore
have

PROOF. Let z0, z Ep(T) such that Iz — zol <IIR(zo, T)jJ 1• Then by Theo-
rem 5.14 we have

IIR(z, T) — R(z0, T)II < Izo — zI"IIR(zo,
n=1

As the right side is small when z is close to z0, the continuity at z0 follows
from this for any z0 E p(T). If z Ep(T), then by Theorem 5.14 the point z'
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also belongs to p(T) for all z' E K such that {z' — <IIR(z, Conse-
quently, Iz' — zI> H R(z, T)II 1 for all z' E a(T), and thus

T)11' < inf (lz'—zI z'Ea(T)} = d(z, a(T)).

Let G be an open subset of C, and let X be a Banach space. A function
F: G—*X is said to be holomorphic if for every z0 E G there exist an r >0
and a sequence (fr) from X such that

F(z) = for Iz—zoI <r;
n=O

where the convergence has to be understood in the sense of the norm of X.
As in function theory, one can prove that the quantity

r0
=

[ urn sup
1

(5.13)
fl—*OO

is the radius of convergence of the above series and that the series is
uniformly convergent on each disc around z0 of radius less than r0, while it
is divergent for all z such that z — z01 >r0 (cf., for example, K. Jör-
gens [19], §4.4). Every holomorphic function is continuous (ci. the proof of
Theorem 5.15).

Theorem 5.16. Let T be a closed operator on the complex Hubert space H,
and let f, g E H. Then the functions

R(. , T) : p(T)—*B(H), T)

R(., T)f: T)f
<g, R(., T)f) : R(z, T)f>

are holomorphic.

PROOF. Let z0 E p(T), and let r = IIR(zo, T)11
'. Then for all z E C such

that z — <r we have

R(z, T) =

in the sense of the norm convergence in B(H),

R(z, T)f=

in the sense of the norm convergence in H, and

<g, R(z, T)f> = R(z0,
n=0
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According to the above definition, these three functions are therefore
holomorphic. LI

Theorem 5.17. Assume that H is a Hi/bert space and T E B(H), r(T) =
urn sup H
(a) We have r(T)< and thus r(T)=lim
(b) We have r(T) < and {z E Izi r(T)}. For all z E such

that z > r( T) the operator R(z, T) is given by the Neumann series
(5.12).

(c) If H is complex, then a( T) is non-empty and there exists a z E ci( T) such
that lzI = r(T), i.e., we have r(T) sup (Izi : z E cr(T)}.

(d) The statement in part (c) holds for any seif-adjoint T in a real Hi/bert
space, as well.

r( T) is called the spectral radius of T.

REMARK. Theorem 5.17(c) does not hold for real Hubert spaces, as the
example of the operator defined by the matrix (0

1

1) on shows.

PROOF.

(a) Let m E Every n E can be uniquely represented in the form
n = + with E and <m. If we denote C =
max (1,

II H T211, . . . , then it follows that

H
( CjJ

and thus

r(T) urn sup IITmIV/m.
n

For every n E we therefore have r(T) < and thus r(T)
urn inf i.e., urn H exists and r(T) = lim

(b) The radius of convergence of the series 'Ta, u E is obvi-
ously equal to r(T)', because of (5.13). Therefore for all z E such
that (zI >r(T) the operator A(z) = E B(H) is defined; the
series is absolutely convergent in the norm of B(H) (i.e., for every 0
there exists an n0 E such that kIZ — —liii <€ for n0 k m).
One can verify easily that

(z— T)A(z) = A(z)(z— T) = — = J

i.e., A(z)=(z — T)' and z Ep(T). The Neumann series is therefore
convergent for all z E such that Izi >r(T) and it represents the
operator (z— T)'.

(c) Let us assume that a( T) =0. Then p( T) = C, and by Theorem 5.16 the
function Fjg : R(z, T)g> is an entire function for all f, g E H.
Because of the inequality II(z — T)f

H
> (lizil — we have

HR(z, T)II (HzII — 'for Izi> and thus as
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00. Consequently, Fjg is bounded, and by Liouville's theorem it is

constant. Since as we have Ffg = 0 for all f, g E H,
therefore R(z, T) =0. This is a contradiction. It remains to be proved
that r(T)= : z E a(T)) = r0. As a(T) is closed and we already
know the inequality r0 <r( T), it remains to show that r( T) For
arbitrary f, g E H the function R(z, T)g> is holomorphic in
{ z E C : IzI >r0} and can be uniquely expanded in a Laurent series
there. By (5.12) this Laurent series has the form

<f,R(z,T)g>= z_m_I<f,Tmg>.
m=O

Let s >r0. Then the sequence '<f' Tmg>) is bounded for all
f, g E H. By applications of the Banach-Steinhaus theorem (Theorem
4.22), first to the functionals induced by lTmg and then to the
operators 5_m_ we obtain a C 0 such that

forall

This implies that limil Tm <s. Since this holds for all s >r0, it
follows that r( T) r0.

(d) If T is seif-adjoint, then by Theorem 4.4(b) there exists a sequence
from H such that and or
In the first case it follows that

— = — + H

+ as 00.

Analogously, in the second case it follows that

as

Consequently,
II

E a(T) in the first case, and — H
TII E a(T) in the

second case.

EXAMPLE 1. Let M be a measurable subset of let 1: be
measurable, and let T be the maximal operator of multiplication on L2( M)
byt.

(5.14) We have = (z E C t '(z) has positive measure}, here t '(z)
denotes the set { x E M : t(x) = z). (See also Exercise 5.23.)

PROOF. This can be obtained immediately from the results of (4.2) if we
notice that z — T is the multiplication operator generated by z — t. 0
(5.15) We have z E a( T) if and only if for evely > 0 the set
t — '({ w E C : 1w — zi <€}) = (x E M

I

t(x) — <€} is of positive measure.
In particular, if M is open and t is continuous, then a( T) is the closure of the
range of t.
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PROOF. Let (z E C: {x E M: — zI <€) have positive measure for
every

We show that p(T) = We have z E p(T) if and only if z — T is
bijective, thus if and only if z — T is injective and R(z — T) = L2(M). By
(4.3) this holds if and only if there exists a c > 0 such that Jz — c

almost everywhere on M, i.e., if and only if : Iw—zI<c}) has
measure zero. Consequently, z E p( T) if and only if z E U

The corresponding results hold if we consider the real Hubert space
L2, and a real function t.

EXAMPLE 2. If U is a unitary operator on H, then a(U) c (z EC: Izi = 1).

PROOF. By Theorem 5.14 we have {z E C: jzl> 1) cp(U). Since U is
bijective and U 'is unitary, we have 0 E p( U), and thus by Theorem 5.14
(z E C : IzI < 1) C p( U). The assertion follows.

EXERCISES

5.14. Let H1 and be Banach spaces. An operator T from H1 into H2 has a
continuous inverse (not necessarily defined on the whole space H2) if and
only if

= inf {IITxII : xED(T), lxii> 1} > 0.

We have then that T — =

5.15. Let (an) be a sequence from C. On 12 by

D(T) =

T is self-adjoint if and only if the sequence (an)
is real. We have = : n E a(T) = Determine R(z, T) for

5.16. If S and Tare from B(H), then r(ST)= r(TS).

5.17. Assume that H1 and H2 are Hubert spaces, and T is a bijective operator from
H1 onto H2.

(a) If S is an operator from H1 into H2 such that D(S)D D(T), ST' E
B(H2), r(ST 1) < 1, and T+ S is closed, then T+ S is also bijective.

(b) IfS EB(H1, H2) and r(T'S)< 1, then T+ S is bijective.
In both cases we have

(T+ S)' =
=

where the series converge in the norm of B(H2, H1).
Hint: After showing the convergence of the series, denote the sum by A, and
prove that (T+ S)A = A(T+ S)= I. Compare with the proof of Theorem
5.11, as well.
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5.18. Let H1 and H2 be Hilbert spaces, let A, E B(H1, H2), and let be bijective
for all n E If and C for all n E then A is also bijective
and we have
Hint: Use Theorem 5.11.

5.19. Assume that H1 and H2 are Hubert spaces; T are closed
bijective operators from H1 onto H2; the sequence is bounded, and
for some core D of T the following holds: For every x E 0 there exists an
n(x) E such that x E for n > n(x) and also Tx for oo. Then

Hint: From Theorem 5.10 it follows that tg—* T 'g for all g E T(D);
T(D) is dense in H2; since 'f') is bounded, it follows that 'g—÷ T 'g
for allgEH2.

5.20. Prove that in Exercise 5.19 no assumptions can be removed.
(a) If T, are bijective and 7',, T, then we do not necessarily have

T'.
Hint: Consider, on 12, the operators T= I and T,,f=(f1, . . . ,f,,,

(1/n)f,,÷2, . . .); (the sequence T,, is not bounded).
(b) If T is bijective and T,, T, then 7',, is not necessarily bijective for large

n.
Hint: Consider the operators T= I and T,,f= (f1,. . . , f,,, 0, 0,...) on
12.

(c) If the T,, are bijective, (IIT,, 'ii) is bounded and T,, T, then T is not
necessarily bij ective.
Hint: Consider the operators T,J( . .

f_,,, . . . ) on 12(Z).

5.21. Assume that H is a Hubert space over K, is an open subset of K, and
R : satisfies the properties (i) R(z1)— R(z2)=(z2—z1)R(z1)R(z2)
for z1, z2 E g, (ii) N(R(z)) = (0) for all z E Then we have
(a) R(z1)R(z2) = R(z2)R(z1) for all z1, z2 E

(b) With K(z) = R(z) '(z E S?) we have K(z1) — z1 = K(z2) — z2 for all z1, z2

E i.e., we can define T— z — K(z).
(c) Tis closed; we have Qcp(T) and R(z)=(z—T)' for zEg.

5.22. Assume that H1 and H2 are isomorphic Hubert spaces, M is a dense subspace
of H2, and M5'= H2. Then B(H1, B(HI, H2). (From this it follows that
B(H1, A) is in general not a completion of B(H1, H) if A is a completion of
the pre-Hilbert space H.)
Hint: Let U be an isomorphism from H1 onto H2. Assume that there exists a
sequence (U,,) from B(H1, M) such that U,, —* U. Then R( H2 for large n.

5.23. Let T be the operator of multiplication by a measurable function t on L2(M)
(cf. Example 1). Every eigenvalue of T has infinite multiplicity.

5.24. Let TEB(H),let NT=(fEH: T"f—*Oasn--*co},andlet BT—(fEH: the
sequence is bounded).
(a) If r(T) < 1, then NT = H.

(b) If = H, then r( T) 1.
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Hint: Use Theorem 4.22.
(c) From NT = H it does not follow in general that r( T) < 1.

Hint: Consider the operator Tf(x) = xf(x) on L2(O, 1).

5.25. If T E B(H), A C K such that = TjI, and u c H is such that Tu = Au, then
T*u = A*u.

Hint: Show that

5.26. Let A C B(H1, H2) and B C B(H2, H,).
(a) For A 0 we have A C p(AB) if and only if A C p(BA). In this case we

(b) Assertion (a) does not hold for A =0.
Hint: Let A be an isometric operator such that R(A) and let
B=A*.

(c) Assertion (a) holds for A =0, as well, provided that at least one of the
operators is bijective.
Hint: AB =A(BA)A '.

5.27. Let T be an operator on H with non-empty resolvent set, and let A0Ep(T).
We have ACa(T) if and only if (A—A0)'Ea(R(A0, T)); for allAEp(T)we
have R(A, T) = R(A0, T)(I — (A0 — A)R(A0, T)) I = (I — (A0 — A)R(A0,
T)) 'R(A0, T). In particular, G(R(A0, T)) = ((A — A0)' : A C
Hint: Use the first resolvent identity.

5.28. An operator T C B(H) is said to be nilpotent if there exists an n C such that
T'7 = 0. The operator T is said to be quasi-nilpotent if i.e.,
r(T)=O.
(a) Every nilpotent operator is quasi-nilpotent.
(b) If T is a quasi-nilpotent operator on a complex Hubert space, then we

have a(T){O}.
(c) If k(x, y) is continuous on 0 y <x < 1, then the Volt erra integral

operator K defined on L2(0, 1) by 0(K) = L2(O, 1) and (Kf)(x) =
f y)f(y) dy is quasi-nilpotent.
Hint: Put k(x, y) =0 for x <y and M = max {Ik(x, : O<y x < 1);
then (M'7/(n — 1)!)!x for the kernel k"0 of K'7, con-
sequently IIK'7II 1)!).

5.29. Let H be a complex Hilbert space, let T C B(H), and letp(t) = be a
polynomial with p(T)= 0 (T°= I).
(a) If p(z) 0, then z C p(T) and R(z, T) = [p(z)] 'q(z, T) with q(z, T) =

(b) If p is a polynomial of minimal degree, then a(T) is the set of zeros of p.

5.30. Let T be a closed operator on the Hubert space H. Then the function
zH*R(z, T) is holomorphic on p(T) as a function with values in B(H, 0(T)),
where 0(T) is equipped with the T-norm.
Hint: Use the inequality 0(T)) IIR(zo, 0(T)) X

IR(zo, T)Il'7 and Theorem 5.14.
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5.3 Symmetric and seif-adjoint operators

Theorem 5.18. Let T be a Hermitian operator on the pre-Hilbert space H.
Every eigenvalue of T is real; eigenvectors belonging to different eigenvalues
are orthogonal. If H is complex, then for any z E C \ R the operator z — T is
continuously invertible, and we have R(z, < ( Tm z( 1 (this holds true in
particular for symmetric and self-adjoint operators).

PROOF. Let z be an of T and let f E N(z — T), 0. Then
z*11f112 = <Tf,f> = <f, Tf> = zIIf 112, thus z = i.e., z E If z1, z2 are two
distinct eigenvalues and f1, f2 are corresponding eigenelements of T, then,
as the are real, we have (z1 — z2)<f1, f2> = <Tf1, f2> — Tf2> =0.
Therefore =0. With z = x+ 1>' (x,y E we have for alifE D(T)
that

ff(z— T)f112 = I(x—T)f+

= II(x — T)f112 + y1211f112 > Tm z121(f 112.

For z E C \ it follows from this that (z — T) is injective and that for
g=(z— T)fED(R(z, T)) we have

IIR(z, = IlfII Tm — T)fJJ = Tm

therefore

IIR(z, T)lI < Tm zL'. D

Now we prove a simple criterion for the self-adjointness of a symmetric
operator.

Theorem 5.19. Let T be a symmetric operator on the Hubert space H. If
H=N(s— T)+ R(s— T) for some sER, then T is seif-adjoint and H=
N(s — T) R(s — T). Special case: If R(s — T) = H, then T is self-adjoint
and N(s— T)=(0).

PROOF. From T= T** and T c T* it follows that N(s — T)C — T)
thus that N(s—T)±R(s—T) and H=N(s—

T) R(s — T). Therefore we have

N(s— T) =R(s— T)'
and

R(s— T) =N(s— T)' DN(s— DR(s— T*).

We show that D( T*) C D( T). This together with the inclusion T c T*
implies T= T*. Let f E D(T*), g = (s — T*)f. Because of the inclusion
R(s — T*) C R(s — T) there exists an E D(T) C D(T*) such that (s —
T*)f0 = (s — T)f0 = g = (s — T*)f. We therefore have f—f0 E N(s — T*)
= R(s— N(s— T)cD(T) and thusfE D(T).
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A symmetric operator T on a Hubert space is said to be essentially
self-adjoins provided that T is seif-adjoint.

Theorem 5.20. A symmetric operator T on a Hilbert space is essentially
seif-adjoint if and only if T* is symmetric. We then have T= T*.

PROOF. If T is essentially seif-adjoint, then T* = (T)* T=T**, conse-
quently T* is self-adjoint (therefore symmetric) and we have T= T*. If T*
is symmetric, then since T is symmetric by Theorem 5.4(b) and (T)* = T*
holds, we have T c (T)* = T* c T** = T, hence T= (T)*.

Theorem 5.21. Let T be a symmetric operator on a complex Hubert space H.
The operator T is self-adjoins (essentially self-adjoins) if and only if R(z ± —

T) = H (R(z ± — T)= H) for some z + with Im z + >0 and some z — with
Imz_<0(this then holds for with with Imz_<
0).

PROOF. Let R(z÷ — T)= H for some such that Im >0 and some z_
such that Im z_ <0. As T is symmetric, the operators z ± — T are injective,
therefore bijective, and by Theorem 5.18 we have IKz+ —

Im z T z

z z z + Im z — I

(z — T) —1

Im zi
— 1 for all z such that Im z 0, we can iterate this procedure and

obtain that (z — T) is bijective for all z E C\R, in particular for z = ± i

(cf. also Exercise 5.33).
As T is symmetric, we have T c T*. To prove that T= T*, it is enough

to prove that D( T*) c D( T). To this end, let f E D( T*) and let f0 =
(i — T) '(i — T*)f. Then we have f0 E 0(T) c D(T*), Tf0 = T*f0, and (1—

f0) = (i — T*)f_ (i — T*)f0 = (i — T)f0 — (i — T)f0 = 0. Therefore

f_f0EN(i_T*) =R(—i—T)' = (0),

thusf=J0ED(T). —

If R(z÷ — then R(z÷ — T) = H by the proposition following
Theorem 5.2. As T is also symmetric by Theorem 5.4(b), the seif-adjoint-
ness of T follows from the part already proved.

Let T now be self-adjoint and let z E C\ Then R(z, T) is closed and
bounded, therefore D(R(z, T)) = R(z — T) is closed. Consequently, it is

enough to show that R(z — T)' = To this end, let h I R(z — T). Then
by Theorem 4.13(b) we have hE N((z — T)*)= N(z* — T). Since T is
self-adjoint, T has no non-real eigenvalue, thus h =0.

If T is essentially self-adjoint, i.e., T is self-adjoint, then by the proposi-
tion following Theorem 5.2 we have

R(z÷-T)=R(z±—T) =H.

Theorem 5.22. If T is a symmetric operator on the complex Hilbert space H
and for some n E n > 2 we have R(i — T")= H or R(— i — T")= H (respec-
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tively R(i — T") = H or R( — i — T") = H), then T is essentially seif-adjoint
(respectively seif-adjoint).

PROOF.

_______

(a) Let R(i — — i)= H. There are numbers E C such that
Im >0, Im y_ <0 and = i. We then have

.

hence R(T— — i)= H. Therefore T is essentially self-
adjoint.

(b) If + i) = H, then we choose E C so that = — i.

The proof of self-adjointness is similar. o
Theorem 5.23.
(a) The symmetric operator T on the complex Hilbert space H is seif-adjoint

if and only
(b) If T is seif-adjoint on the (real or complex) Hubert space H, then

s if and only if R(s— H. For z we have R(z, T)*
R(z*, T).

PROOF.

(a) By Theorems 5.18 and 5.21 the operator T is seif-adjoint if and only if
z — T is surjective and continuously invertible for all z E C\ R, i.e., if
and only if C \ c p( T), or, equivalently, a( T) c

(b) Assume that T is self-adjoint and z As C we also have
Therefore R(z — T)' N(z* — T*) = N(z* — T) = (0), i.e.,

R(z — T)= H. Now let R(z — T)= H. Since R(z — T) = H for all z E C\
we also have R(z* — T)= H, and thus N(z — T) = N(z — T*) = R(z*

— = (0), i.e., z E If z a0(T), then z — T* = z — T is

densely defined, injective and R(z — T)= H. Therefore R(z, T)*
((z — = ((z — T) by Theorem
4.17(b). U

Now we obtain an especially simple characterization of the spectrum (or
the resolvent set) of a self-adjoint operator.

Theorem 5.24. If T is seif-adjoint, then the following statements are equiv-
alent:
(i) zEp(T),
(ii) there exists a c > 0 such that II

(z — T)f c f for all f E D( T) (i.e.,
(z — T) is injective and IR(z, T)JI <c 1),

(iii) R(z — T) = H.
(This theorem is in general false for symmetric operators.)

PROOF. If z Ep(T), then (z — T) is injective and R(z, T) is continuous. If
(z — T) is injective and R(z, T) is continuous, then z E and thus by
Theorem 5.23(b) the set D(R(z, T)) = R(z — T) is dense in H; as R(z, T) is
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closed, we have R(z — T) = D(R(z, T)) = H. If R(z, T) = H and z E then
N(z — T) = N(z* — T*) = R(z — T)' = (0); therefore z — T is bijective, i.e.,
z Ep(T). If Im then z Ep(T) by Theorem 5.23(a). LII

For the proof of any further criteria for self-adjointness we need some
auxiliary results. In complex Hubert spaces the theorem of Rellich-Kato
(Theorem 5.28) can be proved directly somewhat more rapidly (cf. Exer-
cise 5.35). Here we obtain it (also for real Hubert spaces) as a special case
of more general results. The auxiliary results gathered here will be used at
other places, as well.

Theorem 5.25. Assume that H1 and H2 are Hi/bert spaces, A and B are
operators from H1 into H2 such that

0(A) c D(B) and JIBfII CIIAfM for f E 0(A)
with some C > 0. For every K E let denote the orthogonal projection
(from H2) onto R(A + KB). Then — as ic—÷0.

PROOF. For ki <(1/2C) and for all f E D(A) we have

IIBfIt CIIAJII

therefore

2C11(A+KB)ffI.

For hE R(P0)' = R(A)' = R(A)' we thus have

IIPKhII = sup {I<h,g>I gER(A + icR), 1)

= sup (I<h, (A + icB)f>I :JED(A), IRA +icB)flt 1)

= sup {I<h, icBf>I :fED(A), II(A +icB)fII 1)

ki Ihil sup (IBfII :fED(A), II(A +icB)fI 1}
< hi!.

We can prove in a completely analogous way that for all h E R(Pk)' =
R(A + icB)'

P0/iII thu.

Via Theorem 4.33 we obtain that — P0M 2CIicI. This proves the
theorem.

Theorem 5.26. Assume that H1 and H2 are Hi/bert spaces, T and S are
operators from H1 into H2; T is closed, and S is T-bounded. Furthermore,
denote by the set

{zEK : T+zSisclosed}

and for every z E let denote the orthogonal projection from H1 x H2 onto
G(T + zS). Then is open and the function is continuous on (with
respect to the norm topology of B(H1 X Hi)).
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PROOF. If z0E then T+ z0S is closed and D(T+ z0S)= 0(T). The
operator S is therefore (T+ z0S)-bounded by Theorem 5.9. Hence T+ zS
is closed for z sufficiently near z0. Thus 1? is open. Let us define the
operators A and B from H1 into H1 x H2 by

D(A)=D(T), Af=(f, (T+z0S)f),
D(B)=D(T), Bf=(0, Sf).

Then the assumptions of Theorem 5.25 are obviously satisfied and the
equalities R(A)= G(T+ z0S) and R(A + icB)= G(T+(z0+ ic)S) imply the
continuity of z at the point z0. 0

With this we can now obtain a general theorem on the perturbation of a
closed operator and its adjoint.

Theorem 5.27. Assume that H1 and are Hubert spaces, T and S are
operators from H1 into H2. Let T be densely defined, let S be T-bounded, let
S* be and let

(z E : T+ zS and T* + z*S* are closed),
= the connected component of that contains zero.

Then (T+zS)* T*+z* S* for all

PROOF. Let be the orthogonal projection (in H1 x H2) onto G(T+ zS)
and let Q be the orthogonal projection onto U — IG(T* + z*S*), where U
is defined as in Section 4.4. By Theorem 5.26 the operators and
depend continuously on z for z E and Q0 + = < H2 = I (as we have
G(T)EE? U G(T*)= H1 x H2). For every z E we have T* + z*S* C
(T+ zS)*, i.e.,

c =G(T+zS)'.
By Theorem 4.30(a) we therefore have Q = =0, i.e., I — —

is an orthogonal projection for any z E Consequently, —

assumes only the values 0 and I. Since, on the other hand, — QZ'II

depends continuously on z E it follows that — — = 1'— Qo—
= 0 for all z E therefore G(T* + z*S*) = UG(T+ zS)' = G((T+

zS)*), and thus T* + z*S* = (T+ zS)* for all z E LI

If the relative bounds of S with respect to T and of S* with respect to
T* are less than 1, then it follows that (T+ S)* = T* + 5* (Hess-
Kato [42]), since in this case E IzI 1) c gØ by Theorem 5.5. If we
specialize this result for seif-adjoint operators T and symmetric operators
S, then we obtain the following important result.

Theorem 5.28 (Rellich-Kato). If T is seif-adjoint (essentially seif-adjoint) on
the Hi/bert space the operator S is symmetric and T-bounded with
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T-bound less than 1, then T + S is self-adjoin: (essentially seif-adjoint with
T+ S=T+Sand D(T+
PROOF.

(a) If T is seif-adjoint (T = T*), then because of the inclusion S C S* the
operator is with less than 1. In Theorem
5.27 we therefore have fz E K : IzI 1) c and thus (T+ S)* =
T*+S*= T+S.

(b) Let T now be essentially seif-adjoint, i.e., let T be seif-adjoint. First we
show that S is T-bounded with T-bound less than I (more precisely,
equal to the T-bound of S). To this end, letf E D(T). Then there exists
a sequence (fe) from D( T) such that —*f, —* Tf. From the T-
boundedness of S it follows that is a Cauchy sequence, therefore
fED(S), and

lSfll = urn < = alifil +bllTfJl.

By part (a) the operator T+ S is therefore self -adjoint. From the
inclusion_T+S cT+ S and from the closedness of T+ S it follows
that T+ Sc T+ S. By Theorem 5.5 and by the equality D(T+ S)
=_0(T) it follows that D(T + S) = D(T + S), and therefore

T be a self-adjoint operator on the Hubert
space H, let S be symmetric and T-bounded, and let

S?= {zEK : T+zS and T+z*S are closed),
= the connected component of containing zero.

For every z E R n the operator T + zS is self-adjoin:. Special case: If
T + tS is closed for all t E [0, 11, then T + S is self- adjoint.

PROOF. We have (T+ zS)* = T+ zS* = T+ zS for every z E Rn by
Theorem 5.27. 0
Theorem 5.30 (Wüst [57]). Let T be essentially self-adjoin: on the complex
Hilbert space H, let S be symmetric with D( T) c 0(5) and let Sf f all f
+ Tf for all f E 0(T) with some a > 0. Then T+ S is essentially self-
adjoint.

PROOF. LetA = T+ S. We show that = {0} for E(i, — i}. For
this, let (ta) be a sequence from (0, 1) such that By Theorem 5.28 the
operator = T+ is essentially seif-adjoint for any n E and we have

ll(A — = (1— allfll + II Tfll — tall Sf11

< allfll + ll(T+ = allfll + IIAJII. (5.16)
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Now let h E R( — A)'. As is essentially seif-adjoint, there exists an
E 0(A) such that

- n E

Therefore
h = urn (5.17)

Because of the inequality — 1 we have — II.

Consequently,

lim sup JIhJI.

By (5.17) it follows from this that
urn sup <211h1f

and thus because of (5.16)
lim sup ( urn sup + <

with c = a +2. As 0(T) is dense, for every >0 there exists an h( E 0(T)
such that h E R( — A)', it follows
that

11h112 = urn <h, = urn <h, (A

= urn [<h—h€, (A (A

< IIh — urn sup II(A — + lim suplj(A —

< + lim sup (1 — =

Since this holds true for all >0, we have h =0.

EXERCISES

5.31. Let T be a symmetric operator on the Hubert space H.
(a) If H is complex, then T is essentially seif-adjoint if and only if T*) C R.
(b) If H= N(s — T)+ R(s — T) for some s ER, then T is essentially self-

adjoint and we have N(s — T) = N(s — T) and R(s — R(s — T)
(c) If s — T is continuously invertible and R(s — T)= H for some s E R, then

T is essentially seif-adjoint.

5.32. Let H be a real Hubert space, and let T be an operator on H.
(a) The space H x H, with the addition g1)+ (f2g2)=(J1 +f2, g1 +

g2), multiplication by a scalar (a + ib)(J, g) = (af— bg, ag + bf) and scalar
product <(f1,g1), (f2,g2)>=<f1,f2>+i<f,,g2>—i<g1,f2>+<g1,g2>, is a
complex Hubert space, the complexification of H.

(b) By setting D(Tc)= {(f, g) E : f, g E 0(T)) and Tf2) a
linear operator is defined on Hc. We have:

(i) is bounded (respectively belongs to B( He)) if and only if T is
bounded (respectively belongs to B(H)). We have =
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(ii) D(Tc) is dense if and only if 0(T) is dense.
(iii) Tc is symmetric if and only if T is symmetric.
(iv) Tc is (essentially) seif-adjoint if and only if T is (essentially) self-

adjoint.
Tc is called the complexification of T.

5.33. Let T be a closed symmetric operator on the complex Hubert space H, and
let denote the orthogonal projection onto R(z — T) for z E C\
(a) The mapping is continuous on C\R with respect to the norm

convergence in B(H).
(b) If R(z0 — T) = H for some z0 E C such that Im z0 > 0 (respectively Im z0

<0), then R(z — T) = H for all z E C such that Im z >0 (respectively
Imz<0).
Hint: Use Theorem 5.25.

5.34. Let T be (essentially) seif-adjoint on the Hubert space H, and let S be
symmetric such that 0(T) c 0(5) and Re <Tf, Sf> > — (ajjf 112 +

b Tf I I Sf1 I) for all f E 0(T) with some b < 1. Then T + tS is (essentially)
seif-adjoint for all t> 0.
Hint: For t > 0 we have + Ifli <C1(lI(r+ tS)fIJ + <C2(II +
II fII).

5.35. (a) Let T be a seif-adjoint operator on a complex Hubert space, and let S be
T-bounded with T-bound< 1. If c>O is large enough, then ISfil <
b (± ic — T)f for all f C 0(T) with some b < 1. Using this, prove the
theorem of Rellich-Kato (Theorem 5.28) for complex Hilbert spaces.

(b) Using part (a) and Exercise 5.32, prove the theorem of Rellich-Kato for
real Hubert spaces.

5.4 Seif-adjoint extensions of symmetric operators

If S is a symmetric operator, then S c 5*• For every symmetric extension
T of S we have (ef. the proposition preceding Theorem 4.19) S C T C T* C

It seems plausible that there exists a sufficiently "large" extension T of
S that is seif-adjoint. For this we would have

S c T = T* c S*. (5.18)

In this section we begin with some simple investigations concerning the
problem of the existence of a self-adjoint extension of a symmetric opera-
tor (cf. also Sections 5.5 and 8.1 to 8.3).

Theorem 5.31.
(a) If T1 c T2 are seif-adjoint operators, then T1 = T2.

(b) If S is a symmetric operator and T1 and T2 are seif-adjoint extensions of
S such that D(T1) c 0(T2), then T1 = T2.

(c) If S is essentially seif-adjoint, then S is the only seif-adjoint extension of
S.
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PROOF.

(a) It follows that T1 C T2 = C = T1, thus T1 = T2.

(b) For alif E 0(T1) C 0(T2) and for all g E D(S)c D(T1) C 0(T2) we have

<T2f,g> = T2g> = <f, Sg> = T1g> = <T1f,g>.

Since 0(S) is dense, it follows that T2f= T1f for all f E D(T1), i.e.,
T1 c T2. From part (a) it follows that T1 = T2. —

(c) If T is a seif-adjoint extension of S, then we have S c T, since T is
closed. The equality S = T now follows from part (a). D

The following theorem ensures the existence of self-adjoint extensions for
two large classes of symmetric operators. A symmetric operator S on the
Hubert space H is said to be bounded from below if there exists a y E
such that Sf> > y a

of bound of a lower
bound is said to be non-negative. The

concepts bounded from above, upper bound, and non-positive are defined
similarly. If an operator is bounded from either below or above, then it is
said to be semi-bounded. Besides the semi-bounded operators, the following
simple theorem also treats the continuously invertible symmetric operators,
i.e., those symmetric operators S, for which 11Sf

H
with some y >0

(cf. Exercise 5.14).

Theorem 5.32. Let S be a symmetric operator on the (real or complex)
Hubert space H, and assume that Sf> 112 with some y E (respec-
tively Sf$J >

II
with some y >0) for all f E D(S). Then for each Ic E

(— oc, y) (respectively ic E (— y, y)) there exists a seif-adjoint extension of
S such that Ti> icllfIl2 (respectively

II TJH > kill! II) for all f E
D(TK). We have N(K — T,j= N(ic — S*)__ R(ic —

PROOF. The operator S is closable and S obviously satisfies the same
assumptions, also. Therefore we can assume without loss of generality that
S is closed. In the first case we have for all Ic E (— oc, 'y) and f E 0(S),

that

KS— ic)fIJ I<(S— K)f,f>l 11f1l'

> <Sf,f> I1f11' - KIlfil > (y-K)IlfIt.

In the second case we have for all Ic E (— y, y) and f E D(S) that

II(S — K)fll > lISfll — ki lIfll — IKDIIfII.

Consequently, in both cases S — sc is continuously invertible. The range
R(S — ic) = D((S — ic) 1) is therefore closed. From this it follows that

R(S— K) + N(S* — ic) =R(S— ic) + R(S— ic)'t H. (5.19)
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Because of the equality N(S* — K) n D(S) = N(S — K) = {0}, the sum D(S)
+ N(S* ic) is a direct sum. Hence we can define

=D(S)+ N(S*_tc),

= Sf1 + icf2 for f1 ED(S),f2 EN(S*_Ic).

We obviously have N(ic — TK) = N(ic — S*). The operator TK is symmetric,
because D(TK) is dense (since D(TK) :j D(S)) and for all f1, g1 E

E N(S* — = R(S — icY we have (observe that (TK — ic)f2 = —

=0)

<f1 +f2, = <f1 (S—ic)g1>

= (S— ic)g1> = <(S— ic)f1, g1>

= <(S—ic)f1,g1+g2>

= +g2>.

By Theorem 5.19 the operator is seif-adjoint, since because of (5.19) we
have H= R(S— ic)+ w)= ,c)+ N(TK— ic). Besides, for allf1
ED(S),f2E N(S*_ic) we have

<f1 +f2, <f1, Sf1> +<S*f2,fi> + ic[<fi,f2>+11f2112]

> ic[<f2,fi>+<f1,f2>+11f2112] >

in the first case, and

+f2)1J2 = <Sf1 + icf2, Sf1 + icf2>

= ic<f1, + K<S*f2,fi> +

> + K2[<fi,f2> +<f25f1> + 1f2112] >

in the second case. 0

In order to sharpen the results of Theorem 5.32, we first prove an
extension theorem for bounded Hermitian operators.

Theorem 5.33. If A is a bounded Hermitian operator on the Hubert space H,
then there exists a seif-adjoint extension B E B(H) of A such that B =
I A j. If R(A) is dense, then every self- adjoint extension of A is injective.

PROOF. If IA II = 0, then B = 0 is the required extension. Therefore let
IA Without loss of generality we may assume that IIAII = 1. Since

along with A its closure A is also Hermitian and hA II = f A we may also
assume that A is closed, i.e., D(A) is closed. Let P be the orthogonal
projection onto D(A). Then we have

A = A1+A2 with A1= PA, A2 = (I—P)A.
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We consider A1 as an operator from H into the Hubert space 0(A) with
D(A1)= D(A) and A2 as an operator from H into the Hubert spaceD(A)'
with D(A2)= 0(A). First we show: There exist extensions A1 and A2 of A1
and A2, respectively, such that 0(A = 0(A2) = H, R(A c D(A), R(A2)

cD(AY and

+ JA2f 112 ( 11f112 for all f E H.

We define the operator A1 by

A, = (AP)*.

Then we have 11A111=IIAPII and R(A1)cN(AP)'CD(A). More-
over, for all f E H and g E 0(A) we have

<f,A1g> = <APf,g> = <Pf,Ag> = <f,A1g>.

Therefore A1 g = A1 g, and thus A1 c A1. Because of the relation IA1fII <
IA IfIf IA II Ilfil = IlfIl the equality

[f,g] = <f,g>-<A1f,A1g>

defines a semiscalar product on H. The set

N= {JEH:

is a closed subspace of H. (If f, g E N, a E !K, then af E N and [f+ g,
f+ g] =2 Re [f, g] 2([f, f][g, g E N. If is a
sequence from N such that —>f E H, then [f, f] = f> — <A1 f, A1 f> =

— =0, thereforefE N). Let H0= N-'- and let
P0 be the orthogonal projection onto H0. By construction, we have [f, f]
0 for all non-zero f E H0, i.e., [.,.] is a scalar product on H0. For every
fE H we have

{P0f, P0f] =[f—(I— P0)f,f—(I— P0)f]

=[f,f]—2Re[f,(I—P0)f]+[(I_P0)f,(I_P0)f]=[f,f].

ForfE 0(A)n N we have

IIA2f 112 = 11(1— P)AJ 12 = IIAfII2 — II
PAf 12

= IIAJ 112 - IIA,fI12 < IIf1I2 - IA1fII2 = =0.

Therefore A2f= A2 g for f— g E 0(A) n N. Consequently, the equalities

0(A2) = P00(A),

A2g = A2f for g = P0f E D(A2)
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define a linear operator from H0 into D(A)', and for all g = P0f E D(A2)
we have

= IA2f 112 = <(I- P)Af, Af> = <Af, Af> - <A1f, A1f>

<f,f>—(A1f,A1f> —[P0f,P0f] =[g,g].

From this it follows that A2 can be extended to an operator C from H0 into
such that 0(C) = H0 and

IlCfIl2<[f,f] forall fEH0

(cf. also Exercise 4.16). Let us now define A2 by

A2 = CF0.

Then for ailfE H
IA2f 12 = ICFOfII2 [P0f, P0f]

consequently

IIA1flI2 + JIA2f 112 < IIfH2.

Since for alifE D(A) we have
A2f = CPOJ = A2P0f = A2f,

the operator A2 is an extension of A2. Therefore A = A1 + A2 is an exten-
sion of A = A1 + A2 and IA < 1. Since for all f E 0(A) and all g E H we
have

<A*f,g> = <f,(A1+A2)g> = <f,A1g>+<f,A2g>

= A1g> = (AP)*g> = <Af, g>,

the operator A * is also an extension of A. Hence

B =

is a self-adjoint extension of A such that II B = 1.

Now let R(A) be dense and let B be a seif-adjoint extension of A. Then
R(B) is also dense, consequently N(B) = N(B*) = = (0).

Theorem 5.34. Let S be a symmetric operator on the (real or complex)
Hubert space H.
(a) If

I
Sf >

I f I

for all f E D( S) with some y >0, then there exists a
seif-adjoint extension T of S such that jJ Tf

II > II for alif E D(T).
(b) If S is bounded from below, then there exists a self-adjoint extension T of

S with the same lower bound (cf. also Theorem 5.38, Friedrichs' exten-
sion).

PROOF.

(a) The operator A =S' is Hermitian (<ASf, Sg)—<f, Sg>=<Sf,g>—
<Sf, ASg> for all Sf, Sg E D(A) = R(S)) and bounded, IA II A is
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injective and R(A) = D(S) is dense. Therefore by Theorem 5.33 there
exists an injective seif-adjoint extension B of A such that lB = IA II

Then T= B a self-adjoint extension of S and Tf > II

f E 0(T).
(b) Without loss of generality we may assume that y =0. As in the proof of

Theorem 5.32, we can show that I + S is continuously invertible. Let us
define A by

A = (I—s)(I+sy'.
Then A is Hermitian, because for allf=(I + S)f0, g =(I + S)g0 E 0(A)
= R(I+ S) we have

<Af,g> = <(I—S)f0,(I+S)g0>
=<f0,g0>—<Sf0,g0>+<f0,Sg0>—<Sf0,Sg0>

= g0> — <f0, Sg0> + <Sf0, g> — <Sf0, Sg0>

= <(I+S)f0,(I-S)g0> = <f,Ag>.

It follows from the definition of A that

I — A = (1+ S)(I+ — (I— S)(I+ = 25(1+

I+A
Consequently, I + A is injective and

S = (I—A)(I+Ay"
A is bounded with norm IA ( 1, since for all f E 0(A) we have

11f112 — llAf 112 = <(I—A)f, (I+A)f>
= <(I - A)(I + A)f, (I + A)f>
= <S(I+A)f,(I+A)f> >0.

Therefore by Theorem 5.33 there exists a self-adjoint extension B of A
such that B = IA II. By the same theorem I + B is injective, since
R(I + A) = D(S) is dense. The operator

T=
is therefore an extension of S. For all f= (I + B)f0, g = (I + B)g0 E
D(T)=R(I+B)we have

<Tf, g> = <(I— B)f0, (1+ B)g0> = <(1+ B)f0, (I— B)g0> = Tg>,

<f, Tf> = <(I-i- B)f0, (I— B)f0> = l1f01I2 — IIBfOII2 > 0,

i.e., T is symmetric and bounded from below with lower bound 0. We
have 1+ T=2(I+ B)' and I— T=2B(I+ B)', hence B=(I— T)(I
+ T)'. From this it follows that R(I + T) = 0(B) = H, thus T is
self-adjoint (cf. Theorem 5.19). fl
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EXERCISE

5.36. Let A be symmetric and semi-bounded.
(a) If A has only one semi-bounded seif-adjoint extension, then A is essen-

tially seif-adjoint.
(b) If the lower bound of A is positive and A has only one positive extension,

then A is essentially seif-adjoint.

5.5 Operators defined by sesquilinear forms
(Fiedrichs' extension)

In what follows H will always be a Hubert space. A sesquilinear form s on
H is said to be bounded if there exists a C > 0 such that

f, g E H. The smallest such C is called the norm of s. It
will be denoted by IsII. If T E B(H), then the equality t(f, g)= <Tf, g>
defines a bounded sesquilinear form on H. We obviously have I t II = II TI I.
Conversely, every bounded sesquilinear form induces an operator on B(H).

Theorem 5.35. If t is a bounded sesquilinear form on H, then there exists
exactly one T E B(H) such that t(J, g) = <Tf, g> for all f, g E H. We then
have IITII=IItII.

PROOF. For every f E H the function t(J, g) is a continuous linear
functional on H, since we have g)I If II II gil. Therefore for each
f E H there exists exactly onef E H such that t(J, g) = g>. The mapping

is obviously linear. Let us define T by the equality Tf= f for all f E H.
By Theorem 4.3(b) the operator T is bounded with norm

11Th = sup :f,gEH, IIfII=IIghI=i}

= sup (It(f, :f, gEH, IlfIl = = 1) = 11111.

If T1 and T2 are from B(H) and <T1 f, g> = t(J, g) = <T2f, g> for all
f, g E H, then it follows that T1 = T2, i.e., T is uniquely determined.

For unbounded sesquilinear forms the situation is much more com-
plicated. We consider only a special case.

Theorem 5.36. Let (H, <., .>) be a Hubert space and let H1 be a dense
subspace of H. Assume that a scalar product <. , . >i is defined on H1 in such a
way that (H1, <. , . >1) is a Hubert space and with some K >0 we have
Ic if112 < II fl for all f E H1. Then there exists exactly one self- adjoint opera-
tor T on H such that

D(T) cH1 and <Tf, g> = g>1 for f E D(T), g E H1. (5.20)
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T is bounded from below with lower bound K. The operator T can be defined
by the equalities

D(T)
{ f E H1 : there exists an f E H such that g>1

=<f,g) for allgEH1}, (5.21)

Tf—f.

D( T) is dense in H1 with respect to the norm
•

PROOF. Existence: The elementf in (5.21) is uniquely determined, since H1
is dense. Since the mapping is also linear, (5.21) defines a linear
operator. We can also consider T as an operator from H1 = (H1,

into H. This operator will be denoted by T0. If J denotes the operator from
H into H1 defined by

D(J) =H1 cH, Jf=f for fED(J),
then by (5.21) we obviously have

T0=J*.

J is closed, since for any sequence from D(J) H1 such that [in
H] and [in H1] we have [in H] because of the inequality

i.e.,f=hED(J). Therefore T0=J* is densely defined. Thus
D(T)= 0(T0) is also dense in (with respect to and, consequently,
in H (with respect to as well. By (5.21) we have for alif, g E D(T) that

<Tf,g> = <f,g>1 =[<g,f>1]* =[<Tg,f>]* = Tg>,

i.e., T is symmetric. The self-adjointness of T will follow from Theorem
5.19 if we prove that R( T) = H. For this let f E H be arbitrary. Then

g> is a continuous linear functional on H1, since we have

IIfII H gJI H gH1.

Consequently, there exists an f E H1 such that

<f,g>1 forall gEH1.

By (5.21) this means, however, that fE 0(T) and f= Tf. The semi-
boundedness follows from the inequality

<Tf,f> > f 0(T).

T obviously satisfies (5.20), as well.
Uniqueness: Every operator S that satisfies (5.20) is obviously a restriction
of the operator T defined by (5.21). Since T is seif-adjoint, it follows that
S c T c S S T. LI

In what follows let 0 be a dense subspace of H and let s be a
semi-bounded sesquilinear form on D, more precisely, let the inequality
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s(f,f) > be satisfied by some yE for all f E D. Then the equality
<f, g> + s(f, g) defines a scalar product on D such that
If If H

for all f E D. Moreover, we assume that IL. is compatible
with . in the following sense: If is a II 115-Cauchy sequence from 0
and then we also have (cf. Exercise 5.37; in the theory
of sesquilinear forms such a sesquilinear form s is said to be closable). Let

now be a . J15-completion of D (for example the one that was
constructed in Section 4.3). It follows from the compatibility assumption
that may be considered as a subspace of H if the embedding of into
H is defined as follows: Let be a . sequence in D. Then

is a Cauchy sequence in H. Let the element urn f,, from H correspond
to the element of 1-1,. On the basis of the compatibility assumption,
this correspondence is injective and the embedding is continuous with
norm 1. The spaces H and I-Is are related the same way as H and H1 were
in Theorem 5.36 (with K = 1). Let

s(f,g)=(f,g>5—(1—y)<f,g> for f,gEH5.

Therefore i(J g) = s(f, g) for f, g E D. The sesquilinear form i is called the
closure of s.

Theorem 5.37. Assume that H is a Hubert space, D is a dense subspace of H
and s is a semi-bounded symmetric sesquilinear form on D with lower bound
y. Let

I II
be compatible with

I II. There exists exactly one semi- bounded
seif-adjoint operator T with lower bound y such that

D(T) cl-I5 and <Tf, g> = s(f, g) for all f E Dn 0(T), g E D.(5.22)
We have

D( T) = { f E : there exists an f E H such that

s(f, g) = g> for all g E D}, (5.23)

Tff for fED(T).

PROOF. If we replace (H1, <. , by (H5, <. , in Theorem 5.36, then we
obtain exactly one self-adjoint operator T0 such that 0(T0) c and

<T0f,g> = <f,g>5 forall fED(T0),gEH5.

T0 is semi-bounded with lower bound 1. The operator T = T0 — (1 — y)
obviously possesses the required properties. The uniqueness follows from
the uniqueness of T0. Formula (5.22) implies (5.23), since 0 is dense (in
and in H).

If S is a semi-bounded symmetric operator with lower bound y, then the
equality

s(f,g)=<Sf,g>, f,gED(S)
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defines a semi-bounded sesquilinear form s on 0(S) with lower bound y.
In this case

g>5 <Sf, g> + (1- g> and = <Sf,f> + (1-
for f, g E 0(5). The norm IL is compatible with . Let (f,) be a

• sequence from 0(S) such that Then for all n, m E
we have

= <fn'fn>s = fm>s + <ffl'fm>sI

IIfnILIIfn — fmlls + + 1 — IIfmH

The sequence is bounded, is small for large n and m and
for any fixed n we have I(S + 1 — as m—* 00. Consequently it
follows that as n—* 00. This fact makes the following construction
of a seif-adjoint extension (Friedrichs' extension) of a semi-bounded sym-
metric operator possible, where the lower (upper) bound remains un-
changed.

Theorem 5.38. Let S be a semi-bounded symmetric operator with lower bound
y. Then there exists a semi-bounded self-adjoint extension of S with lower
bound y. If we define s(f, g)= <Sf, g> forf, gE 0(S), and I-Is as above, then
we have: The operator T defined by

0(T) = D(S*) n !-1 and Tf = S*f for f E 0(T)
is a seif-adjoint extension of S with lower bound y. The operator T is the only
self-adjoint extension of S having the property 0(T) C H.

PROOF. By Theorem 5.37 there exists exactly one self-adjoint operator T
with 0( T) c and

<Tf, g> = .s(f, g) = <Sf, g> for f E 0(S) n 0(T), g E 0(S).

is a lower bound for T. By (5.23) we have

0(T) = : There exists an JEH with i(f, g)

= <f, g> for all g E 0(5)) (5.24)

Tf—f for fEO(T)
We can replace s(f, g) by Sg> in (5.24): If we choose a sequence
from 0(5) such that then we obtain

• s(f, g) = lim g) = lim <fr, Sg> = Sg>.

Consequently, it follows that 0(T) = 0(S*) ii and T= S*Ic,(T). Because
of the inclusions S C and D(S) C it follows from this that T is an
extension of S. Let A be an arbitrary seif-adjoint extension of S such that
0(A) C Then A C and D(T) = D(S*) n H, imply that A c T, conse-
quently A = T. 0
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Our arguments so far enable us to study the operator product A *A, as
well. If A E B(H1, H2), then we already know from Exercise 4.19 that A*A
is seif-adjoint.

Theorem 5.39. Let (H1, <. , . and (H2, <. , . >2) be Hi/bert spaces and let A
be a densely defined closed operator from H1 into H2. Then A *A is a
seif-adjoint operator on H1 with lower bound 0 (A *A is non-negative).
D(A *A) is a core of A. We have N(A *A)= N(A).

PROOF. As A is closed, 0(A) is a Hubert space with the scalar product
<f,g>A=<Af,Ag>2+<f,g>1, and IfUA> 11f111 for allfED(A). Therefore
by Theorem 5.36 there exists a seif-adjoint operator T with lower bound I

for which

0( T) = { f E 0(A): there exists an / E H1 such that

= <f, g >1 for all g E 0(A)),

Tf=f for fED(T).
On account of the equality <Af, Ag>2 + g>1, this definition
says thatfED(T) if and only if AfED(A*) (i.e.,fED(A*A)) and Tf=f
=A*Af+f. Hence it follows that T=A*A + 1, T— 1, i.e., A*A is
seif-adjoint and non-negative. From Theorem 5.36 it follows that D(A *A)
is dense in 0(A) with respect to i.e., D(A*A) is a core of A. If
f E N(A), then Af =0 E D(A *) and A * Af=0. Therefore N(A) c N(A * A). If
f E N(A *A), then = <A *Af, f> = 0. Therefore N(A *A) c N(A), and
thus N(A*A)=N(A). 0
Theorem 5.40. Let A1 and A2 be densely defined closed operators from H into
H1 and from H into respectively. Then A = if and only if

D(A1)= 0(A2) and = lIA2f II
for a/if E D(A1)= 0(A2).

PROOF. Assume that D(A = 0(A2) and IA = JIA2fII for all f E D(A
It follows from (1.4) in the complex case and from (1.8) in the real case
that

<A1f,A1g> = <A2f,A2g> forall f,gE0(A1) —D(A2).

Then the construction of Theorem 5.39 provides the same operator for

A = A1 and A = A2, consequently A If this equality holds, then
for alif E 0(A = we have

= = = IIA2fII2

(here we have used the inclusions D(A c D(A and c D(A2)).
By Theorem 5.39 the subspace D(A = is a core of A1 and A2.
As the A 1-norm and the A2-norm coincide on D(A = it
follows finally that D(A1)= 0(A2) and IIA1fII = I!A2f11 for all fE D(A1)
=0(A2). 0
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EXERCISE

5.37. Let H= L2(O, 1). Then D= C'[O, 1] (the space of continuously differentiable
functions on [0, 1]) is a dense subspace of H. The equality s(f, g) = g> +

defines a sesquilinear form on D such that If II. The norm
• IL is not compatible with .

5.6 Normal operators

A densely defined operator T on a Hubert space H is said to be normal if

D( T) = D( T*) and Tf II = T*f
II

for all f E D( T).

Every seif-adjoint operator is obviously normal.

EXAMPLE 1. Let M c be measurable and let t : M—*C be a measurable
function. The maximal multiplication operator T induced by t (cf. Section
4.1, Example I and Section 5.1, Example 2) is normal. By (5.1) we have
D( T) = D( T*) and for f E D( T) we obviously have

= dx = dx = T*f 112.

EXAMPLE 2. According to Section 4.6 an isomorphism U of a Hilbert space
H onto itself is called a unitary operator on H. We have D( U) = D( U*) = H
and

Il Uf II = U*f
II = hf II for all fE H, i.e., every unitary operator on a

Hilbert space H is normal.

Proposition.
(1) Every normal operator T is closed and maximal normal (i.e., for every

normal operator N the inclusion T c N implies T = N).
(2) Let T be densely defined and closed. Then the following assertions are

equivalent:
(i) T is normal,

(ii) T* is normal,
(iii) T* T= TT*.

(3) If T is normal, then z + T is also normal for every z E 1K.

PROOF.

(1) The T-norm and the coincide on 0(T). Since T* is closed,
that T is closed follows from Theorem 5.1. If N is normal and T c N,
then D(T) c 0(N) = D(N*) C D(T*)= 0(T). Therefore D(T) = 0(N),
and thus T = N.

(2) The equivalences and immediately follow from The-
orem 5.40 with A1 = T, A2 = T* and from Proposition (1).
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(3) We have D((z + T)*) = D(z* + T*)= D(T*)= D(T) = D(z + T) and for
alifE D(T)

I(z + T)f112 = +2 Re <zf, Tf> +11

= z*1211f112 +2 Re <z*f, T*f> + 1

T be a normal operator.
(a) For every z E K we have N(z — T) = N(z* — T*).
(b) If z1, z2 are distinct eigenvalues of T and f1, f2 are corresponding eigen-

vectors, then f1 J..f2.

PROOF.

(a) The statement is evident, as z — T is normal.
(b) By part (a) we have

— z2)<f1,f2> = — <f1,
= <T*fi,f2> - <f1, 0.

Consequently f2> =0. 0
Theorem 5.42. Let T be normal and injective. Then we have:

(i) R( T) is dense,
(ii) T* is injective,

(iii) T 1 is normal,
(iv) R(T) = R(T*).

PROOF. R(T) is dense because of the equalities R(T)' = N(T*)= N(T) =
{0}. Consequently, T* is injective, and we have (T 1)*. There-
fore it follows that

= = (TT*)' = (T*T)'
=

T — 1 is normal. It also follows that

R(T) =D(T') =D((T1)*) =D((T*y') =R(T*).

Corollary. If T is a normal operator, then R(z, T) = (z — T)' is normal for
all z E T). This holds in particular for a self-adjoint T.

Theorem 5.43. If T is normal, then

p(T) = (z E K : (z — T) is continuously invertible)

=

= {ZEK: R(z—

(Compare with Theorems 5.23 and 5.24 for seif-adjoint operators.)
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PROOF. If z E p(T), then (z — E B(H) (in particular, z — T is continu-
ously invertible). If z — T is continuously invertible, then (as T is closed)

R(z— T) =D((z— T)') = D((z— T)')=R(z— T),
and

R(z— T)' =N(z*_ T*) =N(z— T) = {O}.
Consequently R(z — T) = H. If R(z — T) H, then

N(z_T)=N(z*_T*)__R(z_T)'
i.e., z — T is injective. As T is closed and R(z — T) = H, it follows that
(z— E B(H), i.e., z Ep(T).

If z E then R(z — T)' = N(z* — T*)= N(z — (0). Therefore
R(z — T),z= H. If R(z — T) = R(z — T)' (0). There-

0
Theorem 5.44. If T E B( H) is normal, then the spectral radius r( T) equals

PROOF. By Theorem 4.46 we have for all T E B(H)
IIT*TII = sup {I<T*Tf,f> 1)

= sup :JEH, < 1} =

II II for a seif-adjoint T. We obtain by induction
that for a self-adjoint T

= II

T now be normal. Since r(T) < always holds, we only have to
prove that r(T)> Because of the equality r(T)= r(T*) and the
self-adjointness of TT* we have

r( T)2 = r( T) r( T*) = urn
{ I I ( }

I

fl 00

> urn = lim
II (

= IITT*II = 11TH2. 0

EXERCISES

5.38. If T E B(H), then there exist uniquely determined seif-adjoint operators
T1, T2 E B(H) such that T= T1 + iT2. We have T1 = f(T+ T*), T2 = (1/21)
(T — T*). T1 is called the real part of T and T2 is called the imaginary part of
T. The operator T is normal if and only if T1 and T2 commute, i.e., if and
only if T1T2= T2T1.

5.39. Let T be an operator on the Hilbert space H and let M be a closed subspace
of H. The subspace M is said to be invariant under T if T( M n D( T)) c M. If
M and M are invariant under T and D( T) = [M n D( T)] + [M -'- D( T)],
then M is called a reducing subspace of T.
(a) If M is a reducing subspace, then M is a reducing subspace, also.
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(b) If T E B(H), then M is a reducing subspace of T if and only if M is
invariant under T and T*.

(c) M is a reducing subspace of T if and only if TP :j PT for the orthogonal
projection P onto M.

(d) If T is densely defined, 0(T) = D( T*), and M is a reducing subspace of T,
then M is a reducing subspace of T*.

5.40. Let T be a normal operator on H.
(a) If M is a reducing subspace of T, then M is also a reducing subspace of

T*.

(b) We have R(T)= R(T*). The restriction of T onto n D(T) is an
injective normal operator on
Hint: Theorem 5.42.

5.41. Let T be a bounded normal operator on H.
(a) If A E a(T), then there is a sequence from H such that = 1 and

(A — T)f,,-*0.
(b) In complex case we have II = sup (I<f Tf>I : f E 0(T), lUll = 1).

5.42. If 7',, and T are bounded normal operators such that T,, T, then we also
have
Hint: and II T*fJf for all f.

5.43. Assume that H= eflENHfl, P,, is the orthogonal projection onto H,,, and T,, is
an operator on H,,. The orthogonal sum T= of the operators T,, is
defined by

D(T) = {JEH:

Tf= T,,PJ for fED(T).

(a) If all T,, are self-adjoint (normal, closed), then T is also seif-adjoint
(normal, closed).

(b) If 0,, is a core of T,,(n E N), then L{D,, : n EN) is a core of T.
(c) If each T,, is bounded and sup T is also

bounded and
I
TI = sup T,, II: n E N).

(d) If all 7',, are non-negative, then T is also non-negative. The Friedrichs
extension of T is the orthogonal sum of the Friedrichs extensions of T,,.

5.44. (a) Let A be a bounded self-adjoint operator and P an orthogonal projection
in a Hilbert space H. Then PAP is seif-adjoint. (See also exercise 6.13 for
unbounded A.)

(b) A corresponding result for normal operators does not hold in general.
Counterexample is

o 0 l\ /0 0 0\
H=C3:N= 1 0 0J,P=(o I

0 1 0/ \o 0 i!
N is unitary with Ne1 = e2, Ne2 = e3 and Ne3 = e1; P is the projection onto
L.(e2, e3). For dim H =2 such an example cannot exist.

(c) If N is normal and P is an orthogonal projection with PN C NP, then
PNP is also normal.



Special classes of linear operators

6.1 Finite rank and compact operators

Let H1 and H2 be Hubert spaces. An operator T from H1 into H2 is said to
be of finite rank (of rank m) if R(T) is finite-dimensional (rn-dimensional).

Theorem 6.1. Let T be an operator from H1 into H2 such that D(T) = H1. The
operator T is a bounded operator of rank m if and only if there are linearly
independent elements 'fm from H1 and linearly independent elements
g1, .. from H2 such that

Then

forall fEH1.

forall gEH2,

(6.1)

(6.2)

and II T is of rank m if and only if T* is of
rank m. There is no loss of generality in assuming that either { f1, . . . , or

is an orthonormal system.1

PROOF. If T has the form (6.1), then R(T)c L(g1,.. . , For every
j0E{l,. . . ,m} there exists an h10EL(f1, . . . such that and

forj Since 0 and = 1gj0' it follows that all
are contained in R(T). This implies R(T) = L(g1,.. . , hence R(T)

1From Theorem 7.6 it follows that both {f1,.. . and (g1,. . . , g,,,} may be chosen to be
orthonormal if suitable scalar factors are added, i.e., Tf=

129
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is rn-dimensional. Because of the inequality

<f1, f>I II g1H < IIf1II g111,

Tis bounded and 11Th hIg1lL
Assume that T is bounded, dim R(T) = m, (g1, .. . , g,,,} is an ONB of

R(T), and = forj = 1, . . . , m. Then for allf E H1 we have

m m

Tf=
j=1 j=l

It remains to show that the elements f1, . . . , are linearly independent.
Let us assume that this does not hold. There is no loss of generality in
assuming that f1 = Then

m m

Tf <f1,f>g1 = <f,f>(a*g1 +g3), f E H1.
f—I j=2

It would follow from this that R(T) is at most (m — 1)-dimensional, which
contradicts the assumption. If T has the form (6.1), then for all f E H1,
gEH2

m m

<g, Tf> - <f1,f><g, g1> - <g1, g>f1,f>.
j=I j=1

Hence (6.2) holds for T*. If T is of rank m, then (6.2) implies that T* is of
rank m, too. The opposite direction follows the same way. Our construc-
tion shows that (g1, . . . , g,,j can be chosen to be an ONS. If the same
reasoning is applied to T*, then we obtain that { f1, .. . 'fm} can be chosen
to be an ONS.

EXAMPLE 1. If (f1,. . . , and { g1, . . . , g,,,) are orthonormal systems in
H1 and H2, respectively, and , E K, then

T E B(H1, H2) of rank m with II TII = max :j =
1,. . . , m}. We only have to prove the last statement. For alifE H

hhTftI2 = < :j=1,. . . , m}.

j = 1, . . . , m). If E (1, . . . , m) is chosen
such that = max (I : j = , • m}, then

II I ii,01; thus II TIl>

Let H1 and be Hubert spaces. An operator T from H1 into H2 is said
to be compact if every bounded sequence from D( T) contains a
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subsequence for which (Tfflk) is convergent (i.e., T maps bounded sets
onto relatively compact sets; cf. Exercise 6.1).

Theorem 6.2. Every compact operator is bounded. If T is compact, then T is
also compact.

PROOF. Assume that T is not bounded. Then there exists a sequence (f,)
from 0(T) with the properties I and jJ >n for all n E RI.
Therefore, no subsequence has the property that is convergent;
thus T is not_compact. Let T be compact. If is a bounded sequence
from 0(T) = D( T), then there exists a sequence (ga) from D( T) such that

Since T is compact, there_exists a subsequence of
(ga), for which is convergent. Then is also convergent because
of the inequality — T .

On the basis of Theorem 6.2, together with Exercise 4.7, there is no loss
of generality in assuming that compact operators from H1 into H2 always
belong to B(H1, H2).

Theorem 63. Let H1 and H2 be Hi/bert spaces. An operator T E B( H1, H2) is
compact if and only if for every weak null-sequence (J,) from H1.

PROOF. Let T be compact. It is sufficient to prove that every weak
null-sequence from H1 has a subsequence such that Tfflk Let

be a weak null-sequence from H1. As T is compact, there exists a
subsequence such that (Tfflk) is convergent; say g = lim
by Theorem 4.27 (ii) and Theorem 6.2 it follows that Tfflk and thus
g=lim Tfflk=w—lim

T now send every weak null-sequence from H1 to a null-sequence.
Consider a bounded sequence (f,) from H1. By Theorem 4.25 there exists a
weakly convergent subsequence of say fflk Then 0

and T(J,lk by assumption. Therefore is convergent. Conse-
quently, T is compact.

Proposition. Let H be an infinite dimensional Hi/bert space. If T E B(H) is
compact, then 0 E a( T),

PROOF. If (en) is an arbitrary orthornormal sequence in H, then
T is not continuously invertible. 0

Theorem 6.4. Let H1, H2 and H3 be Hi/bert spaces.
(a) If S E B(H2, 1-13) and T E B(H1, H2), and one of these operators is

compact, then ST is compact.
(b) If T1, T2 E B(H1, H2) are compact and a, b E then aT1 + bT2 is com-

pact.
(c) T E B(H1, H2) is compact if and only if T* T is compact.
(d) T E B(H1, 1-12) is compact if and only if T* is compact.
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(e) If (7,) is a sequence of compact operators from B(H1, H2) and
T T is compact.

PROOF.

(a) First let S be compact. If is a weak null-sequence in H1, then by
Theorem 4.27 (ii) the sequence is also a weak null-sequence. As S
is compact, then hence ST is compact. Now let T be
compact. Then —*0 for every weak null-sequence from H1. Since
S is continuous, we also have —*0. Therefore ST is compact in this
case, also.

(b) If in H1, then
T T is also compact by part (a). Let

T* T be compact. If is a weak null-sequence in H1, then T*

T
T is compact, then (T*)* T* = TT* is also compact by part(a). Hence

T* is also compact by part(c).
(e) Let (j,) be a weak null-sequence from H1. The sequence (J,,) is then

bounded, say <C for all n E We show that i.e., for
every >0 there exists an n0 E I%J such that II

<€ for n n0. Let
€>0 be given. Since TJI—*0, there exists an such that

IITmo Til <

Since Tmo is compact, there exists an n0 E for which

T f H for all n n.m0n 2 0

It follows from this that for all n > n0

< H(T— + IITmofnII <€.

We denote by H2) the set of compact operators from B(H1, 1-12)
(the index oo will be justified in Section 7.1). If H= H1 = H2, then we
briefly write

Proposition. It follows from Theorem 6.4 that is a closed two-sided
ideal of B(H).

Every rank 1 bounded operator from H1 into H2 is compact (because T
has the form Tf= <g, f>h with g E H1, hE H2; for every weak null-
sequence we therefore have = By Theorem 6.4(b)
then every finite rank operator is also compact, and by Theorem 6.4(e) so
is every operator that is the limit, with respect to the norm of B(H1, 1-12), of
a sequence of finite rank operators. Actually, these are all the compact
operators.
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Theorem 6.5.: An operator T E B(H1, H2) is compact if and only if there
exists a sequence (Ta) of finite rank operators from B( H1, H2) for which

— T the subspaces N(T)' and R(T)
are separable.

PROOF. One direction has already been proved. Let T now be compact.
First we show that N(T)' is separable. Let {ea : a E A} be an ONB of
N(T)'. As T is compact, for every sequence (an) from A such that

for n It follows from this that for every 0 there exist only
finitely many a E A such that > €. Consequently, the set A is at most
countable, i.e., N(T)' is separable.

Let : n E be an ONB of N(T)' (if is finite dimensional,
then the following reasoning is simpler), and let be the orthogonal
projection onto L(e1, .. . , em). Then P, the orthogonal projection
onto N( T) The operators Tm = TPm are of rank at most m (T,J =

f> Tea); thus they are compact. For every m there exists an fm E H such
that IIfmII=1 and As

fm' (P — it follows that (P — 0. Therefore (T— Tm)fm =
T(P since T is compact. Hence lIT— Tmll 211(T—
0, i.e., T. If n E is a countable dense subset of N(T)', then
{ : n E is dense in R(T). Therefore R(T) is also separable. E

Now we want to study the spectrum of a compact operator. For this we
need the following theorem.

Theorem 6.6. Assume that H is a Hubert space, T E A E 9(, A 0.

Then R(A — T) is closed.

PROOF. Let g E R(A — T). Then there exists a sequence from H such
that = (A — If is the orthogonal projection of onto
N(A — T)', then = (A — If the sequence is not bounded, then
we can assume that

I I

00 (since this holds for some subsequence of
(a)). For = I and (A — T is
compact, there exists a subsequence (ha) of (ha), for which (Thflk) is
convergent. Then the sequence link = A f,1,. IJ + Thflk) tends to an
element h E H. Because of the relations E N(A — T)' and I we
have hE N(A— T)' and lIhIl = 1. On the other hand, (A — T)h (A

— =0; thus h E N(A — T). This is a contradiction.
The sequence (J,) is therefore bounded. Since T is compact, there exists

a subsequence (4) of for which (Tfflk) is convergent. Then the
sequence fflk = A1 ( + also tends to an element f E H, and we have

g = urn (A— T)fflk = (A— T)f E R(A— T). 0

Theorem 6.7. Let H be a Hilbert space over and let T E We have
a(T)fl(IK\{0))= If His infinite dimensional, then a(T)=
a,, ( T) U { 0). The operator T has at most countably many eigenvalues that can
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cluster only at 0. Every non-zero eigenvalue has finite multiplicity. The
number A 0 is an eigenvalue of T if and only if A* is an eigenvalue of T*.

PROOF. 0 E G(T) by the proposition following Theorem 6.2, if H is infinite
dimensional. To prove a(T)fl (Il(\{0})= n it is sufficient to
show that if A 0 is not an eigenvalue of T, then A E a( T). For this, let us
assume that A 0, N(A — T) =0. Since R(A — T) is closed, A — T is a
bijective mapping from H onto the Hubert space R(A — T). In what follows
we show that R(A — T) = H. From this we can infer that A E p(T), i.e.,
AEa(T).

Let us now assume that R(A — T) H. Define H0, and H,, for n> 1 by
the equalities H0 = H and = R((A — Then for n E I%J the subspace
Hi,, +i is a closed subspace, strictly smaller than I-I,, (the subspace H,, + is

closed, because (A — is continuous and is closed; from =
it would follow that H= (A — =(A — = H1). If for every

we choose an such that then (J,) is
an orthonormal sequence. Since T is compact, —*0. On the other hand,
for all n E fkJ

Here (A — belongs to consequently it is orthogonal to f,,. There-
fore,

> Al {A(.

This contradicts the fact that Hence R(A — T) = H.

Now we show that the multiplicity of every non-zero eigenvalue A is
finite. If we had dim N(A — T) = oo, then there would exist an orthonormal
sequence from N(A — T). Since T is compact, we would then have

which contradicts the equalities = IAI = IAI.
In the next step we show that the eigenvalues can cluster only at 0. It

also follows from this that there are at most countably many eigenvalues.
Let us assume that there exists a sequence (An) of pairwise different
eigenvalues of T such that -*A 0. Then there exists a sequence (Jr)
from H such that II f,, II

= 1 and — =0. We know from linear algebra
that the family : n E is linearly independent. Let = LU1, . . .

(H0={0}), E H,,E3 such that = I for n Then
hence On the other hand, for all n E

= — —

where — E since it follows from the equality =
that

n n—i

= =
j=1 j=1
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Because of the relation I we therefore have > which
contradicts the fact that

The last assertion follows from the equalities a(T*) a(T)* and a(T*)
(0)) = n (!K\ (0)) (the last equality holds, as T* is also com-

pact). D

Theorem 6.8. Let H be a Hi/bert space and let T E
eigenvalue of T (hence A* is an eigenvalue of T*) then
NQt* — T*) = R(A — have the same dimension.

PROOF. We have dim N(A — T) <dim N(A* — T*) or dim
dim N(A — T). We treat the first case. There exists then
mapping V of N(A — T) into N(A* — T*) = R(X — T)'. Let
orthogonal projection onto N(A — T). The operator P is of finite
hence compact. For the compact operator T1 = T + VP we then
N(A — T1) = (0), i.e., A is not an eigenvalue for T1. By Theorem 6.7,
then not an eigenvalue for i.e., (0) = N(A* — T
(R(A — T) R(V))'. Consequently, R(V) = R(A — T)', and
dim N(A— T)=dim R(V)=dim R(A— T)'=dim N(A*_ T*). The
case can be treated similarly.

EXERCISES

6.1. Let H be a Hubert space. A subset A of H is said to be compact provided that
every sequence from A has a subsequence that is convergent in A. The
subset A is said to be relatively compact if A is compact.
(a) A is compact if and only if every open cover of A contains a finite cover of

A.

(b) An operator T from H1 into H2 is compact if and only if the set
TA = (Tf : f E A) is relatively compact for every bounded subset A of
D(T).

(c) A subset A of 12 is relatively compact if and only if it is bounded and for
every e > 0 there exists an n0 E such that for all f= E A we have

(d) Let A be a set of continuous functions defined on W, having the following
properties: A is bounded in the sense of A is on
every compact subset of and for every >0 there exists an r > 0 such
that 5 dx <€ for all JEA. Then A is a relatively compact
subset of

6.2. (a) Let (ta) be a null-sequence from C. The equalities D(T)= 12 and Tf=(t,f,1)
for all f= E 12 define a compact operator T E B(12).

(b) Let t : [0, 1] X[0, be continuous. The equalities D(T)= L2(0, I) and
Tf(x) = 5 y)f(y) dy for all f E L2(0, 1) define a compact operator
TEB(L2(0, 1)).

6.3. If T is a compact operator on the Hubert space H, then the set T(f E H: Ifli
1) is compact.

If is an
N(A— T) and

N(A* — T*).<

an isometric
P denote the

rank,
have
A*is

thus
other

D
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6.4. A sesquilinear form .) defined on a Hubert space is said to be compact if
0 and imply

(a) Every compact sesquilinear form is bounded.
(b) A sesquilinear form is compact if and only if the operator induced by it

(cf. Theorem 5.35) is compact.

6.5. (a) Let T be a compact operator on H. For every A E A 0 we have the
Fredhoim alternative: Either the equations (A — T)f= g and (A* — T*)h = k
are uniquely solvable for all g, k E H or the homogeneous equations
(A — T)f= 0 and (A* — T*)h =0 have nontrivial solutions.

(b) The spaces of solutions of the two homogeneous equations have the same
dimension, and (A — T)f= g is solvable if and only if g is orthogonal to
every solution h of the equation (A* — T*)h =0.

6.6. Let H be a separable Hilbert space.
(a) If (Pa) is an increasing sequence of finite rank projections on H such that

P., I, then P,., T T on H.
(b) B(H) (cf. Exercise 4.8).

6.6'. Let A E B(H2, H3) and B E B(H1, H2). If A and B is compact, then

6.2 Hubert-Schmidt operators and Carleman
operators

We begin by studying one of the most important classes of compact
operators, the class of Hubert-Schmidt operators. Let H1 and H2 be Hubert
spaces. An operator T E B(H1, H2) is called a Hubert-Schmidt operator if
there exists an orthonormal basis : a E A) of H1 such that

aEA

Theorem 6.9. An operator T E B(H1, H2) is a Hubert-Schmidt operator if
and only if T* is a Hubert-Schmidt operator. Then

/ I \1/2
II

< (¼
Tfail2)

= (¼
(6.3)

aEA /3EB

for arbitrary orthonormal bases : a E A) of H1 and : /3 E B } of H2.

The common value of the square roots in (6.3) is called the Hi/bert-
Schmidt norm of T and is denoted by II T ill. We have 1 T lii Till =

because of (6.3). The set of Hubert-Schmidt operators is denoted
by B2(H1, H2) or B2(H) (for the justification of the index 2, cf. Section 7.1).
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It is not hard to show that B2(H1, H2), equipped with the Hubert—Schmidt
norm, is a Hubert space (cf. Exercise 6.11).

PROOF. Let T E B(H1, H2) be a Hubert-Schmidt operator and let {ea
a E A) be an ONB of H1 such that E B) is an
arbitrary ONB of then

= =
/3EB /3EBaEA aEA/3EB

=
aEA

i.e., T* is a Hubert-Schmidt operator. One can prove the converse in the
same way and obtain the equality sign in (6.3) at the same time. If

: /3 E B) is an ONB of H2, then for all f E H1

IITfII2 = Tf>12 <

II Hence, (6.3) is completely proved. U

Theorem 6.10. An operator S from H1 into H2 is the restriction of a
Hi/bert-Schmidt operator T if and only if S is closable and D(S) contains an
orthonormal basis : y E F) such that , II

112 < 00. Every Hi/bert-
Schmidt operator is compact.

PROOF. Let T E B(H1, H2) be a Hubert-Schmidt operator and let S c T.
Then S is bounded, hence 0(S) = 0(5). Consequently, 0(S) is a Hubert
space, so it contains an ONB : y E F). Since (er: y E F) is contained
in an ONB of H1, it follows by Theorem 6.9 that < oc.

Let S now have the given property. We show that S is compact (the
compactness of an arbitrary Hubert-Schmidt operator follows from this).
Let be in 0(S) and assume >0. The subset :

for some n E of : y E F) is at most countable; we denote it
simply by {e1, e2, . .

. }. We have

and
I j

Because of the inequality

{

1/2

=
{

1/2,

the series >Se1 is convergent. Since S is closed, it follows that

=
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It follows from this that for all N E and n E r%l,

r

+
j<N j>N j>N

— ç —

+ IISejII2J
j<N j>N

Because of the inequality < 00 and the boundedness of
there exists an N0 E such that

1/2

for all n E
j>N0 J

Since 0, there exists an n0 E such that

forall n
j <N0

It follows from this that <€ for n >n0, hence that i.e., that S
is compact. —

_____

Since the compact operator S is continuous, we have D(S) = D(S). We
define an extension T of S by the equalities D( T) = H1 and

T(f+g)=Sf for fED(S),gED(S)'.
T is a Hubert-Schmidt operator, since T E B(H1, H2) with

II = IS
(cf. Exercise 4.7) and if { : /3 E B) is an ONB of 0(S)', then y E
I'}u{gfl :/3EB} is an ONB of H1 such that

+ = <
/3

Corollary. Let T E B( H1, H2), S E B( H2, H3), and let one of these operators
be a Hubert-Schmidt operator. Then ST is a Hubert-Schmidt-operator.
B(H2) is therefore a two-sided ideal of B(H).

PROOF. Let T be a Hubert-Schmidt operator and let (ea : a E A) be an
ONB of H1. Then

< IITeaII2 < 00.
aEA aEA

If S is a Hubert-Schmidt operator, then T*S* is a Hubert-Schmidt
operator using Theorem 6.9 and what we have just proved. Hence ST =
(T*S*)* is also a Hilbert-Schmidt operator. 0

Now we return to our earlier definition of a Hubert-Schmidt operator
(cf. Section 4.1, Example 3).
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Theorem 6.11. Let M1 and M2 be measurable subsets of W and
respectively2. The operator T E B(L2(M1), L2(M2)) is a Hubert-Schmidt oper-
ator if and only if there exists a kernel K E L2(M2 x M1) such that

Tf(x)
= f K(x, y)f(y) dy almost eveiywhere in M2, f E L2(M1). (6.4)

The adjoint operator T* is then induced by the adjoint kernel K + (x, y) =
K(y, x)*.

PROOF. If T is of this form, then T E B(L2(M1), L2(M2)), by Section 4.1,
Example 3. If {ç : n E and (fm : mE are orthonormal bases of
L2(M1) and L2(M2), respectively, then (n, m) E x is an ONB of
L2(M2 X Mi), where y) (ci. Theorem 3.8). Hence

= I<Ten,fm>(2 = f f dx
n n,m n,m M2 M1

=
gnm>12 11K112 < 00,

n, m

i.e., T is a Hubert-Schmidt operator.
Let T now be a Hubert-Schmidt operator, and let fm and g,,,,, be

defined as above. Let us define cnm by

cnm = <fm' Tea> for (n, m) E X

Then

= = = III < oo;
n,m n,m n

so there exists a K E L2(M2 X such that

forall

If T0 denotes the operator induced by K in the sense of (6.4), then with
h(x, y) = g(x)f(y) we have for all f E L2(M1), g E L2(M2) that

<g, T0f> = f g(x)*f K(x,y)f(y) dy dx

= <h, K> = cnm<h, = <fm'
n,m n,m

= = <g, Tf>.
m n

Hence T = T0.

2 M1 and M2 can be replaced by arbitrary measure spaces in most cases. Sometimes we have
to assume that the are a-finite.
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Theorem 6.12. Let T be an operator from a Hubert space H into L2(M).
Then the following assertions are equivalent:

(i) T is the restriction of a Hi/bert-Schmidt operator,
(ii) there exists a function k : such that IIk(')H E L2(M) and

Tf(x) = <k(x), f> almost everywhere in M, f E 0(T),

(iii) there exists a function K E L2(M) such that

ITf(x)I IfIIK(x) almost everywhere in M, f E D(T)

(of course, the sets of exceptional points in (ii) and (iii) depend on f and on the
choice of the representative of Tf.)

PROOF. (i) implies (ii): Let T c S and let S E B2(H, L2(M)). We show (ii)
for the operator S. Since S is compact, N(S)' is separable (Theorem 6.5).
Let (e1, e2,... } be an ONS of N(S)'. Then

I dx = < oo;

consequently, by B. Levi's theorem, < oo almost everywhere in
M and dx < oo. Hence we can define the function k:
by the formula

if

otherwise.

With this function k we have for all f E H that

= Sf(x)

almost everywhere in M. Because of the equality Jk(x)112 = the
function IIk()It belongs to L2(M).

(ii) implies (iii) by taking ic(x) = IIk(x)IL
(iii) implies (i): It follows from (iii) that

II
< 11f112f K(x)12 dx

for alif E 0(T). So T is bounded. Talso_satisfies (iii). This can be seen in
the following way. For every f E D( T) = D( T) there exists a sequence
from 0(T) such that therefore also —÷Tf. By Theorem 2.1 there
exists a subsequence (J,Z) such that Tf(x) almost everywhere.
Hence

Tf(x)I = lim lim IIfflkIIK(x) = IfIk(x).
k—>cc

k(x) = n

0

n
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almost everywhere. This holds also for the operator S E B( H, L2( M))
defined by

S(f+g)=Tf for JED(T),gED(T)'.
We show that S is a Hubert-Schmidt operator and 1112 fMk(x)12 dx. It
is obviously sufficient to show that

dx for every finite ONS {e1, . . . ,

in H. Let be an arbitrary (however, in what follows fixed) representa-
tive of Let us define A L(e1, . . . , by the equality

=

Then A = S (L(e1, . , e) in the sense of L2(M). Since the set Lr(ei, . . . , of
linear combinations of e1, . . . , with rational coefficients is countable,
there exists a subset N of M of measure 0 for which

IAf(x)I If llK(x) for all XE M\N,f E L7(e1, . . . , en).

E L(e1, .. . , en), and we choose rational sequences
so that afk aj as k —* 00, then with fk = a1, e3 it follows that

IAf(x)I = urn IAfk(x)l lim IIfkIIK(x) = IIfIIK(x)

for all x E M\ N. Consequently,

(Af(x)I IIfIk(x) for all x E M\N,f E L(e1, . . . , en).

For every x E M \ N the mapping fi—÷ Af(x) is a continuous linear functional
on L(e1, . . . , whose norm is not greater than ic(x). Hence there exists a
k(x) E L(e1, . . . , ç) c H such that IIk(x)Il and

Af(x) = <k(x),f> for x E M\N,f E L(e1,.. . ,

It follows that

= 'Mj=I I<k(x), dx
IM

dx dx. o

A linear operator T from a Hubert space H into L2(M) is called a
Carleman operator if there exists a function k M—*H such that for all
fED(T)

Tf(x) = <k(x),f> almost everywhere in M. (6.5)

By Theorem 6,12 every Hubert-Schmidt operator from H into L2(M) is a
Carleman operator.

A function k M—> H is said to be measurable if the function
is measurable for every f E H. If T is a
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Carleman operator and k is an inducing function of T (in the sense of
(6.5)), then the function measurable for all fE 0(T). This
obviously also holds for all f E D( T). If P denotes the orthogonal projec-
tion onto 0(T), then <Pk(),f> = <k(S), Pf> is therefore measurable for
every f E H, i.e., Pk(.) is measurable, and for all f E D(T)

Tf(x) <Pk(x), f> almost everywhere in M.

Consequently, there is no loss of generality in assuming that k is measur-
able.

If k M—*H is measurable, then the equalities

D(Tk)= (fEH: EL2(M)},
66TJ(x) = <k(x), f> almost everywhere in M, f E D( Tk),

define an operator Tk from H into L2(M). The operator Tk is called the
maximal Carleman operator induced by k. An operator is a Carleman
operator if and only if it is the restriction of a maximal Carleman operator.

Theorem 6.13.
(a) Every Carleman operator is closable. The closure of a Carleman operator

is a Carleman operator. Every maximal Carleman operator is closed.
(b) If T1, T2 are Carleman operators (with inducing functions k1, k2) and

a, b E C, then aT1 + bT2 is a Carleman operator (with inducing function
ak1 + bk2).

(c) If T is a (maximal) Carleman operator from H1 into L2(M) (induced by
k) and S E B(H2, H1), then TS is a (maximal) Carleman operator from
H2 into L2(M) (induced by S*k).

(d) Let T be an operator from H into L2(M), and let P be the orthogonal
projection onto D( T). The operator T is a Carleman operator if and only
if TP is a Carleman operator.

(e) If H is separable and k1, k2 are inducing functions of a Carleman
operator T, then Pk1(x) = Pk2(x) almost_everywhere in M, where P
denotes the orthogonal projection onto D( T).

PROOF.

(a) Since an operator is a Carleman operator if and only if it is a
restriction of a maximal Carleman operator, it is sufficient to show that
every maximal Carleman operator is closed. Let k M—> H be measur-
able, and let Tk be defined by (6.6). Take a sequence (Jo) from D(Tk)
for H, L2(M). Since (for
all x E M), we have

= g(x) almost everywhere in M.

Hencef E D(Tk) and T,J= g, i.e., Tk is closed.
(b) This assertion is obvious.
(c) Again, it is sufficient to show the statement for maximal Carleman

operators. Let Tk be the maximal Carleman operator induced by k.
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Then

D(TkS) = {fEH2 : SfED(Tk)} = (fEH2: <k(), Sf>EL2(M)}
= {fEH2 :

TkSf(x) = <k(x), Sf> = <S*k(x),f> almost everywhere in M,

i.e., TkS is the maximal Carleman operator induced by S*k.
(d) By part (c), along with T the operator TP is also a Carleman operator.

Since T is a restriction of TP (we have D(TP) = D(T) + D(T)' and
T= along with TP the operator T is also a Carleman
operator.

_____

(e) If (e1, e2, . .
. } is an ONB of D(T) that is contained in D(T), then it

follows that

<k1(x) — k2(x), = 0 almost everywhere, for all n E
and thus

— k2(x))112 = t<ki(x) — k2(x), en>12

= 0 almost everywhere. U

Theorem 6.14 (Korotkov [46]). An operator T from H into L2(M) is a
Carleman operator if and only if there exists a measurable function K : M—. R
such that for al/f E D(T)

I If IIK(x) almost everywhere in M. (6.7)

PROOF. If T is a Carleman operator induced by k, then (6.7) holds with
= IIk(x)H. Let (6.7) now be satisfied. Then there exists a bounded

function g: for which gic E L2(M); for example we can choose
the function

If G E B(L2(M)) is the operator of multiplication by g, then for all
fE 0(T),

IGTf(x)I If II g(x)ic(x) almost everywhere in M.

By Theorem 6.12 the operator GT is therefore the restriction of a Hubert-
Schmidt operator and there exists a function k': such that GTf(x)
= <k'(x), f> almost everywhere in M. With k(x) = g(x) 'k'(x) we there-
fore have for all f E D( T) that

Tf(x) = g(x)'<k'(x),f> <k(x),f> almost everywhere in M. U

Theorem 6.15. Let H be a separable Hi/bert space, and let T be an operator
from H into L2(M). The operator T is a Carleman operator if and only if the
series

I

converges almost everywhere for every orthonormal system
(e1, e2, . .

. ) in 0(T).
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PROOF. If T is a Carleman operator, then, as in the proof of Theorem 6.14,
we can find a g : M—>(O, oo) for which GT is the restriction of a Hubert-
Schmidt operator. Then for every ONS {e1, e2, . .

. } from D(T)

f dx = < 00.

Consequently, by B. Levi's theorem,

= < oc almosteverywhereinM.

Division by g2 gives the assertion.
Now suppose the series

I

is almost everywhere convergent for
every ONS (e1, e2, . .

. } in 0(T). First we show: If {e1, e2, . . . } is an
arbitrary ONS in 0(T), then TIL(ei

e2,
is a Carleman operator. For this,

let M0 = (XE M: = oo}. M0 is of measure zero by our assump-
tion. The function

for xEM\M0,k(x)-1
L 0 otherwise,

induces TIL(ej e2,...)' since for f E L(e1, e2, . . . )

Tf(x) = =

= <k(x), f> almost everywhere in M.

Let {e1, e2,... } now be an ONB of D(T), let k be an inducing function of
T0 = TIL(ei, e2,...) and let Tk be the maximal Carleman operator induced by
k. We show that T c Tk. For this, let fE 0(T), let (f1,f2,... } be the
ONS that arises from (f, e1, e2,... ) by orthogonalization, and let k' be
an inducing function of T1 = TIL(f1f2 ..

.
Because of the inclusion L(e1,

e2,. . . ) C f2,...) we have T0 c T1; hence k and k' are inducing
functions of T0. If P is the orthogonal projection onto 0(T) =
D(T0)= L(e1, e2,...), then by_Theorem 6.13(e) we have Pk'(x) = Pk(x)
almost everywhere. Since f E D( T), it follows from this that

= <Pk(x),f> = <Pk'(x),f> = <k'(x),f> = T1f(x);

sof E D(Tk) and Tf= T1f= TJ. EJ

Theorem 6.16. An operator Tfrom a separable Hi/bert space H into L2(M) is
a Carleman operator if and only if almost everywhere in M for
every null-sequence from D( T).

PROOF. It is evident from the definition that every Carleman operator has
this property. It remains to prove the reverse direction. By Theorem 6.15 it
is sufficient to show that the series E,,I is almost everywhere
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convergent for every ONS (e1, e2, . . . ) from 0(T). Let (e1, e2, .
. } be an

ONS in D(T). Assume that there exists a measurable subset N c M such
that A(N) >0 and = oo for x E N (A stands for Lebesgue
measure). For all m, 1 E let us define Nm,i by the equality

( 1

Nm,i X E N: >
n=1

Then N = U1 for every m E and there exists an 1(m) E f%J such
that

A(Nm,l(m)) > (l_3m)X(N).

Consequently, for N0 = flm E 1(m) we have

A(NO) (i 3_m)X(N) > 0.
rn—i

For all m E we have
1(m)

> for xE N0.
n=i

By Exercise 6.9, for every m E there exist finitely many elements (Xmj) =
i' 1(m)) E j = 1, 2, . . . , p(m) for which we have: km,j12

= ( 2m2 and for every X E Cam) with 1x12
m2 there exists ajEfi, . . . ,p(m)) for which

1(m)

1.
n=1

Let us set

1(m)

gm,j

Then for every m E and for every x E N0 there exists aj E {1,.. . , p(m))
such that

1(m)

ITgrn,j(x)I 1.

Thus, for the sequence

(ga) = (g1, g1,2, • g2, . . . , g3 . . . )

we have: and for every x E N0 there exists an arbitrarily large n E
such that 1. This contradicts the assumption. 0
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Theorem 6.17. An operator T from L2(M1) into L2(M2) is a Carleman
operator if and only if there exists a measurable function K: M2 x M1 C
such that K(x, ) E L2(M1) almost everywhere in M2 and

Tf(x)
= f K(x, y)f(y) dy almost everywhere in M2, f E D( T). (6.8)

Such a kernel K is called a Carleman kernel.

PROOF. If T is induced by a Carleman kernel K in the sense of (6.8), then
the assumption of Theorem 6.14 (Korotkov) is fulfilled with K(x)=
fK(x, so T is a Carleman operator. If T is a Carleman operator, then

we proceed as in the proof of Theorem 6.14. GT is then a Hilbert-Schmidt
operator from L2(M1) into L2(M2); therefore, by Theorem 6.11, it is
induced by a kernel K' E L2(M2 x M1). The kernel K(x, y) = g(x) 'K'(x, y)
is then a Carleman kernel and it induces T. El

Let K: be a measurable function, and let = {x E M:
<n and xI <n}. Let

D(Tko) = (g E L2(M): there exists an n E such that

g(x) =0 almost everywhere in M\ Ma).

For every g E D( Tk the equality

= dx for all f E H

uniquely defines an element Tk 0g, since because of the inequalities

dx IIf$!

the function f> dx is a continuous linear functional on
H. The mapping Tk 0g is obviously linear. Tko is therefore an operator
from L2(M) into H; D(Tk is dense in L2(M). The operator Tk is called
the semi- Carleman operator induced by k.

Theorem 6.18. We have (Tk, o) * = Tk. (In what follows we write for

PROOF. By the definition of Tk,o we have for all f E D( Tk) and g E D( Tk

<g, TJ> = <g, <k(),f>> = I g(x)*<k(x),f> dx =

i.e., the operators Tk and Tk, are formal adjoints of each other; therefore
Tk c T It remains to prove that D(T Then
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for every g E and all n E we have

dx = <g, = f g*(x)T0f(x) dx.

Consequently,

— T0f(x)} dx = 0 for all g E

Because of the relation {(k(.), f> — E it follows from
this that

T0f(x) = <k(x),f> almost everywhere in

As this holds for all n, it follows that <k(s), f> = Tk* E L2(M), i.e.,
JED(T,j. D

If K: M2 x M1 C is a Carleman kernel and k denotes the mapping
k: L2(M1), k(x) = K(x, .), then we write TK = Tk and TK,Q = Tk, It
follows from the definition of Tk, (by Fubini's theorem) that for all
fE D(TK,o) we have

TK, 0f(x) = fM2K(Y, x)*f(y) dy almost everywhere in M1.

Theorem 6.19. Let T be a densely defined Carleman operator from L2(M1)
into L2( M2) that is induced by the Carleman kernel K. The adjoint T* is a
Carleman operator if and only if K+ is a Carleman kernel (K + (x, y) =
K(y, x)* for (x,y)E M1 X M2) and TD TK+o. Then T* is induced by Kt

PROOF. By assumption, T c TK. As T is closable, D(T*) is dense. If T* is
defined by the Carleman_kernel H: M1 X then T* c TH. Conse-
quently, T= T** D = TH TH, It remains to prove that H(x, y) =
K + (x, y) almost everywhere in M1 X M2. Let

= {xEML: and

Then HIM
,, ><

L2( M1 X and H + IM2 < M, E L2(M2 X M1 ,j. Hence
the function II as a kernel on M2 x M1, is a Carleman kernel. There-
fore, for every n E TH 0IL2(M, is a Carleman operator induced by H +
and K. Consequently, by Theorem 6.13(e) we have H y) = K(x, y)
almost everywhere in M2 x M1,,, for every n E Ri. Hence H y) =
K(x, y) almost everywhere. In particular, K + is a Carleman kernel and
T TK+ If K + is a Carleman kernel and T TK+,o, then T* = T* c
(TK+, o)* = TK+; so T* is a Carleman operator induced by K LI



148 6 Special classes of linear operators

Corollary. If T is a symmetric Carleman operator on L2(M) with inducing
kernel K, and T* is also a Carleman operator, then the kernel K is
Hermitian, i.e., K(x, y) K + (x, y) almost everywhere. In particular, the
kernel of a self-adjoint Carleman operator is Hermitian.

EXERCISES

6.7. Let H1 and H2 be Hubert spaces and let H1 be separable. A closable operator
T from H1 into H2 is the restriction of a Hubert-Schmidt operator if and only
if there exists an orthonormal basis (e1, e2, . .

. } of 0(T) such that
<oc (cf. Theorem 6.10).

6.8. Let H1 be a separable Hubert space and let T be an operator from H1 into
L2(M). Assume that
(i) If (f,,) is a null-sequence from 0(T) and is convergent almost

everywhere in M, then almost everywhere,
(ii) there exists an orthonormal basis of 0(T) such that < oc

almost everywhere in M.
Then T is a Carleman operator.
Hint: cf. Theorem 6.15. Remark: (i) cannot be replaced by the assumption
of the closability of T.

6.9. For every m E and C > 0 there are finitely many elements =
(h,. .

1,..., p=p(m, C), for which 2C' and for
which we have: for every x = . . . E Ctm with xI C there exists a
jE(I,. . . ,p) such that

1.

6.10. If K is a Hermitian Carleman kernel over M x M and TK,o is bounded, then
TK is from B(L2(M)) and TK is seif-adjoint.

6.11. Let H1 and H2 be Hubert spaces.
(a) The equality <T, S> = a scalar product on the

space B2(H1, H2) (here let tea : a E A) be an arbitrary orthonormal basis
of H1). The corresponding norm is the Hubert-Schmidt norm.

(b) B2(HI, H2) is a Hilbert space with this scalar product.
(c) With this norm, B2( H) is a Banach algebra (without identity element in

the case dim H is infinite).
(d) We have <5, T> = <T*, S*> for all S, T E B2(H1, H2).

6.12. Let T be an operator on L2( M), and let (z0 — T) ' be a Carleman operator
for some z0 E p( T).
(a) (z — T)' is a Carleman operator for all z E p( T).
(b) If T is seif-adjoint and y) is the kernel of (z — T) ' for some

z Ep(T), then x)*.
Hint: Notice that [(z — T) 1]* = (z* — T) 1, and use Theorem 6.19.
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6.3 Matrix operators and integral operators

Let H1 and H2 be infinite dimensional Hubert spaces over K, let : n E
} and { : n E be orthonormal bases of H1 and H2, respectively, and

let (afk)J be an (infinite) matrix with afk E K. (If H1 or H2 is finite
dimensional, then some simplifications arise.) First we show that the
formulae

D(A)
= {

E H1 : lim afk<ek, f> exists for all j E and

(6.9)
j=1 k=1

)

Af=
(

for fED(A)
j=1 k=1

define a linear operator from H1 into H2: 1ff, g E 0(A) and a, b E K, then
the limit

in in m

k=1
af+ bg> urn

= + afk<ek, g>

obviously exists, and we have

2 2

a alk<ek, f> + b afk<ek, g>
j=1 k=1 j=I k=1

2

<2 alk<ek,f>
j=1 k=1

+ 1b12 g> < oo•
j=1 k=1

)

Therefore, it follows that af+ bg E 0(A) and A(af+ bg) = aAf+ bAg.

Theorem 6.20. Let H1, : n E }, and { : n E be as above. If
('bk) is a matrix such that E and A is the operator
from H1 into H2 defined by (6.9), then the following holds: D(A) is dense in
H1, A * is a restriction of the operator A ± from H2 into H1 induced by the
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adjoint matrix (a) = analogously to (6.9):

D(A
= { g E H2:

k
a g> exists for all j E N, and

<00
1=1 k=1

(
for

j=1

If we also have
1 I

afk 2< oc for all j E N, then A is closed and A * is

densely defined.

PROOF. For all n E N we have

2

<ek, = and 9j,< <ek,
k=1 j=1 k=1

<00.

Consequently, : n E N)) c D(A); so D(A) is dense. Let A0 =
•

We show that =A this then implies that A* CA It is

easy to see that A0 and A + are formal adjoints of each other, i.e., that we
have A + c What remains is to prove that D(A Let g E

Then, because of the relation ek E D(A0), we have for every k E N
that

= =

Consequently,
2

g> = < 00,
k=1 j=I

i.e., g E D(A
If we also have < oo, then A = (Afl*, where

A Hence A is closed, and A* is densely defined.

Theorem 6.21. Let H1 and H2 be separable Hilbert spaces, and let T be a
densely defined operator from H1 into H2. The operator T is closable if and
only if there exist orthonormal bases : n E N) of H1 and

: n E N) of H2, and a matrix with the properties: d afk 12< 00

for all k E N, 2< oo for all j E N, and T is a restriction of the
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operator A defined by (6.9). The orthonormal bases can be chosen from D( T)
and D(T*), respectively.

PROOF. If T has this form, then it is closable by Theorem 6.20. If T is
closable, then there are orthonormal bases : n E } of H1 in D( T) and
(since D(T*) is dense) : n E of H2 in D(T*). With

alk=<eI,Tek>—<TeJ,eJ>,

we then have

IaJkI = <
k=1

= < 00,

for all k E and for allj E respectively. For every f E D( T)

2 2

afi/e,<,f> =
j=1 k=I k=1

=
I<T*eJ,f>12

=
Tf>12

= <

Therefore f E D(A). Moreover, we have

Tf = <eJ, Tf>eJ = <T*eJ,f>eJ =
(j=1 j=1 j=1 k=1

=
(

= Af.
k=1 D

Proposition. If T is a symmetric operator on a separable Hi/bert space H,
then there exists an orthonormal basis { : n E and a Hermitian matrix
(afk) such that <co for allj E and

Tf= forall JED(T).
j=1 k=1

PROOF. In the proof of the preceding theorem choose for n E } and
: n E Fki} the same orthonormal basis in 0(T) C D(T*). The series of

equalities

ajk = <e1, Tek> = <TeJ,ek> = <ek, Tej>* 4
shows this matrix is Hermitian.
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Corollary. If T is a symmetric operator on 12 and '2, 0C D( T), then there
exists a Hermitian matrix (afk) such that < oo for allj E and

Tf =
= (

for all f E D( T).
k=1

This can be deduced from the previous proposition if we choose the
basis : n E FkJ} so that =

Now we prove some simple criteria for the boundedness of the operators
that are induced by matrices in the sense of (6.9).

Theorem 6.22. If kIafkI = C2 < oo, then the operator A defined by (6.9) is
a Hubert-Schmidt operator, and I!IA = C.

PROOF. By Theorem 6.20, A is densely defined and closed. For the basis
n E we have

=
= = C2.

Therefore, by Theorem 6.10, A is a restriction of a Hubert-Schmidt
operator. Since A is densely defined and bounded, we have D(A)= D(A)=
H1, and thus A E B(H1, H2). Hence A is a Hubert-Schmidt operator, and
MIAMI=C. U

Theorem 6.23. Let = bfk furthermore, let

forall
k

and

ki for all k E

then the operator A defined by (6.9) is from B(H1, H2), and IA C1 C2.

PROOF. For every f E H1 we have

=

{
Icik<ek,f>I}

k

k

=
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It follows from this that H1 = D(A) and IlAf II CIC2IIJ U
for alif E D(A)=

H1.

Proposition. The assumptions of Theorem 6.23 are satisfied in particular if

for all j E
k

and

k E

For the proof, in Theorem 6.23 let us take bJk =
I

a a = a a

for

a and we have For the
proof, let us define = CJk =0 for j <k and

bjk Cik for k j.
Then we have

<Fh/2fJx_1/2dx = 2,

and

(

k

=

j k E respectively. The assertion follows from this with
the aid of Theorem 6.23.

Similar arguments can be made for operators T from L2(M1) into L2(M2),
that are induced by a measurable function (kernel) K: M2 X Let K
be such a kernel. The equalities

D( TK)
= { f E L2(M1) : K(x, .)f is integrable over M1 almost

everywhere in M2, and JK(. ,y)f(y) dy is in

TKf(x) = f K(x,y)f(y) dy almost everywhere in M2 (6.10)
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define a linear operator from L2(M1) into L2(M2) (notice that the notation
is compatible with that of Section 6.2). Special cases of such operators

(Hubert-Schmidt operators and Carleman operators) have already been
studied in Section 6.2. Now we want to give a further criterion for the
boundedness of an integral operator (formally this is an exact analogue of
Theorem 6.23 for matrix operators).

Theorem 6.24. Let k : M2 x M1 C be measurable, and let K1 and K2 be
measurable functions defined on M2 X M1 such that K(x, y) =
K1(x, y)K2(x, y) and

dy < almost eveiywhere in M2,

1K2(x, y){2 dx almost eveiywhere in M1.

Then the operator TK is in B(L2(M1), L2(M2)), and ii C1C2. The adjoint
is equal to the operator TK + induced by the adjoint kernel K

PROOF. For every r >0 let M2(r) = {x E M2: lxi <r). The Lebesque
measure of M2(r) is finite. For every f E L2(M1) Fubini's theorem implies
that

f IK(x,y)f(y)ldx dy f 1

+ f dy
2

dx
M2(r)XM1 M2(r) M1

= A(M2(r)) +f f iK2(x,y)f(y)! dy dx
M2(r) M1

<A(M2(r)) +f f dyf dy dx
M2(r) M1

+ C?f 1f(Y)12[f iK2(x,y)12 dx] dy

<X(M2(r)) + < °°

By Fubini's theorem again, the integral fM1K(x, y)f(y) dy exists almost
everywhere in M2(r) and defines a measurable function there. Since this
holds for all r> 0, the equality

TKJ(x) = y)f(y) dy almost everywhere in M2

defines a measurable function on M2 for every fE L2(M1). For all those
x E M2, for which this integral exists, we have

ITKJ(x)i f IK1(x,y)i dy

1/2
<Ci{f1K2(x,y)f(y)i2dy}
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and thus

f dx f dy dx
M2 M2M1

= If(y)12f dx dy

Hence, for every f E L2(M1) the function TKf belongs to L2(M2), and
U

C1C2IIfI$. Since the mapping TKf is obviously linear, we then
have TK E B(L2(M1), L2(M2)) with C1 C2. The corresponding argu-
ments show that K + induces an operator TK÷ E B(L2(M2), L2(M1)) and
that for all f E L2(M1) and g E L2(M2) the integral

dy dx

exists. Therefore, it follows from Fubini's theorem that

<g, = f g(x)*f K(x,y)f(y) dy dx

= x)g(x) dx}* dy =

D

Corollary. If K: M2 x M1 C is measurable, and

dy < almost everywhere in M2,

'M2
dx < almost everywhere in M1,

then the operator TK defined by (6.10) is from B(L2(M1), L2(M2)), and
<C1C2.

This follows from Theorem 6.24 if we take K1(x, y) = IK(x, and
sgn K(x,y).

It is important to observe that the operators occurring in Theorem 6.24
are not necessarily compact (cf. the following example).

EXAMPLE 2. Let M1 = M2 = FL The kernel K(x, y) = exp (— (x satisfies
the assumption of the above corollary. Assume that f E L2( M1), 0, and
f(x)> 0 almost everywhere. Then 0. Let us set f(x — n). Then

and

TKffl(x) = fexp (- x —yI)f(y - n) dy

= fexp (- I(x - n) dy = (TKf)(x - n).
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Consequently, = H
for all n. So we do not have i.e.,

TK is not compact.

Theorem 6.25. Let K: M2 x M1 —÷ C be measurable, and let K1, K2 be
measurable such that K(x, y) = K1(x, y)K2(x, y). Let (M11) and (M21) be
increasing sequences of measurable subsets of M1 and M2 such that M1 =

and M2 = respectively. Assume that for allj E FkJ

f <
X M1,

and for evety >0 there exists a J0 E for which

K1(x, dy almost everywhere in M2 \ M210,

dx ( almost everywhere in M1 \

f 1K1(x, dy almost everywhere in M2,
M1

f I
dx almost everywhere in M1.

M2\

Then TK E B(L2(M1), L2(M2)), and TK is compact.

PROOF. Let us set

H.(x,y) = (K(x,y) for

I. 0 otherwise

and = K— Iii. Then TH is a Hubert-Schmidt (hence compact) operator,
and II <€ provided thatj The operator TK is therefore the limit
of a sequence of Hilbert-Schmidt operators, so that it is compact (Theorem
6.4(e)). 0
EXAMPLE 3. Let M ci W' be measurable and let

K(x,y) =f1(x)f2(y)f3(x—y), (x,y) EMXM;

where f1 and f2 are bounded measurable functions defined on and
as 1, 2); f3 is measurable and flf3(x)I dx <00. With

lxi and

K1(x,y)

K2(x, y) f2(y)1f3(x sgn f3(x

the above theorem is applicable; hence TK is compact.
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EXAMPLE 4. Let M be a bounded measurable subset of and let

K( I Ix_yla_mH(x,y) for (x,y)EMXM,x=,=y,
— for x=yEM;

where a >0, and H is a bounded measurable function on M x M. If we set

K(x,y) for

0 for x—yI<----

and = K— then the induce Hubert-Schmidt operators, and the
operator induced by converges to 0 as n—*oo. Hence TK is compact.

6.4 Differential operators on L2(a, b) with
constant coefficients

In the following let (a, b) be an arbitrary (non-empty) open interval in
i.e., let — 00 a <b Furthermore, let

= :f,f',.
continuously differentiable on (a, b) and

—1) is absolutely continuous on (a, b) }.

Hence, for f E b) there exists an "nth derivative" for which the
following holds: f(t7) is integrable over every compact subinterval of (a, b),
and for a <a <f3 <b and every functi n g, absolutely continuous on (a, b),
we have (cf. Appendix AS)

dx = -
—

dx

forjE(1,...,n).

Theorem 6.26. For every n E every interval (a, b), and every >0 there
existsa C>Osuch that for alljEfO, 1,... ,n—1}

dx f dx + cf If(x)12 dx.

Here we have to consider an integral to be equal to oc in case the integrand is
not integrable. The relations f E A,,(a, b) n L2(a, b) E L2(a, b) there-
fore imply
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PROOF. We prove this by induction on n. For n = I we only have to treat
the case j =0. Then for every > 0 we may choose C = 1. The assertion is
just as obvious for n =2 and j =0. Therefore, let n =2, j 1.

Let (a, /3) be an arbitrary bounded subinterval of (a, b), let L = /3 — a>
0, and let J1 = (a, a + L), J2 = [a + L, /3— L], J3 = (/3 — L, /3). For
arbitrary s E J1 and t E J3, by the mean value theorem there exists an
x0 = x0(s, t) E (a, /3) such that

f'(x0) =

With this x0 it follows for all x E(a, /3) that

If'(x)I f"(y

'(If(s)I + f(t)() + dy.

This holds for all s E J1 and t e J3. The inequality can be integrated over
J1 with respect to s and over J3 with respect to t. We obtain that

32L2If'(x)I f ds +f If(t)I dt + 32L2ff1fu(y)I dy

f dy + 3_2L21 dy

{ U fIf(y)12 dy
}

1/2
+ 3_2L2( Li dy

}

1/2

It follows from this that

2L{ 34L
41

dy dy

and thus by integration over (a, /3) that

dx dy + dy.

If we divide (a, b) into (finitely or infinitely many) disjoint intervals of
length L, then we obtain

dx l62L_2fbjf(x)12 dx + dx.

As L can be chosen arbitrarily small, the assertion follows for n =2 and
j=l.

Let us now assume that the assertion holds for n k (k > 2). Let
fEAk+I(a, b). Since the theorem holds forn=2 andj=l, for every q>0
there exists a C1 > 0 such that

I dx c1f bIp_1)(x)12 dx + dx.



6.4 Differential operators on L2(a, b) with constant coefficients 159

By the induction hypothesis there exists a C2 > 0 for which

I I)(x)12 dx c2f dx +

consequently,

dx dx + cic2flf(x)12 dx

+
b1p+

dx,

and thus

dx 2C1C2
fb1f()12

dx + dx.

This is the assertion for n = k + 1 and j = k. For j <k the assertion now
follows easily with the aid of the induction hypothesis.

In what follows we shall use the notation

W2, b) is called the Sobolev space of order n over (a, b).

Theorem 6.27. Let (a, b) be an arbitrary open interval in R, and let
f E W2, b). If — oo <a, then can be extended continuously to a for all
j E (0, 1,. . . , n — 1); a = — oo, then — f( =0. The correspond-
ing assertion holds for the point b.

PROOF. Let cE(a, b). If a> — then

fCpi+1)
dx {(c_a)fdIf(j+D(x)12 <

because L2(a, b) (Theorem 6.26). Hence the limit

urn = lim
{

— ff(i+
ds }

= — I ')(s) ds

exists.
Now let a = — oo. For all x E(— c) we have

I)(s) dx = (f°)(c)2

The integral here converges as x — co, therefore the limit
— also exists. If this limit were different from zero, then f(i)

could not be in L2(a, c); which would contradict Theorem 6.26. fl
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Now we shall study differential operators on L2(a, b) that are induced
by the differential form = (— The minimal operator
induced by is defined by

D( = b) and 0f = f E D(

The maximal operator induced by is defined by

= b) and = f E
The maximal operator is obviously defined on the largest possible sub-
space on which can act meaningfully. Below we shall show that

if A c T0 a
is

operator is call the minimal operator). For n =0 we
obviously have T0, T0 = I.

Theorem 6.28. We have k E R( if and only if k E b) and

fbxik(x)dx =0 forall jE(0, 1,...,n—1}.

PROOF; If k = 7,, 0g for some g E D( = b), then we obviously
have k E b), and forj E (0, 1, . . . , n — 1)

fbxik(x) dx
=

dx = (— dx = 0.

Conversely, assume now that k E b) has this property, and [a, /3]
is a compact subinterval of (a, b) that contains the support of k. Set

g(x)
=

f2k(xi) dx1 . . .

Then we obviously have g E C °°(a, b) and g(x) =0 for x E (a, a]. For
x E[/3, b) we have

g(x)
= (j)nfXfX fk() . . . dx1

= njX
{f

.. f . . . dx2} dx1
x1

— (i)nfbk(x)p(x) dx1 = 0,

because p(x1) is a polynomial of degree n — 1. Hence, g E C000(a, b) and
0

Theorem 6.29. We have T0 =
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PROOF. LetfE g E g), and let [a, /3] be a compact
subinterval of (a, b) that contains the support of g. It follows via integra-
tion by parts that

<Tf g> - f b(Tf)*(x)g(x) dx = f b(Tflf)*(x)g(x) dx

= f dx = f
dx

= f bJ*(x)(Tng)(x) dx

(the integrated terms vanish, since g, together with all of its derivatives,
vanishes at a and ,6). Consequently, and are formal adjoints of
each other. What remains is to prove the inclusion T0 c Let f E
D(T and h E k(a, b) such that i-nh = T 0f. Such an h exists; for
example we can define h in the following way:

h(x)
= nfffl

.. f 2(rf)(x) dx1 . .

with some c E(a, b). Then it follows by integration by parts (let [a, be
chosen as above) that for all g E D(

<f, tog> = <T0f, g> dx

= dx = dx.

Hence, for all k E R( we have

(f(x) — h(x))*k(x) dx 0.

The null space of the linear functional F: b)—3C defined as

F(k) = fb(f(x)_h(x))*k(x) dx for k E b)

contains therefore R( By Theorem 6.28 we have

=

where the f', are the linear functionals

C0°°(a, b) C, F1(k) =
fb

dx.

By Theorem 4.1 there exist complex numbers c0, c,, . . . , such that

Hence, with p(x)
=

we have

fb(f(x) — h(x)_p(x))*k(x) dx = 0 for all k E b).
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For every compact subinterval [a, /3] we have (f-- h E L2(a, /3)
and (f— h 131..L C000(a, /3), and thus (f— h /3) = 0. Since this
holds for every compact subinterval [a, /3], it follows that

f(x) = h(x) + p(x) almost everywhere in (a, b).

It follows from this that f E b) n L2(a, b) and T 0f E L2(a, b).

Theorem 6.30. In the case (a, b) = we have = T; thus is
essentially seif-adjoint and is self-adjoint.

PROOF. The relations T T0
that that T C C hence

have

=
fCf(x)(Tflg)(x)

dx

= urn {R(c)+f dx}
C—900 —c

= dx = g>,

because R(c) is a linear combination of terms of the form
± c) * g(k)( ± c) with j + k = n — 1, and so R (c) 0 as c —* oo, by Theorem

6.27. 0
Theorem 6.31. In case (a, b) we have

if a> —00,

f(b)=f'(b)= if b<oo

In this case (for n > 0), and none of these operators are self-adjoint.

PROOF. We write W2° b) for the subspace given in the theorem. Let
be the operator induced on W2° b) by Then one verifies easily that

and are formal adjoints of each other. Therefore c = Let
fED(T), and let a> —00. For everyjE(0, I,... ,n—l} there exists a

E D(T,2) such that = 8jk for k E {0, 1, . .'. , n — 1) and
vanishes identically in some neighborhood of b (we choose an arbitrary
smooth function such that = and set = 1,)' where
cp E and cp(x) = 1 in some neighborhood of a, cp(x) =0 in some
neighborhood of b). With these we have

0 = <T:f, = (-i)(-
=
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As this holds for allj E (0, 1, . . . , n — 1), it follows that

f(a) = f'(a) • = = 0.

It follows analogously that

f(b) = f'(b) = = 0,

in case b < oo. Consequently = C W2° b), and
= 0

On the basis of our reasoning so far, it is clear that (for
thus Because of the equality 0* =

operators are self -adjoint.

The question of whether T, has self-adjoint extensions in the case
(a, b) will in general be answered in Chapter 8. For even n we can
now give the following theorem.

Theorem 6.32. The operator is non-negative. The Friedrichs extension
F of is given by the formulae

f(a)=f'(a)= • . if a>—oo,

f(b)=f'(b)= . if b<co

= b) fl b),

Ff = T2J for f E D( F).

PROOF. For all f E D( = b) we obviously have

0f> = (— dx = dx > 0.

In this case the sesquilinear form s used in Theorem 5.38 is

s(f, g) = <fn) g(n)>, f, g E Co°°(a, b).

Therefore the s-norm is equal to the 0-norm
(cf. Theorem 5.1). Hence, the completion of C000(a, b) with respect to
II

is equal to the completion_of = b) with respect to
and thus it is equal to Consequently, by Theorem 6.31

I-Is

• if a>—oo,

f(b)=f'(b)= if b<oo

thus

n>0)
none of these

0

D(T2nF) =

}



164 6 Special classes of linear operators

The assertion follows from this, because of the equalities D( F) =

In some cases we can explicitly calculate the spectrum of the seif-adjoint
operators induced by

Theorem 6.33.
(a) If(a, b)= then

=[O, oo) and = forall

(b) If (a, b) is a half-line ((a, oo) or (— 00, b)), then for every seif-adjoint
extension A of we have

a(A) oo).

For the Friedrichs extension F of we have

a(T2flF) [O, oo).

PROOF.

(a) = is non-negative. Hence for every s <0 we have

- = 1s1211f112 -2 Re s<f, + II > 1s1211f112,

i.e., s — is continuously invertible. Therefore, (— 00, 0) c p(
Now we show that every s > 0 lies in To this end, let p :

be infinitely often differentiable and let

1 for

0 for x>1,

Furthermore, for all m E let

cpm(x) = p(IxI—m), xE

Let us set (with s1/2" > 0)

fm(X) = E

Then fm E IfmIHl as m—>oo and (s — T2n)fm =(s —

as a simple calculation shows. Consequently, s — is not continu-
ously invertible, and thus [0, oo) C

We can show analogously that c if for every s E we
define the sequence (fm) of functions by the equalities

= (2m)"2pm(x) x E R
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(here the root 1) has to be taken in such a way that 1) <0
for s <0 and 1)> 0 for s 0).

(b) Without loss of generality we may assume that (a, b) = (0, oo). Then
the inclusion [0, oo) c ci(A) follows as in part (a) if Pm is replaced by

=

(notice that E oo)). Since the Friedrichs extension F is
non-negative, it follows that F) C [0, oo) (cf. the beginning of the
proof of part (a)); consequently, F) = [0, oo).

Theorem 634. Let T be a seif-adjoint operator on L2(a, b) induced by
(i.e., T= T* C Ta). Let

(af)(x) =
1=0

be a differential expression such that sup : x E (a, b)} < I and
sup : x E(a, b), j = 0, 1, . . . , n — 1} < oo. Assume that the operator
S defined by the equalities

0(S) =D(T) and Sf= af for fED(S)
is symmetric. Then T + S is seif-adjoint.

PROOF. If c = sup : x E (a, b)), then by Theorem 6.26, the operator
S is obviously T-bounded with T-bound c < 1. The assertion follows from
this by Theorem 5.28. D

EXERCISE

6.13 Let A be an (unbounded) seif-adjoint operator in a Hubert space H and P an
orthogonal projection with PD(A) C 0(A). Then the operator PAP is in
general not self-adjoint. Counterexamples may be constructed along the
following lines: Let H= H0, B self-adjoint in H0, C symmetric with
B-bound< 1 and P(f1,f2)=(f1, 0) for H0.

(a) The operator with D(A0)= A0(f1,f2)=(Bf2, Bf1)

is seif-adjoint.

(b) The operator A
= (

= A0 + is self-adjoint.

(c) If C is not (essentially) seif-adjoint on D(B), then PAP is not (essentially)
seif-adjoint. If C has no seif-adjoint extension, then PAP has no self-
adjoint extension.

(d) Possible examples for B and C are as follows:
(a) C essentially seif-adjoint, but not seif-adjoint: B = — d2/dx2, C =

id/dx in with 0(B) = D(C) = W2, 2(p),
C not essentially seif-adjoint: B = — d2/dx2, C = id/dx in L2(0, 1)
with D(B)=D(C)={fE W2,2(O, 1) :f(0)=f(I)=0),

(y) C has no self-adjoint extension: B = — d2/dx2, C = id/dx in L2(O, oo)
with D(B)= D(C)= (f E W2, 2(0, cc) : f(0)= 0) (see also Section 8.2,
Example 1).



The spectral theory of seif-adjoint
and normal operators

7.1 The spectral theorem for compact operators,
the spaces H2)

We studied the spectrum of compact operators thoroughly in Section 6.1.
For compact normal operators the results obtained there may be shar-
pened.

Theorem 7.1. (The spectral theorem for compact normal operators.)
(a) Let T be a compact normal operator on a complex Hi/bert space H and

let (At, A2, . . . } be the non-zero eigenvalues of T; furthermore let
(F1, ) be the orthogonal (finite rank) projections onto the corre-
sponding eigenspaces (cf. Theorems 6.7 and 5.41), then

(7.1)

this series converges in the norm of B(H). If T is seif-adjoint, then this
holds in real Hubert spaces, as well.

(b) If (A') is a null-sequence (or a finite sequence) from \ (0) such that
forj and the are non-zero orthogonal projections of finite

rank such that PJFk =0 for j then the series (7.1) is convergent in
B(H), and is compact and normal. Furthermore, (A1, A2,... )
is the set of non-zero eigenvalues of T and the R(FJ) are the correspond-
ing eigenspaces. The representation (7.1) is therefore unique in this sense.
If the are real, then T is self-adjoint.

PROOF.

(a) Let M be the closed linear hull of (R(PJ) :j= 1, 2, . . . }, and let P be
the orthogonal projection onto M

166
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If M' (0), then for all f E M', g E H, and j = 1, 2,... we have

<Tf, = <f, T*P,g> = Af<f, P3g> = 0,

i.e., TM' CM'; we can prove in just the same way that cM'.
Hence it follows that the restriction S of T to M' is a normal operator
on the Hubert space M'. Every eigenvalue of S is an eigenvalue of T,
every corresponding eigenvector of S is an eigenvector of T contained
in M'; therefore it follows that S can only have the eigenvalue 0 (since
M is the closed linear hull of all eigenvectors of T that belong to
non-zero eigenvalues). Therefore (cf. Theorem 6.7), a(S) = (0), and
thus r(S) =0 by Theorem 5.17(c) and (d). Hence S =0 by Theorem
5.44, i.e., T vanishes on M'.

Consequently, it follows for f E H (whether M' = (0) or M' (0))
that

Tf = TPf + T P3f = TPJf = F).

If the sequence (A3) is infinite, then for every f E H and m E

/ m 2

sup :j>m+ '}ufii2.
j=1 j=m±1

Since the sequence (A') is a null-sequence (cf. Theorem 6.7), this
implies the norm convergence of (7.1).

(b) We can show the convergence of the series just as in part (a). For every
m E the operator is of finite rank, consequently compact.
The compactness of T follows by Theorem 6.4(e). It is easy to verify
that T is normal. All the A1 are obviously eigenvalues of T, and every
f E R(P1) is an eigenelement of T belonging to the eigenvalue A3. If
A 0 is an eigenvalue of T and 0 is a corresponding eigenvector,
then

0= II(A- JA - +

i.e., JA — P3f =0 for all j and f— Since 0, there is a Jo
such that 0. Hence A = Consequently, A for allj and
thus It follows from this thatfE

Theorem 7.2. (The expansion theorem for compact normal operators). If T
is a compact normal operator on a complex Hi/bert space, then there exists a
zero-sequence (or a finite sequence) (pS) from C and an orthonormal sequence
(f) from H such that

forall fEH. (7.2)



168 7 The spectral theory of seif-adjoint and normal operators

Conversely, every operator defined by (7.2) is compact and normal; the
numbers are eigenvalues of T; the elements are corresponding eigenvec-
tors. If T is seif-adjoint, then this is true in real Hubert spaces, as well.

PROOF. Let T= be the representation from Theorem 7.1. For everyj
let (g3 2' . , k) be an orthonormal basis of furthermore,
let k=Aj for k= 1,2, . . . , Then by Theorem 7.1 and Theorem 3.7

Tf=
j j k jk

(7.2) follows from this by changing the indices. We leave the rest of the
proof to the reader. LI

Theorem 7.3. Let T be a compact normal operator on a complex Hilbert
space, and let (A') be the sequence of non-zero eigenvalues of T; every
eigenvalue counted according to its multiplicity, and > +11 for all n.
Then

I,\iI =
= inf sup(IjTfII :JEH,fig1, . !!fII= 1} (7.3)

for n E (cf. also Exercise 7.2). If T is seif-adjoint, then this holds in real
Hubert spaces, as well.

PROOF. It follows from the relations r(T)= and a(T)\{O} c that
IXd (cf. Theorem 5.17(c) and (d)). Let (4) be an orthonormal
sequence such that = If we choose =J) forj = 1, . . . , n, then for
every fi g1,.. . , we have

=
j>n j>n

<
j >n

It follows from this that > inf sup (.
. .). If g1, . . . , are arbitrary,

then there exists an f E L(f1, . . . for which 1 = 1 and
fig1,. . . , We have for thisf that

n+1 2 n±1
HTJM2 = =

1=1

— 2 2
"n+l I

It follows from this that IA,, +11 inf sup {.
. . }. Consequently, the theorem

is proved. LI



7.1 The spectral theorem for compact operators, the spaces H2) 169

If T= is the representation of the compact normal operator T,
given in Theorem 7.1, then for all n E the equalities

obviously hold. If A]" is chosen in some way, then the operator

has the property = T. The roots A]" can be chosen in a unique way
if we require that, for example, 0 < arg X]/" <2"Tr/n. Therefore, we have
the following theorem.

Theorem 7.4. Let n E E%i, n 2. Every normal compact operator T on a
complex Hi/bert space has exactly one normal compact' nth root whose
eigenvalues all lie in f z E C 0 < arg z <2ir/ n }. Every non- negative self-
adjoint compact operator has exactly one non-negative compact nth root.

PROOF. The operator = with 0 arg A]" <27r/n has the re-
quired property. Let B = Qk be an operator having the same property.
Then we have in particular that

= B" T=
k j

The uniqueness statement of Theorem 7.1 assures that = A1 and Q1
(this is true perhaps only after an appropriate reindexing). The inequalities
o < arg imply that = A]"'; consequently, B = If T is non-
negative, then A1 > 0 for all j; the condition 0 arg <2cr/n then
implies that Al/n

If T is a compact operator from H1 into H2, then T* T is compact,
seif-adjoint, and non-negative. Hence we can define the absolute value of
T by the equality

I

TI = (T* T)"2, where (T* T)"2 is the uniquely de-
termined non-negative square root of T* T (a definition for arbitrary
densely defined and closed operators will be given in Section 7.3).

I
TI is

obviously compact. The term "absolute value" is justified by the following
theorem.

Actually, the compactness of the nth root does not have to be assumed. Every normal nth
root of a normal compact operator T is compact: If (An)" = T, then = T* T;
consequently, is compact. The compactness of follows from this by Theorem
7.20 (for n =2 this follows from Theorem 6.4(c) because of the equality

The compactness of follows from Theorem 6.4(c).
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Theorem 7.5. Let T be compact. Then
I T(f II = Tf

M
for all f E H. There

exists an isometric operator U from R({ TI) onto R( T) such that T = UJ Tf,
and I TI = U — 'T. The representation T= TI is called the polar decom-
position of T.

PROOF. For all f E H we have

II ITIJ H2 = <ITIf, ITIf> = <ITI2f,f> = <T*Tf,f>
= <Tf, Tf> = ITfil2.

If for everyfE H we set
V(ITIf) = Tf,

then V is obviously a linear isometric mapping of R(ITI) onto R(T). Then
U = V is an isometry from R(( TI) onto R( T) (cf. the proof of Theorem
4.11), and we have T= UITI. 0

If T is a compact operator, then the non-zero eigenvalues of
I
TI are

called the singular numbers or singular values or s-numbers of T. In the
following let T)) denote the (possibly finite) non-increasing sequence of
the singular numbers of T; every number counted according to its multipl-
icity as an eigenvalue of TI. For 0 <p < oo we denote by H2) the
set of all compact operators T out of B(H1, H2) for which

00.

We write H2) for the set of compact operators belonging to
B(H1, 1-12) (cf. Section 6.1). For H) we briefly write

Theorem 7.6. Let T E H2), sj = s3(T). Then there exist orthonormal
sequences (f') from H1 and (g1) from H2 (these sequences can be finite) for
which

forall fEH1,

T*g = s,< gj, g

for all g E

I
TI

I

T*I, respectively. In
particular, T, TI, T* and

f

T* have the same singular values, and the
following assertions are equivalent:

T E H2), ITI E T* E B,,(H2, H1), IT*I E

PROOF. By Theorem 7.2 the compact operator T( has a representation of
the above form. Since

I
TI is non-negative, all the are positive. Conse-
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quently, with the operator U from Theorem 7.5 it follows for all f E H1 that

Tf= =

Along with (h), the sequence is also an orthonormal sequence;
therefore, we have the required representation of T. For all f E H1 and
gEH2 we have

T*g> = <Tf,g> =

=

the required representation of T* follows from this. We can deduce from
these identities that

T**T*g = TT*g = =

g E H2. Consequently, we have the required representation of
I

T*I = (T** T*)'/2. The remaining assertions are now clear.

With the aid of Theorem 7.3 we have the opportunity of determining the
singular numbers.

Theorem 7.7. Let S and T be from BOO(H, H1). Then

s1(T) = 11Th,

1(T) = inf sup { : f E H, f-I- g1,. II fIt = I) (7.4)
g1,... ,g1EH

for a/if E and

sJ+k+l(S+ T) sk+l(T) for all. j, k E (7.5)

If T E H1) and S E then for al/f, k E N0

Sj+k÷ 1(ST) < l(S)sk+ T). (7.6)

If T E H1) and S E B(H1, H2), then

s1(ST) = < = (7.7)
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PROOF. The formulae (7.4) follow from (7.3), since the are the
eigenvalues of

I
TI and since = II I Tifil for all f E H. For S, T E

H1) andj, k E

SJ±k÷I(S+ T)

= inf sup (II(S+T)fII :fEH,fIg1, . . IIfII=l}
g1

inf sup (IISJII+IITfII :JEH,f±g1, . . . IIJII='}
• ' gJ+k

inf [sup {IISfII
gJ+k

+ sup (II : f E H,f±g1÷1, . . . IIJII = 1)]

= inf sup {IISfjI .. . IIfII='}
+ inf sup {lITfII IfII=l)

= + Sk+I(T).

For T E BQO(H, H1), S E H2) and j, k E we have (set
IITJII'IISTJIHOif Tf=O)

sJ+k±l(ST) = inf (IISTfII :fEH,f±g1,. .
• IIJII=l}

g1

inf sup (IISTJII :JEH,fIg1,. .•

gk+I

., IIJIH1}

{ IISTfIIinf su
lITfIl I

... , If!I = i}

inf [sup {IIShII : . • IlhII=l}
a.,...0I

gk+I,• ,gk÷JEHI

Xsup (liTfil IIJII='}]
=

If T E H1) and S E B(HI, H2), then for allj E

= inf sup (IISTJII :fEH,fIg1, . . . IIfII=1}

IlSil inf sup (II1YII : .
. .} =g1,...,g1CH

The remaining equalities follow from the equalities s3(A) = *).
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In what follows we write
I/p

=

for H1) (0 <p<oo).
Theorem 7.8.
(a) If S, T E H1) (0 <p <oo), then S + T also belongs to H1),

and

IS + for p > 1,2

IS+ for p < 1.

The sets H1) are therefore vector spaces.
(b) If H1), SEBq(Hi, H2) (O<p,q<oo) and (1/r)=(1/p)+

(1/q), then ST E Br(H, 1-12) and

IISTMr

T E H1) and S E B(H1, H2), then ST E H2), and we have

IISM

T E B(H, H1) and S E 8,(H1, H2).

REMARK. Theorem 7.8(a) and (c) imply that the sets are two-sided
ideals of B(H) and we have IISTIIP 11511 and IITSIIP < IISII
for S E B(H) and T E

PROOF.

(a) By virtue of (7.5) we have

= E {s211(S+ Ty)

If p 1, then it follows by the Minkowski inequality for the
that

i/p

i/p p
IIS+

]

I/p I/p

2 More accurate studies show that the . are norms for p> 1 (cf. Theorem 7.12 for p = I),
and that ISTIII IS IqII for (l/p)+(1/q)= 1; cf. [5], Lemma XI. 9.14 or [10], Theorem
III, 7.1.
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If p 1, then we can use the elementary inequality +
I

Ia + /3 (proof: it is sufficient to prove the case al +
I
/31 = 1). With the

aid of this inequality we obtain that

IIS+

2 (si(s)" + = 2(11 S +

(b) As (r/p) + (r/q) 1, it follows from (7.6) with the aid of Holder's
inequality that

I /r

I5TIIr =

1/r

{

r/q r/p r/q ,/p 1/r

}

21/nIISIIqlITlIp.

Assertion (c) follows from (7.7). 0

Theorem 7.9. Let p, q, r >0 with (l/p)+(1/q)=(1/r). We have T E
Br(H, H1) if and only if there exist operators T1 E H2) and T2 E
Bq(H2, H1) (with an arbitrary Hilbert space H2) for which T= T2T1; the
operators T1 and T2 can be chosen such that II TJIr = II T211q.

PROOF. By Theorem 7.8(b) we have T2T1 E Br(H, H1) for T1 E
and T2 E Bq(H2, H1). Now let T E H1) and let (cf. Theorem 7.6)

Tf = f E H,

where (J) and (gd) are orthonormal sequences in H and H1, respectively. If
(h1, h2,... } is an ONS in a Hubert space H2 and we define T1 and T2 by
the equalities

T1f— JEH,

T2h = h E H2,

then obviously T= T2T1. The numbers and are the singu-
lar numbers of T1 and T2, respectively. Therefore, T1 E 1-12) and



7.1 The spectral theorem for compact operators, the spaces H1, H2) 175

T2 E Bq(H2, H1). Moreover,

i/p

=
and IlT2lIq

consequently,
I

T r II lip I
T2

II q•

Theorem 7.10.
(a) The set B2(H, H1) coincides with the set of Hubert-Schmidt operators.

For T E B2(H, H1) we have
T E B1(H, H1) if and only if there exist operators T1 E

B2(H, H2) and E B2(H2, H1) (with an arbitrary Hubert space H2) such
that T = T2 T1; the operators T1 and T2 can be chosen such that

Ii

T E B2(H, H1). 1ff1, f2, . .. are the orthonormalized eigenelements
I
Ti that belong to the non-zero eigenvalues s1(T) and if : a E

A) is an ONB of N(ITl)= N(T), then (f1,f2,... )u : aE A) is an
ONB of H, and we have

ilTfAI2 + = = = < 00.
a J J

Consequently, T is a Hubert-Schmidt operator with lii Till = T
is a Hubert-Schmidt (therefore compact) operator from H into H1 and
f1' f2... are chosen as above, then

= < IllTiil2 < 00,

i.e., T E B2(H, H1).
(b) This follows from Theorem 7.9 for r = I andp = q = 2. 0

The set B1(H, is also called the trace class of operators from H into
H1. This term originates from the fact that for T E B1(H) a trace can be
defined by

tr(T) = Tea>, (7.8)

where {ea : a E A) is an ONB of H. This is so, because then T— T2T1 with
appropriately chosen Hubert-Schmidt operators T1, T2 and

1/2
Tea>I = Tiea>i < 00.

For matrices the trace does not depend on the choice of the basis with
respect to which the matrix is determined. Analogously, the definition of
the trace does not depend on the choice of the ONB in the above case.
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Theorem 7.11.
(a) Definition (7.8) of the trace of an operator T E B1(H) is independent of

the choice of the orthonormal basis.
(b) If T1 E B2(H1, H2) and T2 E B2(H2, H1) or T1 E B1(H1, H2) and T2 E

B(H2, H1), then tr (T1T2) = tr (T2T1). (This also holds for T1 E
H2) and T2 E Bq(H2, H1) with (l/p) + (l/q)= 1; cf. Exercise

7.6(c).)

PROOF.

(a) By Theorem 7.10(b) there exist operators T1 E B2(H, 1-12) and T2 E
B2(H2, H) such that T= T2T1. If tea : a E A) and : /3 E B) are
arbitrary orthonormal bases of H and H2, respectively, then

<ç, T2T1e(,) = Tiea> = Tiea>
a a a /3

= ea><ea,

= TIT2f/3>, (7.9)
/3

where all sums have at most countably many summands and the sums
are absolutely convergent. If we choose another ONB : a E A) of
H, then it follows from this that

T2Tiea> = TIT2f/3>
a /3 a

This is the required independence.
(b) The first assertion has been proved in part (a). If T1 E B1(H1, H2) and

T2 E B(H2, H1), then there exist operators B E B2(H1, H3) and A.E
B2(H3, H2) such that T1 = AB. Thus it follows from (7.9) that

tr (T2T1) = tr ((T2A)B) = tr (B(T2A))

= tr ((BT2)A) = tr (A(BT2)) = tr (T1T2),

since T2A, B, BT2, and A are Hubert-Schmidt operators.

Theorem 7.12. An operator T from H1 into H2 such that D( T) = H1 is in
B1(H1, H2) if and only if there are sequences from H1 and from H2

such that II II = I II = 1, and there is a sequence (zn) from for which
< oo and

fEH1. (7.10)

The norm I T is the infimum of those sums E I for which there are
normed sequences (cpa) from H1 and from H2 such that (7.10) holds.
is a norm on B1(H1, H2), the so-called trace norm.
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PROOF. If T E B, (H1, H2), then Theorem 7.6 gives the required representa-
tion (7.10); moreover, it follows that is greater than or equal to the
given infimum. If (7.10) holds, then T is compact, since T is the limit of the
finite rank operators Tm, in the sense of the norm
of B(H1, H2) (because T— TmiI Hence, we obtain with the
notation of Theorem 7.6 that

=
I

jfl
(

F? J J

• =

thus, T E B1(H1, H2). As this holds for every representation of the form
(7.10), the equality given for

II follows. The fact that
. Li is a norm

follows immediately from this.

EXERCISES

7.1. If T is a seif-adjoint compact operator and n E fkJ is odd, then there is exactly
one (compact) seif-adjoint operator A such that A" = T.

7.2. In (7.3) and (7.4) we can replace "inf sup" by "mm max".

7.3. Theorems 7.1 and 7.2 do not hold for normal operators on real Hilbert
spaces. As an example, one can consider the operator induced by the matrix(0 1) on this operator has no eigenvalue.

7.4. If T is a normal operator on H and there exists a z0 E p( T) such that R(z0, T)
is compact, then R(z, T) is compact for every z Ep(T), and there exist a
sequence (A) from such that XA—*oo a sequence (Pd) of finite
rank orthogonal projections such that = D(T) = (f E H:

cc), and D(T).

7.5. Let {Xa : a E A) be a family in K\(0) for which Aa for a and let
(Pa : a E A) be a family of orthogonal projections on the Hilbert space H
such that = for a, fi E A.
(a) The equalities

D(T) = {fEH: 1xa12111v112< and
aEA

Tf= AaPJ for fED(T)
a

define a normal operator on H.
(b) Every Aa such that Pa 0 is an eigenvalue of T, and N(Aa — T) R(Pa).
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(c) T is compact if and only if we have:
(i) dim R(Pa) < 00 for all a E A,
(ii) for every c >0 there are only finitely many a E A such that IXa >

and

7.6. (a) Let 0 <p < 00. For every T C H2) there exists a sequence (Ta) of
finite rank operators such that IITnHP < and as
0O.

Hint: Theorem 7.6.
(b) For every T C B1(H) we have Itr (T)I

Hint: If Tf= f>g1, then define the trace of T by means of an
ONB that contains {f1,f2,...

(c) For T C 1-12), S C Bq(H2, H1), where (l/p) + (1/q) = 1, we have
tr (ST)= tr (TS).
Hint: Without loss of generality we may assume that q <2. Let (T,,) be
chosen as in part (a). Then T,, C B2(H1, H2), S C B2(H2, H1); conse-
quently, by Theorem 7.11(b) we have tr (ST,,) = tr Moreover,
(tr (ST) — tr (S7,)I < 211S!IqIIT T,,IIP and (TS) — tr <

7.7, Prove Theorem 7.2 without reference to Theorem 6.7:
(a) There is an eigenvalue of T such that =

Hint: By Theorem 5.17(c) and (d) and Theorem 5.43 there exist a C
and a sequence (g,,) from H for which = I! TI!, II II = 1, and —

T)g,,—*0. The sequence (g,,) has a convergent subsequence the
element fi = urn is an eigenvector of T belonging to the eigenvalue

(b) Let the eigenvalues . . . , p,, >
I

. .> I and the eigenele-
mentsf1,. . . ,f,, be determined. The restriction T to L(f1,. . .

is a normal operator on L(f1, .. . and are obtained by
using (a) for

T and S be operators on H such that p(T) n p(S) and let X0 C p(T)
np(S), O<p < co. If RQt0, T) — R(A0, S) C then RQt, T) — RQt, S) C

for all A C p(A) n p(B).
Hint: We have

(A— T1)' —(A— T2)'

= (A0—T1)(A_T1)'[(A0—T1)'—(A0—T2)'](A0—T2)(A—T2)'.

7.9. Give a proof, independent of Theorem 7.12, that is a norm on
B1(H1, H2).

Hint: Let Af = f>g, Bf = f>gJ', and (A + B)f
(f', as in Theorem 7.6. Then

hA + B!!1 =

= + g1>jk jk
< II i.
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7.10. (a) If T E B(H1, H2), and T,,, — as n—>oo, then for
every k E we have as n—+oo.

Hint: Use (7.5).
(b) If T E B(H1, 1-12), T — 0 as n —* cc, and

urn T E H2), and
urn

(c) If is a sequence from 1-12) such that — as n, m—>
cc, then there exists a T E H2) such that T— as n—*oo.

(Consequently, B1(H1, H2) is a Banach space.)

7.11. Let S, T E B(H1, H2) be bijective. Then S — T is in H2) if and only if
S'—T' isin H1).

Hint:

7.12. LetS, TCB(H), S—
(a) We have Sn — E for all n E

Hint:
(b) We have p(S) —p(T) E for every polynomial p.

7.13. If T E H2) for some p < cc, then T* T E and (T* T)" E
c B1(H) for n >p/2. We have Ii = [tr (T*

Hint: :j= 1,. .. , k} as n—*oo.

7.14. Let H1 and H2 be Hubert spaces, and let T E H2). For every >0
there exists a finite-dimensional subspace M( of H1 such that It Ii for

Hint: Use the representation in Theorem 7.6.

7.15. Let H1 and H2 be Hubert spaces. Let = B(HJ, 1K) be the Hilbert space of
continuous linear functionals on H1 (ci. Exercise 4.3(a)).
(a) 0 H2 is isomorphic to the space of bounded finite rank operators from

H1 into 1-12; we can make the element from H2 corre-
spond to the operator T for which D(T)= H1 and

(b) We = 11Th2; the space can be identified with
the space B2(H1, H2) of Hubert-Schmidt operators from H1 into H2.

(c) A norm on H® H2 is called a "cross"-norm if

hUt Ii gil. The completion of H2 with respect to . can
be identified with a subspace Br(Hi, H2) of H2). The spaces
BT(Hi, H2) are two-sided ideals of B(H1, H2).

(d) For every "cross"-norm . we have B1(H1, 1-12) C B1.(H1, H2). Further-
more, H2) = B1(H1, H2), if we choose

n 1! 1 n

= inf
,. j=1

We have H2) = H2) if we choose

=
j=1 j=1
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7.2 Integration with respect to a spectral family

(7.11) A spectral family on a Hi/bert space H is a function E: B(H)
having the following properties:

(a) E(t) is an orthogonal projection for every t E
(b) E(s) E(t) for s t (monotonicity),
(c) E(t + E(t) for all t E R, as €—÷0 + (continuity from the right),
(d) E( t) 0 as t —* — 00, E( t) I as t 00.

RJARI. Property (7.11(c)) is not essential, it is needed only in the
uniqueness statement of Theorem 7.17. Right continuity can be replaced
by left continuity; then we have to replace by in Theorem
7.17.

EXAMPLE 1. Let M be a measurable subset of and let g: be a
measurable function. For every t E let

M(t) =

M(t) is obviously a measurable subset of M.

(7.12) The equality E(t)f= XMQ)ffor f E L2(M) and t E defines a spectral
family on L2(M).

PROOF. Properties (7.11(a)) and (7.11(b)) are evidently satisfied. We show
(7.11(c)): Let t E letf E L2(M), and let (€,,) be a null-sequence of positive
numbers. Then

IKE(t + ç) — E(t))f 112 = dx.

Because of the relations 0 — XM(e)(X) < I and XM(t+ç)(X) —
XM(l)(X)—*O as n—>oo for all x E M, it follows by Lebesgue's theorem that.

as

As this holds for every zero-sequence (çj, property (7.1 1(c)) follows. We
can show (7.11(d)) similarly, since we have

XM(t)(X) —k 1 for all x E M, as t oo.

XM(t)(X) 0 for all x E M, as t — 00. LI

EXAMPLE 2. Let {Pa : a E A) be a family of right continuous non-decreas-
ing functions defined on R.

(7.13) The equalities

E(t)(fa) =

= for (fa) E t E
aEA

define a spectral family on a E A
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PROOF. It is clear that the E(t) are orthogonal projections. The increasing
character follows from the equality

<(fa)' (E(t) - E(S))(fa)> = f dpa(x) > 0
a (s,I}

for t >s and (fa) E Pa) For we have

f forall
(s, tJ

Because

f dpa(x) f for all s, t and all
(s,t]

and

I dpa(X) = I(fa)aEA 112 <
aEA

it follows from this that

ll(E(t) - E(S))(fa)112 = f Ifa(X)12 dpa(X) 0, t s÷,
a (s,t]

i.e., E is right continuous. The remaining assertions E(t)—.I as t—3 + 00
and as — 00 are clear.

EXAMPLE 3. Let (A) be a sequence of pairwise different real numbers, and
let (F) be a sequence of orthogonal projections on H such that FJFk =0 for

and

(7.14) The equalities

E(t)f = F1f for f E H and I E

define a spectral family on H.

PROOF. Properties (7.11(a)), (7.11(b)) and (7.11(d)) are clear; we leave their
proof to the reader, and only prove the right continuity here. For every
IER and

II(E(t + €) — E(t))f112 = 112.

The sum converges to zero as + (since the series 12 is conver-
gent and for every n0 E there exists an >0 such that (t,

LI

Let E be a spectral family on the Hubert space H. For every f E H
define

pf(t) = E(t)f> = IIE(t)f112, t E (7.15)
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The function Pj: is obviously bounded, non-decreasing, and right
continuous; urn1 Hf112.

A function u : is said to be E-measurable if it is p1 -measurable for
every f E H (cf. Appendix A). Non-trivial examples of E-measurable func-
tions (for every spectral family E) are all continuous functions, all step
functions, and all functions that are pointwise limits of step functions; all
Borel measurable functions are E-measurable. The function u0 with u0(t) =
I for all t E is in L2(R, P1) for every f E H. Consequently, by Theorem
A 14, every bounded E-rneasurable function u : belongs to L2(R, Pf)
for all f E H.

For a step function u we can define the integral fu(t) dE(t) by the
equality

dE(t) =

where

E((a, b]) = E(b) — E(a), E((a, b)) = E(b—) —

E([a, b]) = E(b) — E(a—), E([a, b)) = E(b—) — E(a—)

(here let E(t — ) = s — E(t — €); this limit exists by Theorem 4.32
and is an orthogonal projection). For any step function U: and for
every f E H we obviously have

f Iu(t)12 dp1(t), (7.16)

as a simple calculation shows. If f E H and u E L2(IR, Pf)' then by Section
2.2, Examples 7 and 13, there exists a sequence (un) of step functions for
which in p1).3 Then

dE(t)f_f Um(1) dE(t)Jfl = I - um(t)j2

0 as n, m 00,

i.e., the sequence (fun dE(t)f) is a Cauchy sequence in H. Therefore, we
can make the definition

fu(t) dE(t)f= lim dE(t)f. (7.17)
n —400

This definition is obviously independent of the choice of the sequence (un),
and we have

dE(t)i dp1(t). (7.18)

Here and in the sequel L2(R, p1) is meant to be the real or the complex L2-space according
as H is real or complex.



7.2 Integration with respect to a spectral family 183

For u, v E p1) and a, b E

f (au(t)+bv(t)) dE(t)f = afu(t) dE(t)f+ bfv(t) dE(t)f. (7.19)

The integral just defined is therefore linear. 0
In our further studies we shall use the following auxiliary theorem; for

functions that are pointwise limits of step functions (all functions explicitly
occurring in the following are of this kind) this auxiliary theorem is not
needed.

Auxiliary Theorem 7.13. Let E be a spectral family on H and let U:
be an E- measurable function. If { f1, . . . , 4) is a finite set in H, then there
exists a sequence (un) of step functions that converges to u almost everywhere
with respect to Pj for j = 1, . . . , p. If u is bounded, then the sequence can be
chosen to be bounded.

PROOF. It is enough to show that there exists an h E H for which every
Ph-flU1! set is also a pj-null set forj = 1, . . . , p (then we choose a sequence
of step functions that converges to u ph-almost everywhere). In order to
prove this, it is enough to find, for any two elements f1 =f and f2 = g, an
element h E H for which every set of Ph -measure zero is of p1 - and
pg-measure zero; the rest is simple induction.

For this, set M = E(t)f: t III). Let us introduce the notations: P is
the orthogonal projection onto M, g1 = Pg, g2 = (I — P)g = g — g1, and
h =f+ g2. Then for arbitrary intervals and '2 in we obviously have
E(11)f± E(12)g2 and E(11)g1 I E(12)g2 (since E(!1)f E M, E(11)g1 EM, and
E(12)g2E

Let N be a set of ph-measure zero. Then there exists a sequence (Sn) for
which N c and = Urn '1nm' where the are at most countably many
mutually disjoint intervals for fixed n E and

as

Because of the equalities

Ph('3nm) 112 + = p1(Jnm) + Pg2( Jam)

for all n, m, it follows from this that

Pj('-1nm) 0 and 0 as n —* oo.
m m

Consequently, N is a set of p1-measure zero.
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For all t E we have

2 2 2

E(Jnm)E(t)i = E(Jnm)Jfl E(Jnm)ffl

= = as oc.
m m

Since the set (E(t)f: t E is total in M and the norms of the operators
are less than or equal to 1, Theorem 4.23 implies that
for all k E M. As g1 E M, it follows from this that

= = —* 0,

consequently,

Pg('1nm) = (pgi(Jnm) + Pg2(Jnm)) 0,

as n —p oo. Therefore, the pg-measure of N equals zero. LI

Forf, g E H and a bounded E-measurable function U: R—*K, according
to the polarization identities (1.4) and (1.8), respectively, we define

fu(t) d<g, E(t)f>
= dPg_if(t)

—if u(t) dpg+ij(t)} if K = C,

= dPg_f(t)} if K =

With this definition we obtain for any bounded E-measurable functions u
and v that

fv(t)*u(t) d<g, E(t)f> = (fv(t) dE(t)g, fu(t) dE(t)f>. (7.20)

For step functions u and v this is evident. In the general case this follows
by Lebesgue's theorem if, according to Auxiliary theorem 7.13, we choose
bounded sequences (un) and (va) of step functions that converge

Pf, Pg' Pg+f' Pg—f' Pg±if' Pg—if almost everywhere to u and v, respectively.
Now we are in a position to generate linear operators by means of

integrals with respect to a spectral family.

Theorem 7.14. Let E be a spectral family on the Hi/bert space H, and let
u : K be an E- measurable function. Then the formulae

D(E(u)) = {fEH: uEL2(R,pf)}
= Ju(t) dE(t)f for f E D(E(u)) (7.21)

define a normal operator 12(u) on H. For (7.21) we briefly write

L(u) = fu(t) dE(t).
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If u, v: are arbitraiy E-measurable functions, a, b E and

Ii 'f lu(x)l Ii 'f lv(x)i=
=0 otherwise, 0 otherwise,

then it follows:
(a) For all f E D(E(u)) and g E D(E(v)) we have

<E(v)g, E(u)f> = d<g, E(t)f>;

for the latter we briefly write fv(t)*u(t) d<g, E(t)f>.
(b) For a/if E D(E(u)) we have

12 = fiu(t)12 dp1(t).

(c) If u is bounded, then E(u) E B(H) and

1E(u)11 : t E

(d) If u(t) = I for alit E R, then E(u) = I.
(e) For evely f E D(E(u)) and all g E H we have

<g, E(u)f> = fu(t) d<g, E(t)f>.

(f) If u(t) > c for all t E then

E(u)f> > f E D(E(u)).

(g) E(au + by) j aE(u) + bE(v), D(E(u) + E(v)) = + lvi)).
(h) E(uv) = D(E(v)) n D(E(uv)).
(i) E(u*) = E(u)*, D(E(u*)) = D(E(u)).

PROOF. The mapping E(u): H is well-defined, because of
(7.17)—(7.21). We show that this mapping is linear. It is clear that fE
D(E(u)) and a E Il( imply that af E D(E(u)) and = aE(u)f.

First assume that u is bounded. Then D(E(u)) = H. By Auxiliary theo-
rem 7.13, for arbitrary f, g E H there is a bounded sequence (un) of step
functions that converges to u almost everywhere with respect to Pg and

Pf+g Then in Pg) and pj+g); therefore,
and g)—*E(u)(f+g). Since is

obviously linear, it follows that

E(u)(f+g) urn

u let E D(E(u)).
Then converges to u(t)l monotonically for all t E Using the



186 7 The spectral theory of self-adjoint and normal operators

identity we have just proved and on the basis of (7.18) we obtain that

=

+

=
1/2

+ dpg(t) )
1/2

dpg(t))"2

= + <cc.

It follows from this by B. Levi's theorem that u E Pf+g); conse-
quently, f+ g E D(E(u)) and

E(u)(f+g) = urn

= lim = E(u)f+ E(u)g.

So E(u) is linear. We obtain from the proof of (i) that E(u) is normal.
(a) This equality is clear for step functions u and v. For bounded E-

measurable functions u and v the equality follows by means of Aux-
iliary theorem 7.13. In both cases the passage to the limit does not
actually take place, as = = I for large n. If u and v are arbitrary
E-measurable functions, then we have forf E D(E(u)) and g E D(E(v))
that

<E(v)g, E(u)f> = lim

= d<g, E(t)f>.

(b) follows from (7.18) with v = u, g = f.
(c) Since u is bounded, we have u E p1) for all f E H. Consequently,

D(E(u)) = H. The estimate of the norm immediately follows from (b).
(d) By (c) we have E(u) E B(H). Furthermore, X(_n, 1 for all

I E therefore,

E(u)f = urn E(X( lim (E(n)f— E( — n)f) = f.12-400

(e) follows from (a) with v = 1, by taking (d) into account.
(f) immediately follows from (e).
(g)4 1ff E D(E(u) + E(v)) = D(E(u)) n D(E(v)), then u, v E pf); conse-

au + by E i.e., f E D(E(au + by)). The equality
E(au + bv)f= aE(u)f+ bE(v)f therefore follows from (7.19). Since for
E-measurable fuiictions u, v we have u, v E Pj) if and only if
ui + E L2(R, we have D(E(u)+ E(v))= D(E(Jui + lvi)).

"Properties (g), (h), and (1) follow more easily from Theorem 7.16.
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(h) By (a) and (d) we have for all bounded E-measurable functions
and all f, g E H that

<g, = <P(1)g, P(cp)f> <E(p*)g, E(1)f> =

consequently,

<g, = d<g, E(t)f>

= <g,

For bounded E-measurable functions q, we therefore have

E E D(E(v)) and E D(E(u)). As
the function is bounded for fixed n E it follows that

in Pf) as Consequently,

E(u)EA(v)f = urn urn E(tpmV)f}

=

= urn urn urn

The existence of this limit means that the sequence is a Cauchy
sequence in L2(R, Pf). Since, moreover, for all
t E it follows that uv belongs to p1); consequently, f E
D(E(uv)) and E(u)E(v)f= E(uv)f. Therefore, D(E(u)E(v)) C D(E(v))
n D(E(uv)) and E(u)E(v) C E(uv). 1ff E D(E(v)) n D(E(uv)), then

E(uv)f= lm lim lii

= lim

The existence of this limit means that u E consequently,
E(v)f E D(E(u)), and thus f E D(E(u)E(v)).

(i) We first show that D(E(u)) is dense. For this we prove that for every
f E H and every m E we have E(pm)f E D(E(u)); because of the limit
relation f= lim E(pm)f it follows from this that D(E(u)) is dense. Let
f E H, m E g = '('pm)f Then by (h) we have for all n m that

f dpg(t) =
1

<

Therefore, U E L2(R, pg)' i.e., E D(E(u)) for all m E
We obviously have D(E(u*)) = D(E(u)). By (e) we have for f, g E

D(E(u)) = D(E(u*)) that

<g, =fu(t) d<g, E(t)f> = {fu(t)* d<f, E(t)g>}*

= <f, =
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i.e., E(u) and E(u*) are formal adjoints of each other. It remains to
prove that D(E(u)*) ci D(E(u*)). Let g E D(E(u)*). Then for all f E
D(E(u))

= <g, E(u)f> lim <g, = lim

In particular, for every f E H and m E

= <E(u)*g,

= =

=

Consequently, for all g E D(E(u)*) and all m E

=

and thus

L(u)*g = lim = dE(t)g.

The existence of this limit means that the sequence converges in
i.e., E Pg)' and thus g E D(E(u*)).

We have in particular D(E(u)*) D(E(u)), and (by (b)) E(u)f II =
IE(u)*f II for allf E D(E(u)), i.e., E(u) is normal.

EXAMPLE 1 (continued). Let E be the spectral family of Example 1. If
u : is a step function, u(t) = ... then

(fu(t) dE(t)f)(x) =

= u(g(x))f(x), f E L2(M).

Therefore, it follows for every E-measurable function u that

D(E(u)) = E L2(M) : (u ° g)f E L2(M)}

and

(E(u)f)(x) = u(g(x))f(x) for f E
i.e., E(u) is the maximal operator of multiplication by u g. For u = id we
obtain the operator of multiplication by g.

EXAMPLE 2 (continued). If E is the spectral family of Example 2 on
Pa) and u : is an E-measurable function (cf. Exercise

7.18), then

{(fa) E Pa) : (ufa) E Pa))aEA aEA
and

(Ufa) for f E D(E(u)).
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We call this operator the maximal multiplication operator induced by u on
pa). The proof is along the same lines as in Example 1.

EXAMPLE 3 (continued). Let F be the spectral family of Example 3. Then
every function u : is E-measurable, since for all t E : j =
1,2,...)

u(t) = =

as :j= 1,2,. .. ) is a set of pj-measure zero for allfEH, we have
found a sequence of step functions that converges to u pf-almost every-
where for alifE H. It is now easy to see that for all u :

D(E(u))
= { f E H: <00

=

u = id we obtain in particular that

D(E(id))
= { fEH: <00

}

and

E(id)f = AJPJJ for f E D(E(id)).

Theorem 7.15. Let H1 and H2 be Hi/bert spaces, let U be a unitaly operator
from H1 onto and let E be a spectral family on H1. Then by the formula

F(t) = UE(t) U', t e
a spectral family is defined on A function u : is F-measurable if
and only if it is E-measurable. If P is defined analogously to E, and u is
E- measurable, then

P(u) = UP(u)U-1.

PROOF. It is clear that F is a spectral family on H2. If = E(t)f112 and

Gg(t) = then pj(t) = obviously holds. Consequently, u is
E-measurable if and only if it is F-measurable, and L2(R, Pf) =
The equality P(u) = UE(u) U' is evident for any step function u. The
assertion follows from this fact immediately. U

Theorem 7.16. Let E be a spectral family on the Hi/bert space H. Then there
exists a family {Pa : E A) of right continuous non-decreasing functions (the
cardinality of A is at most the dimension of H) and a unitary operator
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U: for which

E(t)= U'F(t)U forall
with the spectral family F from Example 2. For every E- measurable function
U

E(u) = U1P(u)U,

where F(u) is the maximal operator of multiplication by u on

Pa)

PROOF. For any f E H, 0 let L(E(t)f: t E and let pj(t) =
IE(t)f 112. Then the formula

=

defines an isometric mapping of L(E(t)f: t E into p1), as can be
verified easily. For all g E L{E(t)f : t E

=

The range of LIf contains the space of left continuous step functions, thus
it is dense in p1) (observe that the left continuous step functions are
dense in the space of step functions). The closure (If = is therefore a
unitary operator from H1 onto p1)' and for all g E H1

Uf(E(t)g) =

With the aid of Zorn's lemma we see immediately that there exists a
maximal system { : a E A) such that H1 I for a (partial ordering
= inclusion, upper bound = union). We write Ha for H1, and show that
H If we had then there would be agE H,
such that gI Ha for all a E A. Then we would also have E(t)gI Hq for all
a E A, and thus Hg± this contradicts maximality.

Let Pa = let Ua : Pa) be the corresponding unitary opera-
tors, and let be the orthogonal projections onto Ha, then

gEH

is a unitary operator from H onto E H we have

UE(t)g = =

= = F(t)Ug.

E(u) = U — 'F(u) U follows by Theorem 7.13. The rest of the assertion
follows from Example 2.
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EXERCISES

7.16. Let E be a spectral family, and let u : R U( be a continuous function. For
— oc <a <b < oc we can define the integral f u(t) dE(t) as a Riemann-
Stieltjes integral, i.e., the integral is the limit in B(H) of the sums

with a = < . . = b, provided that the maximal length of the
intervals tends to 0.

7.17. Let E be a spectral family on H.
(a) For every sequence (f,,) from H there is an h E H for which we have:

Every set of ph-measure zero is of pf-measure zero for allj E
(b) If H is separable, then there exists an h E H for which we have: Every set

of ph-measure zero is of zero for all f E H.
(c) If H is separable, and u : R—+ 9( is an E-measurable function, then there

exists a sequence (un) of step functions that converges to u
everywhere for all f E H.

7.18. Let E be the spectral family of Example 2. A function u : is E-measur-
able if and only if it is pa-measurable for every a E A.

7.3 The spectral theorem for seif-adjoint operators

If u is a real-valued E-measurable function on then the operator E(u) is
seif-adjoint by Theorem 7.14(i). We show in this section that every self-
adjoint operator can be represented in this way and there exists exactly one
such representation with u = id.

Theorem 7.17 (Spectral theorem). For every seif-adjoint operator T on the
Hi/bert space H there exists exactly one spectral family E for which T =
E(id), or in another notation, T= ft dE(t) (cf. Theorem 7.14). In the com-
plex case the spectral family E is given by

<g, (E(b)—E(a))f> = urn urn (R(t—i€,
2lTi a±6

—R(t+i€, T))f> dt (7.22)

for alif, g E H and — oc <a <b < oc. We say that E is the spectra/family of
T.

PROOF. First we assume that H is complex.
Uniqueness: If T= E(id), then z — T= E(z — id) by Theorem 7.14(g).

Then for all z e C such that Im z 0 we have by Theorem 7.14(h), with the
notation = (z — t) that

(z — = E((z — = f for all f E H,

— T)f = — id))f = f for all f E D(T).
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Consequently, E z This im-
plies via Theorem 7.14(e) that

<f,R(z, T)f> =f(z_t)'dpf(t) forall JEH.

The functions = and F(z) = R(z, T)f> therefore satisfy
the assumption of Theorem B 1 of the Appendix, and thus for all t E

IIE(:)fM2 = <f, E(t)f> = lim urn R(s+i€, ds
¶

= urn urn (R(s—i, T)—R(s+i€, T))f> ds.
2iri

(7.22) follows from this with the aid of the polarization formula (1.4). Since
(7.22) holds for all f, g E H, the uniqueness has been proven.

A

Existence: If there exists a spectral family E such that T= E(id), then
(7.22) must hold. Therefore we study whether (7.22) defines a spectral
family E with the property E(id) = T. For every f E H the function Ff
defined by the equality F1(z) = R(z, T)f> satisfies the assumptions of
Theorem B3 (Appendix), since Ff is holomorphic for Im z >0 by Theorem
5.16 and we have

Im = Im<f, R(z, T)f> = Im<(z — T)R(z, T)f, R(z, T)f>

= IIR(z, Im z 0

Im zI < u1rn z1'IIfIJ2IIm zl = 11f112.

Consequently,

R(z, T)f> = =f(z_tY' dw(f, t), (7.23)

where

w(f, t) = urn urn
.

(R(s—i€, R(s+i€, T))f> ds.
&—.o+ 2ir 1

w(f, t) is a non-decreasing and right continuous function of t, and w(f, 1)

—*0 as t—* — oo, w(f, I) ( 11f112 for all t E R. Equation (7.23) holds for all

z E since <f, R(z*, T)f> = R(z, T)f>*. Furthermore, we define

w(g,f, t) = urn lim
1

(R(s—i, T)—R(s+i, T))f> ds;
1

the existence of this limit follows by means of the polarization identity for
the sesquilinear form (g, g, (R(s — i€, T) — R(s + i, T))f>.

The mapping (g, f)i—* w( g, f, t) is a bounded non-negative sesquilinear
form on H for every t E R. The sesquilinearity is clear from the definition;
moreover, w(f, f, t) = w(f, t) 0 for all t E The Schwarz inequality and
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the inequality w(f, t) < 11112 imply for alif, g E H and t E that

w(g,f, t)12 w(g, t)w(f,z)

Therefore, by Theorem 5.35 there exists, for every t E R, an operator
E(t)E B(H) for which IIE(t)II < 1 and

<g, E(t)f> = w(g,f, t) for all f, g E H.

It is obvious that E(t) is self-adjoint and E(t)> 0.

Now we show that E is a spectral family. For this we first show that
E(s)E(t) = E(min(s, t)) for all s, t E R. For all z E C \ and for all f E H

<g, R(z, T)f> = f(z_ dw(g,f,:) = f(z-tY' d<g, E(t)f>.

(7.24)

This follows from (7.23) using the polarization identity. Consequently, the
first resolvent identity implies for all z, z' E C\ R with z

f (z — t)' d<R(z#*, T)g, E(t)f> = T)g, R(z, T)f>

= (g, R(z', T)R(z, T)f>

= (z'-z)'{<g, R(z, T)f>-<g, R(z', T)f>}

= (z' - z) - 'f [(z - t) '- (z' - t) ']d< g, E(t)f>

= f(z_ t)'(z'- t)' d<g, E(t)f>

= f(z — t)' —s)' d<g, E(s)f>.

It follows from this by Theorem B2 (Appendix) that

f E(s)E(t)f> = <g, R(z', T)E(t)f>

= T)g, E(t)f>

= f(z'-sy' d<g, E(s)f>.

Therefore it follows for all f, g E H and s, t E again by Theorem
B2 (Appendix) that

<g,E(s)E(t)f> = for

<g, E(t)f> for t s.

This means that for all s, t E R

E(s)E(t) = E(min(s, t)).
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In particular, E(t)2 = E(t). Therefore, the E(t) are orthogonal projections
for all t E and E(s) ( E(t) for s t (ci. Theorems 4.29 and 4.31). Thus
(7.11(a)) and (7.11(b)) are satisfied. The right continuity (7.11(c)) follows
from the formula

JE(t+ E(t)f112 = IIE(t+ )fH2 — IIE(t)f 12

= w(f, t + €) — w(f, t) 0 as —* 0 +,

since w(f, ) is right continuous. Moreover, H E(t)f 112 = w(f,
t) as t — 00. It only remains to prove that

E(t) I as oo. As E( ) is monotone, E(t) strongly converges to an
orthogonal projection E(oo) as 00 (cf. Theorem 4.32). We have

E(oo)f> = E(s)f> E(t)f>.

Consequently, E(oo) E(t) for all t E Let F= I— E(oo). Then

E(t)F = E(t)(I— E(oo)) = E(t) — E(t) = 0, t E

It follows from this for all f, g E H, Im z 0 that

<g, R(z, T)Ff> = f(z — d<g, E(t)Ff> = 0.

Hence R(z, T)Ff= 0 for all f E H, and thus F= 0, i.e., E(oo)= I. Conse-
quently, we have proved that E is a spectral family.

R(z, T) = by (7.24) and Theorem 7.14. This implies that E(z — id)
= z — T and E(id) = T (Theorem 7.14(h) and (g) respectively). Hence, the
theorem is proved in the complex case.

If T is a self-adjoint operator on the real Hubert space H, then we
consider the seif-adjoint operator on the complex Hilbert space
(ef. Exercise 5.32). By what we have just proved, has exactly one
spectral family E of to H is a
spectral family on H such that E(id) = T. If F were another spectral family
on H with the property that F(id) = T, then the complexification of F
would be another spectral family on such that

F = The details are left to the reader (cf. Exer-
cise 7.25).

EXAMPLE 1. If T is the operator of multiplication by a real function g on
Pa) (cf. Section 7.2, Example 2 (continued)), then E(t) is the

operator of multiplication by the characteristic function of { s E g(s)
t}. We also write briefly that E(t) = The corresponding result
holds for multiplication operators on L2(M). The proofs are contained in
Examples I and 2 of Section 7.2.
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EXAMPLE 2. Let P be an orthogonal projection on H. Then

10 for t<0,
for

for

is the spectral family of F, since for this spectral family we have

fu(t) dE(t) = u(0)(I— F) + u(1)P;

consequently,

ft dE(t) = P.

In particular, the spectral family of the zero operator is given by

E(t)=10 for t<0,
t..i for t>0,

and that of the identity operator by

E(t) = [0 for 1<1,
li for t>1.

EXAMPLE 3. Assume that T is a compact self-adjoint operator on H, (A') is
the sequence of non-zero eigenvalues of T, (Pd) is the sequence of the
orthogonal projections onto the eigenspaces — T) and P0 is the or-
thogonal projection onto N(T). Then the equality

F) for t<0,
{j:

E(t)f=
for t>0

defines the spectral family of T, since

E(id)f AJPJf + OP0f = Tf for all f E H

by Theorem 7.1.

Theorem 7.18 (Spectral representation theorem). Let T be a seif-adjoint
operator on H. Then there exist a family {Pa : a E A) of right continuous
non-decreasing functions and a unitary operator U from H onto

which

T= U'TidU,
where denotes the maximal operator of mult4lication by the function id
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pa). For the spectral family E of T we have E(t) =

REMARK. In place of the assertion of Theorem 7.18 we can briefly say the
following: Every seif-adjoint operator is unitary equivalent to a multiplica-
tion operator by the function u = id; these are operators that we already
know quite well. The cardinality of the set A is at most equal to the
dimension of H. The spaces have to be chosen to be real when H
is real. One disadvantage of this theorem compared to Theorem 7.17 is that
this representation is not unique.

PROOF. If E is the spectral family of T, and Pa)' U, and F are
constructed as in Theorem 7.16, then by Theorem 7.16 and Theorem 7.17

T = E(id) = U-'F(id)U =

E(t) = U'F(t)U U.

If E is the spectral family of the seif-adjoint operator T, and u is an
E-measurable function, then we write u(T) for E(u). We already know that

= (z — T) 'for (z — t) '.The following theorem gives further
justification for this notation.

Theorem 7.19. If u(t) = then u(T)— where we set T°= I.

PROOF. The assertion obviously holds for n = 0 (ef. Theorem 7.14(d)). Let
us assume that it holds for polynomials of degree n — 1. Then v( T) =

for v(t)= Because of the equality u = id + c0, it
follows from Theorem 7.14(h) that

u(T) v(T)T+ c01.

Since for n> 1 we moreover have D( T) = D(E(id)) D D(u( T)), it follows
from Theorem 7.14(h) that

D(u(T)) =D(T) n D(u(T)) =D(v(T)T),
and thus

U

Let E be a spectral family on H. A subset M of is said to be
E-measurable if its characteristic function XM is E-measurable. We write
E(M) for E(XM). We have M) = E(l — XM) = I — E(XM) = I — E(M). If
E is the spectral family of T, then E(M) = xM(T). The operators E(M) are
orthogonal projections.

Proposition. Let T be a seif-adjoint operator on H, and let E be its spectral
family.
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(1) For any E-measurable subset M of the subspace R(E(M)) is a reducing
subspace of T, i.e., E(M)T c TE(M).

(2) Let D(M, T) = E(M)D(T). We have Tf> <ylIfII2 for all f E
D((— 00, y), T), f E D((— oo, y], T).
Similar statements hold for (-y, oo) and ['y, oo).

(3) We have <f, Tf> 112 for all f E 0(T) if and only if E(t) = I for all
t > y. We have Tf> > y If 112 for all f E D( T) if and only if E(t) =0
for all t<y.

(4) For every bounded interval J the subspace R(E(J)) is contained in D( T)
and TE(J) = E(id E B(H).

(5) Assume that t E and s >0. We have f E D(T) and IKT— t)f II
f E R(E(t + s) — E(t — s)).

(6) If u is a real-valued E-measurable function, then we have for the spectral
family F of u(T) that F(t) = E((s E : u(s) t}) for every t E and

: u(s)EM})for every Borel set M.

The proofs are obvious when T is the operator on Pa) In
the general case we use the spectral representation theorem 7.18. As to Part
6, observe that F(M) = xM(u(T)) = (XM ° u)(T), XM 0 U = u(s)EM) and
use Section 7.2, Example 2.

Now we are in a position to define the nth root of an arbitrary
non-negative seif-adjoint operator and give the polar decomposition of
unbounded operators.

Theorem 7.20.
(a) Every non-negative self-adjoint operator T possesses exactly one non-

negative self-adjoint nth root T 1/n• If E is the spectral family of T, then
dE(t) (here >0 for t>0; for t<0 the value of is

immaterial, as the p1-measure of (— 00, 0) vanishes for every f E H). If T
is compact, then

T a densely defined closed operator from H1 into H2. The operator
T can be uniquely represented in the form T = US, where S is a
non-negative seif-adjoint operator on H1_and U is a partial isometry with
initial domain R(S) and final domain R(T). We have S = (T* we

again write iTIfor

PROOF.

(a) By Theorem 7.14(f), (h) and (i) the given operator T1 is a non-nega-
tive nth root of T. By Part 6 of the last proposition the spectral family
of is

E — 10 for t<0,
— for t > 0.

If S is an arbitrary non-negative nth. root of T with spectral family F,
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then the spectral family of T= Sn is
10 for t<0,

for t>0.

The equality E F,, follows because of the uniqueness of the spectral
family of T. Consequently, F= El/fl, and thus

T is compact, then there exists a compact non-negative nth root of
T by Theorem 7.4. The operator constructed here is then com-
pact, because of the uniqueness of the nth root.

(b) If T= US is such a representation, then T* T—
U is the orthogonal projection onto R(S). The equalities

S = (T* = I TI follow from part (a). This proves the uniqueness,
since U is uniquely determined by the equality UI TIf= Tf. It remains
to prove the existence of such a representation. By Theorem 5.40 we
have To = 0(T) and

I
Tf f E 0(T). The mapping

V: Tf is therefore isometric, and T= VLTI. The
operator_V can be uniquely extended to an isometric mapping_V_acting
from R(I TI) onto R( T). The equality U(J+ g) = Vf for f E R(I TI) and
g E R(I TI)' proves the assertion. D

The boundedness and the norm of seif-adjoint operators can be seen
from their spectral family.

Theorem 7.21. A seif-adjoint T on H is bounded if and only if there exist real
numbers y1 and for which

E(t) = 0 for t<y1,
I for t>y2.

We can then choose

= m = inf(<f, Tf> :fED(T),
Y2 = M = sup{<f, Tf> :fED(T), IIfII = 1}.

For m <t <M we have E(t) 0 and E(t)

PROOF. By Theorem 4.4 the operator T is bounded if and only if m and M
are finite. By Part 3 of the last proposition this is equivalent . to the
assertions that E(t) =0 for t <m and E(t) = I for t M. If we had E(t0) =0
for some >m, then we would have Tf> t011ff 12 for allf E D(T), on
account of Part 3 of the last proposition. This contradicts the definition of
m. The relation E(t) I for t <M follows similarly. D

EXERCISES

7.19. Assume that T is a seif-adjoint operator, E is its spectral family, and M is a
closed subspace of H. We have M = R(E(t)) if and only if M is a reducing
subspace of T and <f, Tf> tIIfl,2 forf E D(T)n M and Tf> >ttffII2 for
fED(T)n M'.
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7.20. Suppose that T is seif-adjoint with spectral family E, a, b E p( T) n R, and F
is a positively oriented Jordan curve for which (a, b) n a( T) lies inside F and
all other points of the spectrum of T lie outside F. Then E(b) — E(a) =

i) I rR(z, T) dz in the sense of the Riemann integral.

7.21. Assume that T is self-adjoint, 0 1, andfE D(T), f t" dE(t) with
an arbitrary choice of the branch of the function fl—*t". Then

II II 11.1.11

Hint: Holder's inequality for T"f 12= 1 dIIE(t)f 112.

7.22. Let T be a non-negative self-adjoint operator, and let A >0. Then (A + T)'
cos (A '/2sT1"2) ds, in the sense of the improper Riemann-

Stiel tjes integral.

7.23. (a) Let T1 and be densely defined and closed. Assume that D( T1) = D( T2)

and f = I
fl for all f E D( T1). Then = If T1 and T2 are

seif-adjoint and non-negative, then T1 = T2.

(b) A densely defined closed operator is normal if and only if D(T* T)
= D(TT*) and II T*Tf II

=IITT*fII forfE D(T*T).

7.24. If T is seif-adjoint and u, v : are Borel functions, then u(v(T)) =
(u o v)(T).
Hint: Use the spectral representation theorem 7.18.

7.25. Assume that H is a real Hilbert space, T is a self-adjoint operator on H;
H and T, respectively (cf. Exercise 5.32).

(a) The mapping K: He, (f, g) f, g E H has the properties
KK= I and K(ah1 + b/i2) = a* K/i1 + b*Kh2 for all h2 E He (K is called
a conjugation; cf. also Section 8.1). We have H—(hEHc : Kh=h).

(b) We have KTe TcK and K(z— for all zEp(Tc).
(c) If Ec is the spectral family of Tc, then KEc(t) = Ec(t)K for all t E

Hint: Use (7.22).
(d) The formula E(t) = E defines a spectral family on H such that

T= E(id).
(e) E is the only spectral family for which T = E(id). (This proves Theorem

7.17 for real Hubert spaces.)

7.26. Let T be a densely defined closed operator on H and let T= UI TI be its
polar decomposition.

______

(a) We have N(I Tl)= N(T) and R(ITI)= R(T*).
(b) We have T*=ITIU* and IT*I= UITIU*.

Hint: TT* = TI U*)( UJ TI U*), and UI TI U* is non-negative and self-
adjoint.

(c) Prove, furthermore, that T = UI TI = IT*I U = UT* U, =
I

I I
TI U = I T*I = UT* = TU* =

UITIU*.
(d) If T is_normal,__then

I

TJ = I
T*I, UI TI = I TI U, U*I TI = I

TI U*, and
R(T)= R(T*)= R(ITI).

(e) If T is normal, then the operators T*)k are normal for all j, k E
furthermore, = = and
IITJ(T*YcfIl

7.27. Let S be closed and symmetric but not seif-adjoint, and let T= Then
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T+XS is seif-adjoint for XE(— 1, 1), closed and not seif-adjoint for IXI>1,
and not closed for = 1. (S is T-bounded with T-bounded 1.)

7.28. Let T be a seif-adjoint operator on L2(M) and let (z0— T)" be a Carleman
operator for some z0 E p( T).
(a) (z — T) — is a Carleman operator for every z E p( T).
(b) E(b) — E(a) is a Carleman operator for all a, b E
Hint: (z— and (z — E(a)) are bounded.

7.29. (a) If T is a non-negative seif-adjoint operator, then 0(T) is a core of T"2.
(b) If A is symmetric and non-negative, T is the Friedrichs extension of A,

and S is an arbitrary non-negative seif-adjoint extension of A, then
D(T'/2) c 0(51/2).
Hint: D(T'/2) is the completion of 0(A) with respect to the norm
(11f112+ <f, Af>}"2.

7.30. Let S and T be non-negative seif-adjoint operators. We write T S if
D(S"2)cD(T'/2) and IT"2.fII for
(a) If 0 E p(T), then T S if and only if S 1 T —' (i.e., <f, S —

for allfE H).
Hint: Show that for all

(b) If A is symmetric and non-negative, T is the Friedrichs extension of A,
and S is an arbitrary non-negative self-adjoint extension of A, then S T.

7.30' Let T be seif-adjoint on a complex Hubert space, and let A be T-bounded.
(a) The relative bound of A equals

I

A (it — T)
(b) If T is bounded from below, then the relative bound of A equals

+ T) ill.

7.4 Spectra of seif-adjoint operators

We know from Section 5.3 that the spectrum of a seif-adjoint operator is a
closed subset of the real axis (of course, this is a non-trivial statement only
in the complex case). In this section we want to study how the spectral
points of a self-adjoint operator may be characterized by means of its
spectral family.

Let T be a seif-adjoint operator on H, The spectrum a(T) and the point
spectrum are defined as in Section 5.2.

Theorem 7.22. Let T be a self-adjoint operator on H, let E be the spectral
family of T, and let T0 be a restriction of T for which T0 = T. Then the
following statements are equivalent:

(i) sEa(T);
(ii) there exists a sequence from 0(T) for which urn inf >0 and

(s—
(iii) there exists a sequence (ga) from 0(T0) for which urn inf >0 and

(s—
(iv) E(s + €) — E(s — €) 0 for every >0.
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PROOF. The equivalence of (i) and (ii) immediately follows from Theorem
5.24.

(ii) implies (iii): Since D(T0) is a core of T, for every n E N there exists a
E D(T0) for which n Hence,

lim inf >0 and (s —
(iii) implies (ii): This is clear because of the inclusion D(T0) c D(T).
(ii) implies (iv): Assume that (iv) does not hold, i.e., that there exists an

>0 such that E(s + €) — E(s — = 0. If is the sequence from (ii), then

ii(s- = f is - t12
>

= €2iifnii2

(here we have used the fact that is — ti > almost everywhere relative to the
measure induced by = iiE( . This is a contradiction because
(s— and lim inf >0.

(iv) implies (ii): We have E(s + n — ') — E(s — n 1) 0 for every n E N,
i.e., there exists an E R(E(s + n') — E(s — n

1)) such that 1. For
this sequence we have lim inf = 1 and

Ii(s - = f - t12

=

Corollary 1. Let a <b. If E(b) — then (a, bin
a(T) 0 if and only if E(b — ) — E(a) 0.

PROOF.

(a) Assume that (a, b] c p( T). Then by Theorem 7.22 the spectral family E
is constant in some neighborhood of s for every s E (a, b]. Conse-
quently, E is constant in (a, b}, and thus E(b) — E(a) = s —

— E(a + )) =0.
(b) If (a, b) n a( T) =0, then we can prove, as in part (a), that E is

constant in (a, b), i.e., that E(b — ) — E(a) = s — — €) — E(a
+ €)) =0. If A E (a, b) n a( T), and >0 is so small that (A — €, A + €1 C
(a, b), then E(A+€)— E(A— so that

Corollary 2. A self-adjoint operator T is bounded from below if and only if its
spectrum is bounded from below. The greatest lower bound of T is equal to
mm a(T).

PROOF. By Part 3 of the proposition preceding Theorem 7.20, we have
Tf> > 112 for allf E D(T) if and only if E(t) 0 for t <y. If E(t) = 0

for t<y, then by Theorem 7.22 no spectral point of T can lie in (— oc, y).
Therefore, mm a(T) > y. If a(T) is bounded from below, then E is con-
stant in (— oo, mm a(T)). Consequently, E(t) = 0 for t <mm ci(T), and
thus y mm a(T). LI
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Theorem 7.23. Let T, T0 and E be as in Theorem 7.22. Then the following
assertions are equivalent:

(i)
(ii) there exists a Cauchy sequence from 0(T) for which >0

and (s —
(iii) there exists a Cauchy sequence (ga) from D( T0) for which urn I

II >0
and (s—

(iv)
We have N(s — T) = R(E(s) — E(s — )).

PROOF. (i) implies (ii): If f is an eigenelement of T belonging to the
eigenvalue s, then we can choose the constant sequence = f.

(ii) implies (iii): Since 0(T0) is a core of T, for every n E there exists a
E 0(T0) for which

I —
1 and T0 —

II
<n '. Everything

follows from this.
(iii) implies (i): Let f= urn Then (s — T)f= lim(s — =0.
(i) implies (iv): Let f be an eigenelement of T belonging to the eigen-

value s. Then

0 Ks- T)f112 = f Is - t12 dIIE(t)f 12,

i.e., s — tI = 0 almost everywhere with respect to the measure induced by
Pf= 1IE(.)f 12. Therefore, E(t)f is constant in (— oo, s) and in (s, oo), and
thus E(s — )f= 0, E(s)f= E(s + )f=f. Hence, E(s) — E(s

(iv) implies (i): For every f E R(E(s) — E(s —)) we obviously have
lI(s — T)fJ12 = us — t12 dIiE(t)f112 = 0.

It follows from the last two steps that N(s — T) = R(E(s) — E(s )). 0

Proposition. Any isolated point A of the spectrum of a seif-adjoint operator T
is an cigenvalue of T.

PROOF. There is an >0 such that [A — €, A + €] fl a(T) = (A). Hence, by
Corollary 1 to Theorem 7.22, E is constant in [A — €, A) and in (A, A +
Since A E a(T), by Theorem 7.22 we have

E(A) — E(A —) = E(A + c) — E(A — c) 0,

i.e., A is an eigenvalue of T.

The essential spectrum ae(T) of a self-adjoint operator T is the set of
those points (of a(T)) that are either accumulation points of a(T) or
isolated eigenvalues of infinite multiplicity. The set ad( T) = a( T) \ ae( T) is
called the discrete spectrum of T. By the last proposition ad(T) is the set of
those eigenvalues of finite multiplicity that are isolated points of a( T). We
say that T has a pure discrete spectrum if Ge( T) is empty.
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Theorem 7.24. Let T, T0 and E be as in Theorem 7.22. Then the following
statements are equivalent:
(i) sEae(T);

(ii) there exists a sequence from D(T) for which 0, urn inf >0

a sequence (ga) from 0(T0) for which 0, urn inf II
II

>0 and(s—
(iv) for eve,y €>0 we have dim R(E(s+€)—E(s—€))——oo.

PROOF. (i) implies (ii): If s is an eigenvalue of infinite multiplicity, then
there exists an orthonormal sequence (Jo) in N(s — T); this sequence has
the properties required in (ii). If s is an accumulation point of a( T), then
there exists a sequence (sn) from a( T) such that ; for n
and as n—*oo. Let us now choose ç, >0 so small that the intervals
(Sn — Sn + be mutually disjoint. Since Sn E a(T), we have + En) —
E(s1 — 0. Let us choose a normed element fn from + ç,) —

— Then we obviously have <fn'fm> = 6nm and (s—
(ii) implies (iii): For every n E there exists a E 0(T0) for which

II II
n' and II T0 — Tfn If

<n'. All the properties required in (iii)
follow from this.

(iii) implies (iv): Assume that we have dim R(E(s + €) — E(s — €)) < 00
for some >0, i.e., that the projection E(s + €) — E(s — €) is compact. For
the sequence (ga) from (iii) we then have (E(s + E) — E(s — Con-
sequently,

II(s- = f k - t12

€2{ f 112]

II — II(E(s + c) — E(s —

and thus

urn inf Ks — 12 > urn
II

112 > 0.

This is in contradiction with (iii).
(iv) implies (i): If dim R(E(s) — E(s —)) = oo, then s is an eigenvalue of

infinite multiplicity (Theorem 7.23). Therefore, s E t7e( T). Let R(E(s) —
E(s —)) be finite-dimensional, but let dim R(E(s + €) — E(s — €)) = oo for
all 0. Then the set (s — €, s) U (s, s + €] contains at least one spectral
point for every c >0 by Corollary 1 to Theorem 7.22; hence s is an
accumulation point of a(T). D

Theorems 7.22 and 7.24 provide natural characterizations of ad(T). We
will not give these explicitly here. They are partly contained in the
following propositions.
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Proposition. If a <b and dim R(E(b —) — E(a)) = m (m E NJ), then a(T) n
(a, b) consists of only isolated eigenvalues of finite multiplicity. The sum of
the multiplicities of these eigenvalues equals m.

PROOF. By Theorem 7.24 we have (a, b) n Ge(T) =0, i.e., (a, b) n i( T) C
ad(T). Let A1, A2, . . . be the eigenvalues of T in (a, b) (there are at most
countably many of these, since they cannot accumulate in the interior of
(a, b)). Then

E(b-) - E(a)> forall n

Therefore, only finitely many eigenvalues A1, A2, can lie in (a, b),
and

k

dim R(E(b -) — E(a)) = dim - E(A1 —)).
j=1

The right-hand side equals the sum of the multiplicities of the eigenvalues
U

Proposition. If dim R(E(b)) = m < for some b E then T is bounded
from below.

PROOF. By the previous proposition the interval (a, b) contains at most m
spectral points for any a <b; hence (— cc, b) contains at most m spectral
points. The smallest of these finitely many eigenvalues is a lower bound for
T by Corollary 2 to Theorem 7.22.

Proposition. If dim R(E(b) — E(a))== cx, then Ge(T)fl [a, b]

PROOF. If we had Ge( T) n [a, b] =0, then for every s E [a, b} there would
be an >0 such that dim R(E(s + €) — E(s — < 00. The interval [a, b]
could be covered by finitely many intervals of this kind. This implies that
dim R(E(b) — E(a)) < cc, which is a contradiction.

Theorem 7.25. Let T be a self-adjoint operator on H, and let H = H1 H2

H3 with dim H3 = m < oo. Assume that the orthogonal projection P1 onto
maps 0(T) into itself forj= 1, If

<f Tf>f
for fEP1D(T),
for fEP2D(T),

then (a, b) n a(T) consists of only isolated eigenvalues; the sum of the
multiplicities of these eigenvalues is at most m.

5Then P3 also maps D( T) into itself.
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PROOF. Let us assume that dim R(E(b — ) — E(a)) > m + 1. Then there
exists anf E R(E(b —) E(a)) n H3' such that 0. Hence, f= P1 f+ P2f,
and, putting c = (a + b)/2, we have

IKT- c)f112 = f X(a,b)(t)(t
c)2 diiE(t)f112

< (b - a )2If12.

With properly chosen E I it follows from this that

I<(T—c)f, P1f>I + I<P2f, (T—c)f>i
= (T—c)f> + (T—c)f>
= a2P2f, (T-c)f> a2P2fII ii(T-c)fII

= c)fii = lifit IKT- c)fIi
<

Consequently,

bIIP2f 112 <P2f, TP2f> = <P2f, Tf> - <Tf, P1f> + <P1f, TP1J>

c(lJP2f iiF1fii2) + <P2f, (T— c)f>

-<(T-c)f, P1f> + allP1fll2

P2JU2 - b-a
11f112 + (T-

+i<(T—c)f,

<biIP2flt2.

This is a contradiction. Therefore, dim R(E(b —) — E(a)) <m, and the
assertion follows from the first proposition after Theorem 7.24.

A corresponding theorem holds in the case when (a, b) is a half-line.

Theorem 7.26.
(a) Let T be a seif-adjoint operator on H, and let H1 be a closed subspace of

H such that dim H1' = m < oo. Assume that P1 D( T) C 0(T) for the
orthogonal projection P1 onto H1, and that

<f, Tf> bJtfJI2 for f E P1D(T).

Then (— b) n a( T) consists of only isolated eigenvalues; the sum of
the multiplicities of these eigenvalues is at most m. The operator T is
bounded from below.

(b) Let T be seif-adjoint on H, and let H1 be an m-dimensional subspace of
0(T). Assume that <f, Tf> for aIlf E H1. Then dim R(E(a))>
m.

PROOF.

(a) With H2 (0) and H3 = H1' the assumptions of Theorem 7.25 are
fulfilled for every a <b. Consequently, (—oo, b)n a(T) contains only
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isolated eigenvalues of finite multiplicity, with total multiplicity less
than or equal to m. In particular, a(T) n (— oo, b) is a finite set;
therefore, = mm ci( T) exists. Hence, T is bounded from below by
Corollary 2 to Theorem 7.22.

(b) If we had dim R(E(a)) <m, then there would be an f E H1 for which
andf± R(E(a)). For thisf

Tf> ajIfII2 < Tf>,

by assumption and by part (2) of the proposition preceding Theorem
7.20. This is a contradiction. D

In some investigations another partition of the spectrum is useful. For
that we first need some definitions. Let T again be a seif-adjoint operator
on H with spectral family E. Let Ij, denote the closed linear hull of all
eigenelements of T. We call H
with respect to T. The orthogonal complement of is called the continu-
ous subspace of H with respect to T. This is denoted by = T). The
singular continuous subspace H with respect to T is the set of
those f E for which there exists a Bore! set N c of Lebesgue measure
zero (briefly: a Borel null set) such that E(N)f=f. The subspace is
closed. This can be seen in the following way. If is a sequence from

and the are Borel null sets such that then
N = U is also a null set and E(N)f= urn = urn = lim

f lies in I-Ia, hence in The orthogonal comple-
ment of relative to (i.e., e is called the absolutely. continuous
subspace of H relative to T. This is denoted by Hac = T). The singular
subspace H with respect to T is defined by the equality I-is = T)
= Let and denote the orthogonal projections
onto these subspaces.

Theorem 7.27. Let T be a seif-adjoint operator on H with spectral family E.
Denote, for every f E H, by Pf the measure induced on by means of
IIE( .

(a) equals the set of those f E H for which there exists an at most
countable set Ac such that = 0, i.e., for which the measure Pf
is concentrated on (at most) countably many points.

(b) is the set of those f E H for which pj((t}) =0 for every t E i.e., for
which the function E I-Ia we obviously
have pf(A) =0 for every at most countable set A C

f E H for which there exists a Borel null set N
such that \ N) 0, i.e., for which is singular with respect to
Lebesgue measure.

(d) Hac equals the set of those f E H for which pj( N) =0 for every Borel null
set N, i.e., for which p1 is absolutely continuous with respect to Lebesgue
measure.
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PROOF.

(a) If is an eigenelement for the eigenvalue and f= then we
obviously have E({X3 :j E If A = j E and E(A)f=f,
then

f
=

Since — E(AJ — ))f (when it is different from zero) is an eigenele-
ment belonging to the eigenvalue the element f lies in the closed hull
of the eigenvectors.

(b) We have E({t})fE!j, and for everyfEH
and every tEFt then we have
<f, E((z})f> = 0 for every t E Let for every t E Ft Then

= 0 for every at most countable set A c hence !E(A)f 112 =
p1(A) =0. If g E H, and A is an at most countable set such that
E(A)g = g, then <f, g> = E(A)g> = <E(A)f, g> = <0, g> = 0, i.e.,

(c) We have If with f,E!j, and then
there exist an at most countable set A c and a Borel null set N for
which E(A)4 =4, and thus E(A U N)f—f; the set A U N
is a Borel null set. Conversely, let E(N)f=f for some Bore! null set N.
The set A of jump points of the non-decreasing function E(t)f112 is

at most countable, and E(A)f E Let g E !j, be arbitrary. Then there
exists an at most countable set A' such that E(A') = g. Since E(( t))(f
—E(A)D=E({t})f—E({t}nA)f=0 for every

t E A for t A), it follows that
E(A')(f— E(A)f) =0, and thus

<g, f — E(A)f> = <E(A')g, f — E(A)f>
= <g, E(A')(f— E(A)f)> = 0,

i.e., f— E(A)f E = I-Ia. Because of the equality E(N)(f— E(A)f) =
f— E(A)f we have f— E(A)fE therefore, f= E(A)f+(f— E(A)f)

(d) We have Hac = e = Assume that f E Hac = Then
IIE(N)f 112 = E(N)f> =0 for every Bore! null set N, since E(N)f E
I-I. Let us now assume that E(N)f= 0 for every Bore! null set N. If
g E then by part c) there exists a Bore! null set N such that
g = E(N)g. It follows from this that

= <f,E(N)g> = <E(N)f,g> = 0,

and thusf E I-c- = Hac. LI

Let M be a closed subspace of H, and let P be the orthogonal projection
onto M. We say that M reduces the operator T if PT C TP (this obviously
implies P D(T) c T), as well as (I — P)D(T) C D(T) and (I — F) T C
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T(I — F); cf. also Exercise 5.39 and Section 7.3, Proposition 1). The
formulae D( TM) = M n 0(T) and TMJ= Tf for f E D( TM) define an opera-
tor on M. The subspace M is a reducing subspace of T if and only if M -'- is

a reducing subspace of T. Then D(T) = D(TM) + D(TMI).

Theorem 7.28. Let T be a self- adjoint operator on H, with the spectral family
E, and let M be a reducing subspace of T. Then TM and TMI are seif-adjoint
on M and M-'-, respectively. We have a(T) = cT(TM) U a(TMI). The subspace
M reduces T if and only if PE(t) = E(t)P for every t E where P denotes
the orthogonal projection onto M.

PROOF. D(TM) is dense in M, since D(TM)= D(T)' n M= {0) because
of the equality 0(T) = D(TM) + O(TMJ). As a restriction of a seif-adjoint
operator, TM is surely Hermitian. Therefore, TM is symmetric on M. It
remains to prove that O((TM)*) C Let g E D((TM)*). Then

= = <g, T,IAJ1> = <g, + TMJJ2> = <g, Tf>

for all f=f1 +f2 E D(TM)+ D(TMI)= 0(T); i.e., g EM n D(T*)= Mn
D(T) = D(TM). We can show the self-adjointness of TMI analogously. We
have

IKz — T)f112 = IKz — + I(z — TMI)f2112

for every z E K and for f—fr +f2 E O(TM) + D(TM±) = 0(T). It follows
from this by Theorem 5.24 that z Ep(T) if and only if z Ep(TM)fl p(TM±),
i.e., cr(T) = a(TM) U cr(TMI).

If M reduces the operator T, then R(z, T)P R(z, T)P(z — T)R(z, T)
c R(z, T)(z — T)PR(z, T) = PR(z, T). Therefore, R(z, T)P = PR(z, T),
because D(R(z, T)P) = H. It follows, by formula (7.22) for the spectral
family E, that E(t)P = PE(t) for all t E FL Now let the equalities E(t)P =
PE(t) (t E FL) hold true. Then

I itt2 dJiE(t)Pf 12 = fiti2 fitF dtiE(t)fiI2 <

for every f E 0(T). Consequently, Pf E D( T). This implies that D( TP)
D(T) = 0(PT). If f E 0(T) and (un) is a sequence of step functions such
that tends to id in L2(R, then tends to id in L2(FL, Ppj) also, and

PTJ PE(id)f = P lim = urn = urn

= P(id)Pf = TPJ'. D

Theorem 7.29. Let T be a self-adjoint operator on H. The subspaces
H,,, and I-Is reduce the operator T.

PROOF. It is obviously sufficient to show that and I-Is reduce the
operator T. The remaining assertions follow from this, because =

For any f E H,, there is an at most countable subset A of FL such that
E(A)f=f. Consequently, E(t)f= E(t)E(A)f = E(A)E(t)f E H1, for all t E FL,
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i.e., = It follows from this that

= =

We can show in an entirely analogous way that = E(t)P5 if we
replace A by the null set N for which E(N)f=f. LI

We denote by T
and the (spectral) discon-

tinuous, continuous, singular continuous, absolutely continuous, and singular
parts of T.

The continuous spectrum T), singular continuous spectrum T), ab-
solutely continuous spectrum aac( T), and the singular spectrum ;( T) of T
are defined as the spectrum of and T5, respectively. In contrast
with this, the point spectrum T) is defined as the set of eigenvalues of T
(these are also the eigenvalues of T1,; however, in general we only have

= cf. Exercise 7.33). The sets aac(T),_and
are closed (as they are spectra). We obviously have a( T) = T)u T)

U aac(T)=sJp(T)U
We say that T has a pure point spectrum, pure continuous spectrum, pure

singular continuous spectrum, pure absolutely continuous spectrum and pure
singular spectrum if !j, = H, = H, H, H, H, respec-
tively. We then have a(T)= a(T)

a( T) = T), respectively.

EXAMPLE 1. Let pa,,, and Pac be measures on Let pS,, be concentrated
on a countable set (i.e., there exists a countable set A such that =
0), let be singular continuous (i.e., there exists a Bore! null set N such
that N)= 0 and = 0 for every t E let be absolutely
continuous (i.e., Pac( N) =0 for every Bore! null set N). Let T be the
operator of multiplication by the function id on L2(F& L2(R,

Pac) Then Ij = = L2(R, pac)' Hsc =
Hac = and = The proof will be left to
the reader. We shall show in Exercise 7.34 that every self-adjoint operator
is the orthogonal sum of operators of this type.

EXERCISES

7.31. If T is a seif-adjoint operator on H with pure point spectrum, and tea a E
A) is an orthonormal basis of eigenelements with corresponding eigenvalues
{Aa : a E A), then 0(T) is equal to the set of those f E H for which

oo; we have forfED(T).

7.32. Let T be a seif-adjoint operator on the infinite-dimensional Hilbert space H.
(a) If T is bounded, then
(b) T is compact if and only if T is bounded and Ge(T)= {0}.
(c) If H is separable, then is the only closed ideal in B(H).



210 7 The spectral theory of seif-adjoint and normal operators

7.33. For any seif-adjoint operator T we have the following:
(a) i(7); however, is in general not closed, and thus

a( 7) in_general.
(b) UGsc(T)UGac(T)=Gs(T)UGac(T).
(c) Ge(T)=Gc(T)U(Gp(T) \ad(T)).

7.34. Every seif-adjoint operator is unitarily equivalent to a maximal operator of
multiplication by the function id on

i-7)); where the measures r7 have the following properties:
for every pa there exists a countable set Aa such that
pa(R\Aa)=0; a,3((t))=0 for every and there exists a Borel null set N,3
such that N,3) = 0 ($ E B); all T7 are absolutely continuous with
respect to Lebesgue measure.
Hint: Apply Theorem 7.18 to

T a seif-adjoint with spectral family F, and let u : be E-measur-
able. Then we have the following:
(a) if u is continuous on a(T), then a(u(T))=u(a(T)); if

T is bounded and u is continuous, then = u(a(T));
(b) C c
(c) Hac(U(T)) C (Yac(hI(T)) C U(Gac(T)).

7.36. Let T be seif-adjoint with spectral family F, and let u, v : R—..C be E-
measurable.
(a) If u(t)=v(t) for all tEa(T), then u(T)=v(T).
(b) If T has a pure point spectrum, then it is sufficient to assume that

u(t) = v(t) for all t E T) in (a).

7.37. Let T be a seif-adjoint operator with spectral family E, and let M be a
subspace of D(T) such that II(A — for allf E M.

(a) dim R(E(A + c) — E(A — c —)) dim M.
(b) If dim M= oo, then Ge(T)fl[)t — c, A +

7.38. Let T be a seif-adjoint operator on H. The operator T has a pure discrete
spectrum if and only if (A — T) 'is compact for every A E p( T). If H is not
separable, then Ge( T) 0.

7.39. Let A be a symmetric semi-bounded operator, let T be the Fnedrichs
extension of A, and let S be an arbitrary semi-bounded self-adjoint extension
of A.
(a) dim ET(t) dim Es(t) for every t E R.

Hint: Exercise 7.30c and Theorem 7.26b.
(b) If S has a pure discrete spectrum, then T also has a pure discrete

spectrum.

7.5 The spectral theorem for normal operators

We have shown in Section 7.3 that every seif-adjoint operator can be
represented in the form dE(t), where E is a (real) spectral family
defined on Here we show that every normal operator can be repre-
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sented in a corresponding way as an "integral" dG(z), where G is a
spectral family defined on C.

Let H be a Hubert space. A function G : is called a complex
spectral family if there are real spectral families E and F such that

G(t + is) = E(t)F(s) = F(s)E(t) for all s, t E FL

Theorem 7.30. Let G be a complex spectral family on H with G(t + i s) =
E(t)F(s).
(a) G(t + i s)G(t' + i s') = G(min(t, t'} +i min(s, s'}) for all s, s', t, t' E

in particular, G(z) ( G(z') for all z, z' E C such that Re z <Re z' and
Im z < Im z'.

(b) zn-9z, Re z, z imply G(Zn) G(z).
(c) If a sequence from Cfor which Re oo or Im z,,—+— oo, then

G(Zn) —p 0; if (Zn) iS a sequence from C for which Re Zn 00 and
then

(d) The spectral families E and F are uniquely determined by G; we have
E(t) = s — G(t + is) and F(s) = s — G(t + is).

(e) If we set G(J) = E(J1)F(J2) for an arbitrary interval J= J1 x J2 = {z E
C: RezEJ1, Im.ZEJ2), then G(J)G(J')=Ofor JnJ'=ø.

(f) The equality = G(J)f 112 for all intervals J in C defines a regular
interval function on C for every f E H (cf. Appendix A 1).

PROOF.

(a) For all s, s', t, t' E

G(t + is) G(t' + is') = E(t)F(s)E(t')F(s')
= E(t)E(t')F(s)F(s') = E(min(t, t'})F(min(s, s'}
= G(min(t, t'} +i min(s, s'}).

(b) Let and (re,,) be null-sequences from [0, oo). Then

JI(G(z + + — G(z))f 112

= urn E(t)F(s)f,f>
fl —*00

= urn —<F(s)f, E(t)f>) = 0

for all z = t + is and f E H.
(c) Assume that Zn = and 00 o,o. Then for allfE H

lim 112 = lim <E(tn)F(Sn)f, f>

= lirn E(tn)f> 0,
fl —*00

since in at least one factor tends to zero, while the
other remains bounded. If oo and s, oc, then it follows for all
fE H that

11f G(Zn)f112 = urn 0.
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(d) It follows from the formula F(s) I as s—* oo that

E(t)f = urn F(s)E(t)f urn G(t + is)f

for all f E H. The assertion for F follows in a similar way.
(e) If J=J1XJ2, and JnJ'=ø, then J1nJç=Oor

=0, and thus

G(J)G(J') = = 0.

(f) If J1 is an arbitrary interval in then we can show easily that there
exists a sequence (J1 of open intervals for which J1 c J1 and
E(J1, —÷ (the sequence (J1 has to be chosen so that we have

for all t E Let J2, be a similar sequence with the
property F(J2 F(J2). Then

x J2) = <F(J2)f, E(J1)f> = tim <F(J2 E(Ji,
fl 00

= tim X J2, = lim 'yf(JI, x J2,

f E H. Since the intervals J1, x J2,, are open and J1 x J2 c J1
X J2, this proves the regularity of Eli

If for the step function u :

u(z) =

we define the integral with respect to the complex spectral family G by the
equality

fu(z) dG(z)

we can use the same arguments as we did in Section 7.2 when we discussed
integration with respect to a real spectral family. Let us also denote by
the measure that is induced by the interval function We say that a
function U: C—* is G-measurable if it is for all f E H. If
u E L2(C, then we can define the integral

fu(z) dG(z)f

just as in Section 7.2. For every G-measurable function U: the
formulae

D(G(u)) = {fEH:

O(u)f=fu(z)dG(z)f for fED(O(u))
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define a normal operator on H. We also write

Ô(u) fu(z) dG(z).

The assertions of Theorem 7.14 (and their proofs) remain valid and will be
used in the following without further explanation.

Theorem 7.31 (The spectral theorem for bounded normal operators). Let H
be a complex Hubert space, and let T E B( H) be a normal operator. Then
there exists exactly one complex spectral family G for which

T = fz dG(z).

We have G(t + is) = E(t)F(s) = F(s)E(t) for s, t E R; where E and F are the
spectral families of the seif-adjoint operators A = (T+ T*)/2 and B = (T —

T*)/2i,. respectively. G(z) = I for z E C such that Re z> 1 and Im z>
1

and G(z) =0 for z E C such that Re z < — II or Im z < — II

Moreover, T— A + iB and AB = BA. The operators A and B are called the
real part and the imaginary part of T.

PROOF. If A and B are defined as in the theorem, then it is obvious that
A*=A,B*__B, T=A+iB, and

A B = (T2 — TT* + T* T — T*2) = — T*2) = BA.

Then we also have

R(z, A)R(z', B) = [(z' — B)(z — A)]' = [(z —A)(z' —

= R(z', B)R(z, A)

for all z, z' E C\ For the spectral families E and F of A and B,
respectively, it now follows with the aid of formula (7.22) that

E(t)F(s) = F(s)E(t) for all s, t E

Now we define the complex spectral family G by the formula

G(t + is) = E(t)F(s) for all s, t E
Then

G(t+is) = E(t)F(s) = I for t > IITM and s > HTM,

since IA II TII and lB II ' II TII. Similarly,

G(t+is) = E(t)F(s) = 0 for t < —IITII or s < —IITII.

If for (un) we choose a bounded sequence of step functions defined on
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which converges to id uniformly for then

A = ft dE(t) = lim dE(t) urn f un(Re z) dG(z)

•

= f Re z dG(z),

where we have used the fact that G((z E C : Re z E J}) = E(J). We can
obtain similarly that

B = fim z dG(z).

Consequently, it follows that

T= A +iB =f Rez dG(z)+iflmzdG(z)

= z + i Im z) dG(z) = fz dG(z).

It only remains to prove the uniqueness of G. Let G' be a complex spectral
family for which

T = fz dG'(z) and G'(t + is) = E'(t)F'(s) = F'(s)E'(t).

Then

A = f(T+ T*) = f z dG'(z) = ft dE'(t).

The unicity of the spectral family of self-adjoint operators gives that
E= E'. We can show similarly that F= F'. Therefore, G= G'.

If G is the spectral family of the operator T in the sense of Theorem
7.31, then we also write u(T) for G(u). Theorem 7.19 also holds for normal
operators.

EXAMPLE 1. Assume T is a compact normal operator on the complex
Hubert space H, {A1, A2, . .

. ) are its non-zero eigenvalues, is the
orthogonal projection onto N(AJ — T), A0 0, and P0 is the orthogonal
projection onto N(T). Then the formula

G(z) = :jE Re <Rez, Im Imz) for z E C

defines a complex spectral family, and we have

T = fz dG(z).

The proof goes as in the seif-adjoint case.
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Theorem 7.32 (The spectral theorem for normal operators). Let T be a
normal operator on the complex Hubert space H. Then there exists a unique
complex spectral family G for which

T = dG(z).

The operators A = (T + T*)/2 and B = (T — T*)/2i are seif-adjoint. For the
spectral families E and F of A and B, respectively, we have

G(t + is) = E(t)F(s) = F(s)E(t).

We have T= A + iB and T* = A — iB. The operators A and B are called the
real part and the imaginary part of T (cf. Exercise 7.49).

PROOF. Since this theorem has little significance in the applications, we
shall not work out its proof in detail. The operator S = T* T is seif-adjoint
by Theorem 5.39. Let E0 denote its spectral family. TS = ST holds,
because T is normal. Hence R(z, S) T c TR(z, S) for all z E C \ It
follows from this by (7.22) that E0(t) T c TE0(t). This implies that the
subspaces

=R(E0((—n,

reduce the operator T (cf. Section 7.4). The same holds for T*. Let
= TIH. We have I-Ia c D(T* T) c D(T) by Section 7.3, Proposition 4.

Therefore, For all f E we have

= <T*Tf,f> <

i.e., E Similarly, E and
II 1

= f a bounded normal operator
on Consequently, by Theorem 7.31 there is a complex spectral family

such that

=

where + is) = E with the spectral
families and of

=f(T+T*)k and

respectively. In what follows we consider the operators and
to be defined on H (more precisely, we should write etc.,

where is the embedding of into H and P., is the orthogonal projection
onto Ha). Since H= the sums

G(z) =

E(t) and F(s) =
nERJ
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exist for all z E C and s, I E in the strong sense. It is easy to see that E
and F are (real) spectral families and G(t + is) = E(t)F(s) = F(s)E(t).

Now let = L( H1,, : n E Then is a core of T. For every f E
there exists an NE such thatfE Then

Tf=

fz dG(z)f = O(id)f.

The restriction T0 of T to is therefore contained in the normal operator
O(id). Then we also have T= C Ô(id), and it follows by Section 5.6,
Proposition I that T = G(id).

Similarly,

Af f(T+ T*)f = ft dE(t)f, Bf = T*)f = fs dF(s)f

for f E D0. As the restrictions of (T+ T*)/2 and (T— T*)/2i to D0 are
essentially seif-adjoint by Exercise 5.43, it follows from this that

f(T+ T*) = A = ft dE(t), T*) = B = fs dF(s).

We have T CA + iB, by construction. In order to prove that T= A + iB,
we therefore have to prove that 0(A + iB) = D(A) n 0(B) C 0(T). If f E
D(A)nD(B), then (observe that G({zEC : RezEJ))—E(J), G({zE
C: ImzEJ})=F(J))

fizi2 dli G(z)f 12 = f(IRe z12 + lIm z12) dli G(z)f 112

= ft2 +f dliF(s)f < oo;
R

consequently, f E 0(T).

EXAMPLE 2. Let y be a measure on C(= and let T be the maximal
operator of multiplication by the function id, i.e., let

0(T) = (JEL2(C, y) : idfEL2(C, y)},
Tf—idf for fED(T).

Then T is normal, and the spectral family G of T is given by

G(z)f = f E L2(C, y),

where is the characteristic function of the set fw E C : Re w Re z and
Imw<Imz}.
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We can show in an entirely analogous way as for seif-adjoint operators
that every normal operator is unitarily equivalent to an orthogonal sum of
operators of the kind considered in Example 2. We give the theorem
without proof.

Theorem 7.33 (The spectral representation theorem for normal operators).
If T is a normal operator on a complex Hi/bert space, then there exist a
family { : a E A) of measures on C and a unitary operator U:

L2(C, Ya) for which

T=
where is the maximal operator of multiplication by the function id on

Ya)' i.e.,

= ((fa)aEAE L2(C, Ya) : ?a))'aEA

Tid(fa)E A (fa)aE A E D( Tld).

The spectral points of a normal operator can be classified similarly to
those of a seif-adjoint operator, and they can be characterized by means of
the spectral family. We do not go into details and mention only the
following result.

Theorem 7.34. Let T be a normal operator on a complex Hubert space, and
let G be the spectral family of T.
(a) zEa(T) if and only if

G(z + i€) + G(z — i€) — G(z + i) — G(z — i€) 0

for every >0.
(b) IR(z, a(T))' for zEp(T), where d(z, G(T)) denotes the

distance of the point z from a(T).

For the proof: (a) The proof is analogous to that of Theorem 7.22.
Observe that G(XM) = G(b1 + ib2) + G(a1 + ia2) — G(a1 + ib2) — G(b1 + ia2)
for
(b) IIR(z, T)If >d(z, a(T))' by Theorem 5.15. Since we have R(z, T)=

with — w) and as d(z, a(T))' G-almost every-
where, it follows that IR(z, a(T))'.

Theorem 7.35. Assume that T are bounded normal operators
on the complex Hubert space H and T— as Then

a(T) = lim

a sequence (zr) from C for which

E and
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(This is an assertion about the continuity of the set-valued function TF-÷
a( T) defined on the set of bounded normal operators. We cannot allow all
bounded operators here, and T — cannot be replaced by

cf. Exercises 7.41 and 7.42.)

PROOF. If z Ea(T), i.e., z Ep(T), then (second Corollary to Theorem 5.11)
z for sufficiently large n and I!(z — Ta)' — (z — T)' II—÷0. Hence,
I(z— as Since d(z, we

have d(z, 1>0. Consequently, the point z is
not contained in urn

a( T). Then by Theorem 5.43 there is a sequence from H
for which =1 and (z — Then

hence d(z, a( Ta)) = I R(z, 1 < II (z — —÷0. It follows from this
that z E lim 0
Theorem 7.36. If U is a unitaiy operator on a complex Hilbert space, then
there exists a real spectral family E for which E(t) =0 for t < 0, E(t) = I for
t> 2ir and U= fe" dE(t) (cf. also Exercise 7.46).

PROOF. By Section 5.2, Example 2 the spectrum of U is contained in
{zEC : IzI=l}=(e" : 0<t<2cT}, i.e., G({e1t : where G
denotes the complex spectral family of U. Then the formulae

0 for 1<0,
E(t) = G((eis : for

I for t>2ir
define a real spectral family. We can verify easily that U= fe1' dE(t). 0
EXERCISES

7.40. A function G: C—*B(H) is a complex spectral family if and only if G(z) is an
orthogonal projection for every z E C and properties (a), (b) and (c) of
Theorem 7.30 are satisfied.

7.41. We cannot replace norm convergence by strong convergence in Theorem
7.35.
Hint: Let the operators Tm E B(12) be defined by Tm(ffl)flEN =(f1,f2,

fm' 0,0,0,. . .). Then I, G(Tm){O, 1) and u(I)={l}.

7.42. Let the operators Tm, m E and T from B(12(7L)) be defined by the formulae

for
with = 1

— 1or n——

— for
1"JflJnEZ — —

for n=—1.
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(a) We have II = = 1. Therefore, a(T) C (z EC : zI < 1) and G(Tm)
c(zEC:

(b) For every zEC such that IzI< 1, the vector defined for
n <0 and z for n > 0 is an eigenelement of T belonging to the
eigenvalue z; hence G(T) = {z E C : JzI 1).

(c) E B(12(Z)) for all m E and ')= 1. Consequently, (z E C : zJ

> and thus (zEC : zj < l}cp(Tm)(cf. Exercise 5.27).
(d) Theorem 7.35 does not hold in general if the operators Tm and T are not

normal.

7.43. Assume that T is a bounded nonnal operator on the complex Hilbert space
H, r> and u is a function, holomorphic in (z E C : <r) with
u(z) = for zJ <r. Then u(T)= where the series con-
verges in B(H). For self-adjoint operators this statement holds in real Hubert
spaces, as well.

7.44. Let T1 and T2 be similar bounded normal operators on the complex Hubert
space H, i.e., let there exist a bijective operator S E B(H) such that ST1 =
T2S. Prove that T1 and T2 are unitarily equivalent.
(a) S = eZT2S for all z E C.

Hint: Exercise 7.43.
(b) = ei ±z*T1) Consequently, <

IISII for all zEC.
(c) S = for all z E C.

Hint: The Liouville theorem and part (b).
(d)

Hint: Differentiate in (c) with respect to z and substitute z =0.
(e) T1S*S=S*ST1, and
(f) If S= is the polar decomposition of S, then U is unitary, is

bijective, and U=SISI'.
(g) We have T1 = U — 'T2 U with the operator U from part (1). Hence T1 and

T2 are unitarily equivalent.

7.45. Assume that H is a complex Hubert space, S, T E B(H), ST = TS, and T is
normal.
(a) Then ST* = T* S.

Hint: Use the reasoning of Exercise 7.44(b), (c) and (d) for T1 = = T.
(b) If G is the spectral family of T, then SG(z) = G(z)S for all z E C.

7.46. Prove the uniqueness of the spectral family E in Theorem 7.36.

7.47. If T is a normal operator on a complex Hubert space and n E then there
exists exactly one normal operator A for which A = T and G((z = r r
0, 0 <2ir/n}) = I for the spectral family G of A.

7.48. If A and B are seif-adjoint (not necessarily bounded) operators on a complex
Hilbert space with spectral families E and F, and E(t)F(s) = F(s)E(t) for all
S, t ER, then T= A + iB is normal.

7.49. Decomposition in real- and imagina,y parts for arbitrary operators (cf. Exer-
cise 5.38 and Theorem 7.32):
(a) If T is a densely defined operator on H such that 0(T) c D(T*), then the
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operators A —(T± T*)/2 and B=(T— T*)/2i are symmetric, D(A)
=0(B), and T=A+iB.

(b) If A and B are symmetric, D(A) = 0(B), and T= A + iB, then A =
(T+ T*)/2 and B=(T— T*)/2i.

(c) Even if T is closed and D( T) = D(T*), we cannot expect that A and B in
(a) are essentially seif-adjoint.
Hint: Choose T=ICI+(iC/2) or T=iICI+(C/2), where C is a closed
symmetric but not self-adjoint operator.

(d) Even if A and B are seif-adjoint, we cannot expect that T in (b) is closed.
Hint: Take an unbounded seif-adjoint operator C. Define A and B by
the formulae 0(A)= D(B)= 0(C), A(f, g)=(Cg, Cf) and B(f, g)
=i(Cg, Cf)forf,gED(C).

7.6 One-parameter unitary groups

One example of the significance of the theory of seif-adjoint operators is
shown by Stone's theorem (cf. Theorem 7.37 and Theorem 7.38). We shall
learn more about this later in this section.

Let H be a Hubert space. A family (B(t) : t E R) of operators out of
B(H) is called a one-parameter group if

B(0) = I and B(s)B(t) = B(s+ t) for all s, t E

(This is then a "representation" of the additive group by operators on
H.) The one-parameter group { B(t) : t E R } is said to be strongly continu-
ous if the function

B(.)f:

is continuous for every f E H.
Let {B(t): t E be a one-parameter group of operators on H. The

operator A defined by the formulae

0(A) = {fEH: urn I)f
t

t

is called the infinitesimal generator of (B(t) : t E
It can be proved that every strongly continuous one-parameter group

possesses a densely defined infinitesimal generator. In the following we
only consider (one-parameter) unitaa'y groups (i.e., one-parameter groups of
unitary operators). The situation is somewhat simpler in that case.

Theorem 7.37. Let T be a self- adjoint operator on the complex Hubert space
H, let E be the spectral family of T, and let

U(t) = ehlT
= f dE(s) for t E FL
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Then { U(t) t E R) is a strongly continuous (one-parameter) unitary group.
The infinitesimal generator is i T. We have U(t)f E 0(T) for all f E D( T)
and

PROOF. By Theorem 7.14 we have

U(t) E B(H) and U(t)* = U(— t) = U(t)' for all t E

i.e., U(t) is unitary for all t E R (cf. Theorem 4.34). For all x, y E

leix = =

It follows from this that

U(t)f - U(t')f 112 = II - eit's) dE(s)f 112

= I — cit's ,2 E(s)f 12

= dlIE(s)f112

for all f E H and t, t' E FL Because of the relations

(t — t')s . (t — t')s
sin

2
1 and sin

2
0 as t' t,

it follows by Lebesgue's theorem that

U(t)f — U(t')f II —* 0 as t' t.

This proves the strong continuity of U(t). For all f E H and t E FL we have

(U(t) - I)f = ! -1) dE(s)f.

Because of the relations

! — 1) is as t 0, s E FL,

and

— < si for s, t E R, t 0,

the right-hand side converges, as if and only if the function u(s) = lsI
belongs to L2(FL, Pf) (with pj(s) = II E(s)f 112), i.e., if and only if f E 0(T). The
limit equals i Tf. Consequently, iT is the infinitesimal generator of (U(t) : t
EFL).

IffED(T), then for every tEFL

I d5iIE(s) U(t)f 112 = f d5lj U(t)E(s)f 112 = I dfJE(s)f 112 <

i.e., U(t)f E D(T). LI
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Actually, every strongly continuous (one-parameter) unitary group can
be represented in this form.

Theorem 7.38 (Stone). Let ((.1(t): t E be a strongly continuous (one-
parameter) unitary group on the complex Hubert space H. Then there exists a
uniquely determined self- adjoint operator T on H for which

U(t) = cuT for all t E FL

If H is separable, then strong continuity can be replaced by weak measura-
bility, i.e., it is sufficient to require that the function

U(.)g> : U(t)g>

is measurable (with respect to Lebesgue measure on for all f, g E H.

PROOF. The equality U(t) = eitT implies that i T is the infinitesimal genera-
tor of { U(t) : t E R). This proves the unicity of T and, at the same time,
provides an opportunity to construct T. In what follows let A be the
infinitesimal generator of { U(t): t E and let T= — iA. We show that T
is essentially self-adjoint and U(t) = eItT. Since iT is then the infinitesimal
generator of { U(t) : t E it follows that T= T. First, let us assume that
the group is strongly continuous.

D(A) is dense: For every q E and everyf E H the equality

= U(s)f ds

defines an E H (the integral is extended only to the support of p and can
be understood as a Riemann integral). We have

!(U(t)_I)f =

=

=!

=

f E H, cp E is therefore contained in
D(A). If (cpa) is a sequence from such that

1

pa(s) 0 for

pa(s) 0 for all s e R,

f ds = 1 for all n E
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then ff1, —*f as n oo, since

-f II

<suP{II(U(s)-I)fJI:

Hence and thus D(A), too, is dense in H.
T= — iA is symmetric: 1ff, gE D(T)= D(A), then

<g, Tf> = -i<g,Af> = -lim

=

= lim t) - I)g,f) = i<Ag,f>

= <Tg,f>.

R(±i— T) is dense in H: Assume gE R(i— T)' —N(i+ T*). Since for
every and alit E

U(t)4 = U(t)frp(s)U(s)fds = f cp(s— t) U(s)f ds ED0,

it follows that

= <A*g,

= = —<g,

The function h(t) = <g, is therefore a solution of the differential
equation h' = — h, i.e., we have h(t) = eth(O). Since U(t) is unitary, h is
bounded; however this is possible only if <g, h(O)= 0.
Since this holds for all E we have g =0. Consequently, R(i — T) H.

We can show similarly that R( — i — T)= H. Hence, T is essentially self-
adjoint. - -

We have U(t) = ehtT: Let V(t) = &tT' and f E D0. Because of the relation
fE D(T) we also have V(t)f E 0(T) by Theorem 7.37 and d/dt V(t)f=
iTV(t)f. Since, moreover, U(t)f E c 0(T) for all t E it follows that

(U(t)f- v(t)f) = iTU(t)f - = U(t)f— V(t)f).

Consequently, because T is seif-adjoint,

V(t)f112 =2 Re<U(t)f- V(t)f, iT(U(t)f- V(t)f)> = 0.

It follows from this that U(t)f= V(t)f for all t E and allf E D0,because
U(0)f— V(0)f. Since is dense, this implies that U(t) = V(t) = eutT.
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It remains to prove that weak measurability implies strong continuity in
the separable case. Let f E H. As U(t)f, g> is bounded (with bound
If H Ii GIl) and measurable for all g E H, the function

dt

is a continuous linear functional with norm <a I for every a >0. By the
Riesz representation theorem (Theorem 4.8) there exists an fa E H for
which

<fa,g> f <U(t)fg> dt.

Therefore,

= <fa' U(-s)g> f dt

=1 <U(t+s)f,g>dt=f <U(t)f,g>dt,
0 s

and thus

1< g> - g> g>

< 21st lIfli II gil.
Hence,

as s—*0,

i.e., U( )fa is weakly continuous at the origin. Because of the equality
II = f fall' the continuity of U()fa at the origin follows from this,
since

11U(S)fa fa112 = liU(S)fal122 Re<U(s)fa,fa> + as

We show, in addition, that the set of elements fa is dense in H. It follows
from this that U(s) is strongly continuous at the origin, and thus every-
where. Let h be orthogonal to all fa' and let n E be an orthonor-
ma! basis of H. Then

h> dt = a' h> = 0

for all n E and all a >0. It follows from this that for all n E we have
h> =0 almost everywhere in (0, oc) (cf. Theorem A 16(c)). Conse-

quently, there is a t0 >0 such that

h> = 0 for all n E

As U(t,3) is unitary, { : n E } is an orthonormal basis. Hence, we
must have h =0. LI
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Corollary. Let (U(t) : t E be a strongly continuous unitary group, and let
i T be its infinitesimal generator. Then the initial value problem

= Tu(t), u(O) =f

is uniquely solvable for every f E D(T) and the solution is u(t) = U(t)f. (A
solution is a continuously differentiable function defined on with values in
D(T) that satisfies the differential equation.)

PROOF. As U(t)fE D(T) for all fE D(T) and all t E the function
u(t) = U(t)f is a solution of the initial value problem. If u and v are
solutions, then u(O) — v(O) =0, and d/dt u(t) — v(t)112 = 2 Re<u(t) —
i T(u(t) — v(t))> = 0, i.e., u(t) = v(t) for all t E LI

A few more words about the significance of Stone's theorem: In quan-
tum mechanics the states of a system are described by the normalized
elements of a Hubert space. If u(t) is the state of the system at time t, then
we write u(t) = U(t)u(O); for reasons derived from physics, U(t) has to be a
linear operator. Of course, every state has to be possible at any time; since,
moreover, U(t) has to preserve the norm of the states, it follows that U(t) is
unitary. If, in addition, we require strong continuity (weak measurability in
the separable case), which is quite plausible on a physical basis, then it
follows that there exists a seif-adjoint operator T such that U(t) = e1tT;

particular,

TU(t)f

for all f E D(T). Since the time dependent Schrodinger equation is of this
form, this implies that the Schrodinger operators must be self-adjoint.

EXAMPLE 1. Let H= The formula

U(t)f(x) = f(x + t), f E

defines a strongly continuous unitary group. The infinitesimal generator is
A =iT, where

D( T) = W2 and Tf = — if'

(for W2, see Section 6.4). It is obvious that T contains the operator
T1 defined by the equalities

D(T1 = and T1 0f = —if'.

As by Theorem 6.30 T1, is essentially seif-adjoint, the assertion now
follows.



226 7 The spectral theory of seif-adjoint and normal operators

EXAMPLE 2. Assume that H= L2(M) and g is a measurable func-
tion. The equality

U(t)f(x) = exp(itg(x))f(x), f E L2(M)

defines a strongly continuous unitary group. It is easy to see that the
infinitesimal generator is A = iT, where T is the maximal operator of
multiplication by the function g.

Theorem 7.39. Let T be a seif-adjoint operator on the complex Hubert space
H, and let M be a closed subspace of H. If e1sTf E M for al/f E M and s E
then M reduces T and = M, = M for all s E Ft

PROOF. We have M for all SE R, since

forall

by assumption, and because every f E M can be written in the form

f = with e_isTf E M

for every s E
For all f E M, g E M -'- and s E we have

f> = <g, e isTf> = 0.

Consequently, c Ma-, and thus = M-'-. If P is the orthogo-
nal projection onto M, then

P = for all s E

because of what we have just shown. We have to show that PT c TP. Let
JED(T). Then

PTf = Plim = lim Pf).
t—+O t t—*O t

Hence, PfE D(T) and TPf= PTf. 0

We next prove the following special case of a theorem of H. Trotter for
unitary groups that are generated by the sum of two self-adjoint operators.

Theorem 7.40. Let T, S, and T + S be seif-adjoint operators on the complex
Hubert space H. Then

= s — lim [et/Tei(t/nz)S]?1
fl 00

for alltEDt
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PROOF. For every f E D(T+ S) = D(T)n 0(S)

t_l(eutT eitS —

= I)f+ I)f I)f
4iTf+iSf—i(T+S)f=0 as t—.0.

In particular, for every f E D( T + S) there exists a C(f) 0 for which

C(f) for all t E (0).

Since the space D(T+ 5) is a Hubert space with the (T+ S)-scalar
product •>T+5' by the uniform boundedness principle (Theorem 4.22)
there exists a C > 0 such that

lIt_I(ei1T < f E 0(T+ S), t E (0).

If E is the spectral family of T+ 5, then forfE D(T+ 5)

0 T+S)f112 = f(t2+ — dllE(t)f 112

as

since the integrand is bounded by (12 + I) (because of f E D(T+ S) this
function is integrable) and tends to 0 pointwise. Hence, for fixed f E D( T
+ 5) and r >0 the family of functions

(Pt: [—r,r]_*H,IER\{0),
(p1(s) = t — — eit(T+ S))eIS(T+ S)f

is equicontinuous. Since S)f E D( T + S), we moreover have —*0

as for an arbitrary s E [— r, r]. Consequently, (Pt uniformly converges
to 0 on [— r, r} as t —.0. Let us now make the following estimates

II

— et(T+ 5)]

= ei(t/ s)k[ei(ulfl)T —

k—O
I

n max Jj — S)]elS(T+ S)111

= Ill max
1

—

sI<ItI
I

ti : sEE—Ill, III]).

For fixed t the last expression tends to zero as n —* 00, as we have already
proved (choose [— r, r} = [— I

ti]). This proves the convergence for f E
0(T+ S). Since D(T+ 5) is dense and all operators have norm 1, the
required strong convergence follows (cf. Theorem 4.23). 0
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If the operators S and T are bounded from below, then an analogous
result holds for e_IT, et5 and with t > 0.

Theorem 7.41. Let T, S, and T + S be seif-adjoint operators on the Hubert
space H. Assume that these operators are bounded from below. Then

= s — urn
n

for all t > 0.

The proof follows that of Theorem 7.40. We consider only nonnegative t
and s; the details can be left to the reader.

EXERCISES

7.50. Let U be a unitary operator.
(a) There exists a strongly continuous unitary group (U(t): t E R} for which

U(1) = U and whose infinitesimal generator has norm 2ir.
Hint: If G is the (complex) spectral family of U and we define z' = rt
for and then we can choose U(t)=
5 z' dG(z).

(b) Prove Theorem 7.36 with the aid of part (a) and Stone's theorem.

7.51. If T is seif-adjoint and V is a T-bounded operator, then V &tTf is
continuous for every f E D( T).

7.52. Let T1 and T2 be sell-adjoint operators on H, and assume that the strong
limit W= s — ehtT2 e_1tTl exists (W is called a wave operator; cf. Sec-
tion 11.1). We have:
(a) W is isometric.
(b) R(W) reduces e1sT2.
(c) R( W) reduces T2.
(d) T1 and are umtarily equivalent; T1 = W



Self - adjoint extensions
of symmetric operators

In Sections 5.4 and 5.5 we have already learned that certain symmetric
operators (the semi-bounded and continuously invertible ones) possess
self-adjoint extensions. The question of whether all (or which) symmetric
operators have seif-adjoint extensions could not be answered there. The
key to our studies was the fact that A — T was continuously invertible for
some A E however, this is not always the case. In this chapter we
develop the von Neumann extension theoty, which completely answers this
question. Moreover, we shall prove certain theorems about the spectra of
all self-adjoint extensions of a symmetric operator.

8.1 Defect indices and Cayley transforms

First let T be an arbitrary linear operator on a Hilbert space H. The set

F(T) = there existsak(z)>O such that

II(z— for all fED(T)}

is called the regularity domain of T.

Proposition.
1. We have z E F(T) if and only if (z — T) is continuously invertible. Then

— T) 1 k(z)' (observe that (z — need not belong to B(H)).
2. If H is complex and T is Hermitian, then C\ R c F(T).
3. If T is isometric, then \ { z E EK : z = 1 } c F( T).
4. F(T) is open.

229
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PROOF.

1. It follows from the inequality I(z — T)f for allfE D(T) that
z — T is injective and II(z — T)' <k(z) '. If (z — T) is injective and
(z — T)' is bounded, then

II(z - T)fII II(z - - T)'(z - T)fIJ

= II(z-
Consequently, z E F(T) and we can choose k(z) = JI(z — T) 'f'.

2. For z = a + ib and f E D(T)

II(z — = II(a — T)f112 + >

Hence, z E F(T) and we can choose k(z) = Ibi.
3. If then

IKz — T)fII > I
II TffJ — IzI 11111 ( = II — I IfI!.

Consequently, z E F( T) and we can choose k(z) = (1 — I
z

4. Let z0 E I1:T). If z E such that Iz — z0( <k(z0), then

lI(z — T)fII > II(zo — — Iz — IlfH > (k(z0) — (z —

f E D( T). Therefore, z E F( T), i.e., F( T) is open.

The subspace R(z — T)1 is called the defect space of T and z. The
cardinal number f3(T, z) = dim R(z — T)' is called the defect index of T
and z.

Theorem 8.1. The defect index /3( T, z) is constant on each connected subset
of F(T). If T is Hermitian, then the defect index is constant in the upper and
lower half-planes.

PROOF. It is sufficient to show that fl( T, z) is locally constant in F( T), i.e.,
that for every z0 E F( T) there exists an >0 such that T, z) = /3( T, z0)
for all z E F(T) with the property Iz — z0I <. Replace A by z0— T and B
by I in Theorem 5.25, and write for the orthogonal projection onto
R(z — T). Then IIQZ — as z—>z0. If is the orthogonal projection

onto R(z — T)', then we have

IIPZ — = MQZ — QZOII —>0 as z —* z0.

If we choose >0 such that — PZIJM < 1 for Iz — zoI <€, then it follows

from Theorem 4.35 that

f3(T, z) = $(T, z0) for Iz — zoI

If T is Hermitian, then the upper and lower half-planes are connected
subsets of F(T) (cf. Proposition 2); therefore, the defect index is constant
there. 0
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If T is a Hermitian operator on a complex Hubert space, then we define

/3(T, i), y_(T) = $(T, —i)

(of course, here i can be replaced by an arbitrary z E C for which Im z >0
and — i by an arbitrary z E C for which Im z <0). The pair

y _(T)) = y_) is called the defect indices of T.

REMARK. We can reformulate the result of Theorem 5.21 in terms of this
definition: A symmetric operator is essentially seif-adjoint if and only if its
defect indices are equal to (0, 0). A closed symmetric operator is self-adjoint if
and only if its defect indices are equal to (0, 0).

Let T be a symmetric operator on a complex Hubert space. The Cayley
transform of T is defined by the equality

V = (i— T)(—i— T)' = — (i— T)(i+ T)'.
V is therefore a linear operator from R( — i — T) onto R(i — T).

Theorem 8.2. Let T be a symmetric operator on the complex Hubert space H.
The Cayley transform of T is an isometric mapping of R( — i — T) onto
R(i — T). The range R(I — V) is dense in H, and T = i(I + V)(I — V) In
particular, T is uniquely determined by V.

PROOF. For every g=(—i— T)fER(—i— T)=D(V) we have

II = lI(i — T)( — i — T) 'gU2 = — T)f112

= i1f112 + II = 1K-i - T)f1i2 = II gil2.

Consequently, V is isometric. It is clear that R( V) = R(i — T), since

(— i— T) 1 maps D( V) = R( — i — T) onto 0(T) and (i — T) maps 0(T)
onto R(i — T). We have

I — V = I + (i — T)(i + T) -' = [(i + T) + (i — T) ] (i + T)1 2i(i + T) ',

1+ V= I—(i—T)(i+Ty' 2T(i+Ty'.

In particular, R(I — V) = 0(T) is dense, I — V is injective, and

T = i(I+ v)(I— V)'. D

REMARK. We could define a (generalized) Cayley transform

= (z— T)(z*_

for every z E C such that Im z >0. Then is an isometric mapping of
R(z* — T) onto R(z — T), and

T = Vi)'.
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In what follows V can be replaced by We use z = i, as this saves us
from using unnecessary indices.

Theorem 8.3. An operator V on the complex Hi/bert space H is the Cayley
transform of a symmetric operator T if and only if V has the following
properties:
(i) V is an isometric mapping of D( V) onto R( V),

(ii) R(I — V) is dense in H.
The symmetric operator T is given by the equality T— i(I + V)(I — V) '.

PROOF. If V is the Cayley transform of T, then V has properties (i) and (ii)
by Theorem 8.2. We also have then that T = i(I + V)(I — V) '.Let V now
be an operator with properties (i) and (ii). Then I — V is injective, since the
equality Vg = g implies that

<g,f- Vf> = <g,f> - <g, Vf> = <g,f> - <Vg, Vf>

= <g,f> —<g,f> 0 for all JED(V),
i.e., that g E R(I — V)', and thus g 0. Therefore, we can define an
operator T by the equality

T i(I+ V)(I—

By assumption, D( T) = R(I — V) is dense. For all f= (I — V)f1 and g =
(I — V)g1 from 0(T) = R(I — V) we have

<Tf, g> = -i<(I+ V)(I- V)'f, g> = -i<(i± V)f1, (I- V)g1>
= —i(<f1,g1>+<Vf1,g1>—<f1, Vg1>—<Vf1, Vg1>}

= —i(<Vf1, Vg1>+<Vf1,g1>—<f1, Vgi>—<f1,g1>}

= i<(I— V)f1, (1+ V)g1> = i<f, (1+ V)(I—

= Tg>.

Consequently, T is symmetric.
It remains to prove that V is the Cayley transform of T. This im-

mediately follows from

(i— T) = i —i(I+ v)(I— vy' = i[(I— v)—(I+ v)](I— vy'

= —2iV(I— V)',
(—i--- T) = —i[(I— V)+(I+ v)](I— vy' —2i(I— vy'.

Theorem 8.4. Let T be a symmetric operator on a complex Hi/bert space, and
let V denote its Cayley transform.
(a) The following statements are equivalent:

(i) T is closed,
(ii) V is closed,
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(iii) D( V) = R(i + T) is closed,
(iv) R( V) = R(i — T) is closed.

(b) T is seif-adjoint if and only if V is unitary.

PROOF.

(a) (i) is equivalent to (iii) and to (iv): T is closed if and only if (±i —
T) 1is closed. The bounded operator (± i — T)' is closed if and
only if its domain D((i — T) R(i — T) R( V) or D(( — i —

T) ')= R(i + T) = D( V) is closed (Theorem 5.6).
(ii) is equivalent to (iii): The bounded operator V is closed if and only

if its domain is closed.
(b) T is seif-adjoint if and only if R(i— T)= R(—i— T)= H, i.e., if and

only if D( V) = R( V) = H. This is equivalent to the statement that V is
unitary. LI

For the construction of symmetric or seif-adjoint extensions of a sym-
metric operator the following theorem is essential. The proof of this
theorem is obvious.

Theorem 8.5. Let T1 and T2 be symmetric operators on a complex Hubert
space, and let V1 and V2 denote their Cayley transforms. Then T1 c T2 if and
only if V1c V2.

Consequently, we can obtain all symmetric extensions of a symmetric
operator T if we determine all those extensions V1 of the Cayley transform
V of T which possess property (i) of Theorem 8.3 (since V has property (ii),
V' automatically does, too) and we calculate the corresponding symmetric
operators T' = i(I + V')(I — V')' (Theorems 8.5 and 8.3). We can obtain
all seif-adjoint extensions (provided that such exist) if we determine all
unitary extensions V' (Theorems 8.5 and 8.4b). In particular, T has
seif-adjoint extensions if and only if V has unitary extensions. The follow-
ing theorem makes it possible to explicitly construct the extensions V' of
V. Here we assume, without loss of generality, that T is closed.

Theorem 8.6. Let T be a closed symmetric operator on a complex Hubert
space, and let V denote its Cayley transform.
(a) V' is the Cayley transform of a closed symmetric extension T' of T if and

only if the following holds: There exist closed subspaces F_ of R(i — T)'
and F÷ of R(— i — and an isometric mapping V of F÷ onto F for
which

D(V') =R(—i—T')
V'(f+g)= Vf+ 12g for

R(V') =R(i— T') =R(i—

The spaces and have the same dimension.
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(b) The operator V' in part (a) is unitary (i.e., T' is seif-adjoint) if and only
if F_ = R(i — T)' and = R(— i — T)'.

(c) T possesses seif-adjoint extensions if and only if its defect indices are
equal.

PROOF.

(a) If V' has the given form, then V1 is obviously an isometric mapping of
R( — i — T) onto R(i — T) F. Consequently, V' satisfies
assumption (i) of Theorem 8.3. Since R(I — V) is dense, R(I — V') is
also dense, so that V' also satisfies (ii) of Theorem 8.3. Therefore, V' is
the Cayley transform of a symmetric extension T' of T. Since V is an
isomorphism of onto F_, we have dim = dim F_. If V is the
Cayley transform of a symmetric extension T' of T, then put F_ =
R(i— T')OR(i— T), = R(—i— T')eR(—i--- T), and V=
V' is unitary if and only if D( V') = H = R( V'), i.e., if and only if

= R(--- i — T)' and F_ = R(i —

(c) By (a) and (b) the operator V possesses a unitary extension if and only
if there exists an isometric mapping V of R( — i — T) -'- onto R(i — T)
This happens if and only if dim R(—i — T)' = dim R(i — T)'.

Theorem 8.7. Let T be a symmetric operator on a complex Hubert space. The
operator T is essentially seif-adjoint if and only if T has exactly one
self- adjoint extension.
(For the real case, compare Exercise 8.4.)

PROOF. If T is essentially self-adjoint, then T is the only seif-adjoint
extension of T by_Theorem 5.31(c). We show: If T is not essentially
seif-adjoint, i.e., if T is not self-adjoint, then T has either no or infinitely
many seif-adjoint extensions. If the defect indices of T are different, then T
(and thus T) has no seif-adjoint extension. If the defect indices are equal
(>0, as Tis not self-adjoint), then there are infinitely many unitary
mappings V: R( — i — T) —÷ R(i — T)' (proof!), and therefore infinitely
many self-adjoint extensions. 0

Now we are in a position to define certain classes of symmetric opera-
tors that have seif-adjoint extensions.

Theorem 8.8. Let T be a symmetric operator on a complex Hubert space.
(a) If F (T) n 0, then T has seif-adjoint extensions.
(b) If T is semibounded, then T has seif-adjoint extensions.
(The statements of this theorem have already been proved in another way
in Sections 5.4 and 5.5.)

PROOF.

(a) I'(T) is connected, since F(T)n Then = -y_(T) by Theo-
rem 8.1.

(b) Let T be bounded, for example, from below, and let c be a lower
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bound of T. Then

J(X— T)fII > >

f E D( T), 0. Consequently, in this case we also

Let H be a complex Hubert space. A mapping K of H onto itself is
called a conjugation if
(a) K(af+ bg) = a * Kf+ b *Kg for f, g E H, a, b E C,
(b) K2=I. (8.1)
(c) <Kf, Kg> = <g, f> for f, g E H.
An operator T on H is said to be K-real if
(a) KD(T)cD(T),
(b) TKf= KTf for fE 0(T). (8.2)

Theorem 8.9. Let H be a complex Hubert space, and let K be a conjugation
on H. If T is a K-real symmetric operator on H, then Tpossesses seif-adjoint
extensions.

PROOF. It follows from (8.1(b)) and (8.2(a)) that 0(T) D KD(T) D K2 0(T)
= D(T). Consequently, KD(T) = D(T). 1ff E R(i — T)', then

<K!, (—i— T)Kg> = <Kf, K(i— T)g> = <(i— T)g,f> = 0

for all g E D(T). Therefore, Kf E R(— i — T)'. We can show similarly that
if f E R( — i — T) then Kf E R(i T)'. As K2 = I, we have R( — i — T)
=KR(i— Since {ea aEA) is an orthonormal basis of R(i— if
and only if (Kea a E A) is an orthonormal basis of R(—i — T)', it
follows thatdim R(—i-- T)'=dim R(i— T)'. 0
EXAMPLE 1. The formula

Kf(x) = f(x)*, f E L2(M)

defines a conjugation (the natural conjugation) on L2(M). The conditions
given by (8.1) are obviously satisfied.

(8.3) Let G c be open and let T be defined on L2(G) by the equalities

D(T) = C000(G), and Tf = — f E 0(T)

(here = denotes the Laplace differential form). Assume that
the function q is real-valued and measurable on G and belongs to L2,
(i.e., it is square integrable over every compact subset of G). Then T is
obviously symmetric and K-real. Consequently, T has seif-adjoint extensions
by Theorem 8.9.

(8.4) Let K(.,.): M x be a Hermitian Carleman kernel. Then the
operator TK,o from Section 6.2 is symmetric and K-real. TKo therefore
possesses self- adjoint extensions.
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EXAMPLE 2. The formula

Kf(x)

defines a conjugation on and on L2(x E — a1 <x1 <a).

(8.5) Let T be defined on L2( — a, a) by the formulae

D(T) or D(T) a)

1Tf=--f' for fED(T).

Then we obviously have Kf E D( T) and

TKf(x) = = = = KTf(x)

for all f E D(T). Hence T is K-real, and thus possesses seif-adjoint exten-
sions.
(In Section 6.4 we could prove this only for the case of L2(R).)

EXAMPLE 3. The formula

K(f1,f2) = for (f1,f2)EL2(M)EBL2(M)

defines a conjugation on L2(M)EB L2(M). The operator T defined by

0(T) =

T(f1,f2) = —f1') for (f1,f2) E 0(T)

is symmetric, since

<T(f1,f2), (g1, g2)> = f f dx

— dx dx = T(g1, g2)>

for all (f1,f2), (g1, g2) E 0(T). Moreover, T is obviously K-real. Therefore,

T possesses seif-adjoint extensions.

Theorem 8.10. Let T be a closed symmetric operator on the complex Hubert
space H with equal finite defect indices (m, m). If T1 and T2 are seif-adjoint
extensions of T, then (z — — (z — T2) is of rank at most m for every
zEp(T1)flp(T2). (Therefore, it is in for allp>O.)

PROOF. Every z E p( T1) n p( T2) obviously belongs to T); consequently,
R(z — T)' is rn-dimensional. Since (z — T1) 'f= (z — T2) 'f= (z — 1f
forfE R(z— T), we have

(z— — (z— T2)' ((z— T1)'—(z— T2)')P,
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where P denotes the projection onto R(z — T)'. Hence, dim R((z — T1)'
LI

EXERCISES

8.1. For every seif-adjoint operator T on a complex Hubert space there exists a
conjugation K for which T is K-real.
Hint: Use a spectral representation of T (Theorem 7.18) and the natural
conjugation on pa).

8.2. Let K denote the natural conjugation on L2(M). If T is a K-real seif-adjoint
operator on L2(M) and (z — is a Carleman operator for all z Ep(T)
(cf. Exercise 6.12) with kernel y), then y) = x) almost every-
where in M x M.

8.2 Construction of seif-adjoint extensions

In this section we wish to give the explicit construction of the seif-adjoint
extensions of a symmetric operator with equal defect indices. For a closed
symmetric operator T on the complex Hubert space H we set

N÷ =N(i— T*) =R(—i-- T)',
N =N(_i_T*)__R(i_T)'.

Theorem 8.11 (The first formula of von Neumann).. Let T be a closed
symmetric operator on a complex Hi/bert space. Then

D( T*) = 0(T) -i- ± N_ (direct sum),
T*(f0+g÷ +g_) = Tf0 + —ig_ for E 0(T), EN_.

PROOF. Since c D(T*) and N_ c D(T*), we obviously have 0(T) +
N÷ + N_ c D(T*). We show that we have equality here, i.e., every

f E D(T*) can be written in the form f= f0 + g÷ + g with J0 E 0(T),
E N÷, and E N_. To this end, letf E D(T*). Then by the projection

theorem we can decompose i — T*)f into its components in and in
T),

Since T*f0 Tf0 and T*g ig, we then have (with ig/2)

= = —i(f—f0—g÷).

If we setg_ then g_ E N_ +g_.
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It remains to prove that the sum is direct, i.e., that the relations
0 =f0 + g g_ =0.
It follows from the equality 0 =f0 + + g_ that

0 = T*(f0+g++g_) = —ig.

We obtain from this that

(i—T)f0= —i(g÷+g)+i(g÷—g_)= —2ig_
and

(—i— T)f0

consequently, g_ E N_ n R(i — T) (0}, E n R(—i — T) = (0).
Therefore, g_ = g÷ =0, and thusf0 =0, also.

Theorem 8.12 (The second formula of von Neumann). Let T be a closed
symmetric operator on a complex Hubert space.
(a) T' is a closed symmetric extension of T if and only if the following holds:

There are closed subspaces F of and
of onto F_ such that

D(T') =D(T) + {g+ Vg : gEF±}

and

T'(f0+g+ Vg) = Tf0+ig—iVg
T*(fo+g+r2g) for

(b) T' is self-adjourn' if and only if = and F_ = N_.

PROOF. This theorem immediately follows from Theorem 8.6 if we show
that the operator T' of Theorem 8.6 can be represented in the above form.
We have (with V as in Theorem 8.6)

D(T') —R(I— V') = (I— V')D(V') = (I—

= (I— V)D( V)+(I—

=D(T) + (g— :

Thesumisdirect,as{g—Vg
T*, we have moreover that

T'(f0+g— Pg) = T*(f0+g_ Vg) = Tf0 + ig +

for all f0 E D(T) and g E F÷. The assertion follows by taking = — V.

As long as the subspaces and N_ are known, this theorem enables
us to determine all closed symmetric extensions (in particular, all self-
adjoint extensions) of a symmetric operator.
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Let T and T' be linear operators such that T c T'; then we say that T' is
a finite-dimensional (rn-dimensional) extension of T if the quotient space
0(T')/ 0(T) is finite-dimensional (rn-dimensional). We also say that T is a
finite-dimensional (rn-dimensional) restriction of T'.

Theorem 8.13. Let T be a closed symmetric operator on a complex Hubert
space, and let T' be a symmetric extension of T.
(a) T' is an rn-dimensional extension if and only if (defined in Theorem

8.12) is rn - dimensional.
(b) If T has defect indices (m, m), then a symmetric extension T' of T is

seif-adjoint if and only if T' is an rn-dimensional extension of T.

PROOF.

(a) As D(T') = 0(T) + (I + V)F÷ is a direct sum, we have
dim D(T')/D(T)=dim(l+ Since =F_ cN, CN÷
and N.... n = {O}, we obviously have dim(I+ V)F+ = dim

(b) T' is an m-dimensional extension if and only if dim F÷ = dim F_ = m.
Since c and F_ c N_, this holds if and only if = and
F=N. 0

An operator T on H is said to be maximal symmetric if we have T = A
for every symmetric operator A such that T c A. As the closure of a
symmetric operator is symmetric, every maximal symmetric operator is
closed.

Theorem 8.14.
(a) A closed symmetric operator T is maximal symmetric if and only if at

least one of its defect indices is equal to 0.
(b) Every self-adjoin! operator is maximal symmetric.
(c) Let T be a closed symmetric operator with equal finite defect indices.

Then every maximal symmetric extension of T is seif-adjoint.

PROOF.

(a) By Theorem 8.12(a) we can construct proper symmetric extensions if
and only if both defect indices are different from zero.

(b) This follows from (a), since for every seif-adjoint operator both defect
indices are equal to 0.

(c) An extension T' is maximal symmetric if and only if it has the form
given in Theorem 8.12(a) with F÷ = or F_ Dimensionality
arguments then show that = and = N, so that T' is

seif-adjoint.

EXAMPLE 1. Consider the operator T10 of Section 6.4 (cf. Theorems 6.29
and 6.31) defined on L2(0, oo) by

D(T10) = ffEw21(O, :f(0)=0} and forfED(T10).
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We have = T1, where

D(T1) = W2, oo) and T1 f = 4-f' for f E D(T1).

Then = N(i — T1) is the set of those solutions of the differential equa-
tion if — (f'/i) =0, hence of the differential equation f+f' = 0, that lie in

L2(0, oo). As the solutions of this differential equation are given by
f(x) = ce_x, we have The subspace N.... = N(— i — T1) is the set
of those solutions of the differential equation —f+f' = 0 that lie in

L2(0, oo). Consequently, N_ = (0}. Therefore, the defect indices of T1, 0 are

different, and thus T1 0 possesses no seif-adjoint extension.

EXAMPLE 2. Consider the operator T10 from Section 6.4 (cf. Theorem 6.31)
defined on L2(a, b), — oo <a <b < ooby the formulae

D(T1,0) = (fEW2,i(a,b) :f(a)=f(b)=0}

and

T10f= --f' for JED(T10).

We have 0= = T1, where

D(T1) = W2, 1(a, b) and T1f = f E D(T1).

We also have

=N(i— T1) with e÷(x) = exp(b—x),
and

N_ =N(—i— T1) =L(e) with e.....(x) = exp(x—a).

The defect indices are therefore equal, and thus T1 has seif-adjoint

extensions. We want to construct these extensions. It is obvious that

e +11 = e j, so that all unitary mappings of N÷ onto N_ are given by

formula

= c

all seif-adjoint extensions of T10 are given by

D(S1,) =D(T1,0) + L{e+

for

It is usual and convenient to describe the domains of differential

operators as the restrictions of the maximal operators (here T1) with the

aid of boundary conditions.
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(8.6) We have

:f(a)—€J(&)f(b)},

where = (1 + e
map [0, 2'n-) onto the unit circle.

PROOF. For every f=f0+ + E withf0E D(T10) we have

f(a) — —

f(b) — ce+(b)+ceul)e (b) — l+eeb_a

Consequently, f(a) = €i(O)f (b). Now let f(a) = €i(&)f(b); then we have

(f—
— = f(a) — c(et'_" + e") = 0,

(f—ce÷ = — c(1

= = 0

with Hencef— — E D(T10), and thusfE
It is clear that e is a bijective map of [0, 2cr) onto the unit circle. LI

(8.7) The eigenvalues and the normalized eigenelements of are
given by the formulae

= (a—b)'(a+217n),
(nE7L)

where a is chosen so that = and the are normalizing factors.

PROOF. A and f are an eigenvalue and a corresponding eigenelement of
if and only if

Af = and f(a) =

As all solutions of the equation Af=f'/i have the form f(x) = we
obtain from the boundary condition that = Therefore,
= = It follows from this that

A(a — b) = a modulo
consequently,

An =

and
= c,, for n E ZL. fl

In the reasoning of Section 8.1 K-real symmetric operators played an
important role; they possess seif-adjoint extensions. Now we can show that
they also possess K-real seif-adjoint extensions.
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Theorem 8.15. Let T be a K-real symmetric operator on the complex Hilbert
space H. For every K-real seif-adjoint extension T' of T there exists an
orthonormal basis : a E A) of such that

caea) = for <

holds for the Cayley transform V' of T'. If (ea : a E A) is an arbitrary
orthonormal basis of N÷, then the unitary operator

V: —* N_, P( ea) = Kea for
J

2

induces a K-real seif-adjoint extension of T in the sense of Theorem 8.12.

PROOF. If : a E A) is an orthonormal basis of P is defined as in
the theorem, and T' denotes the self-adjoint extension of T defined by V,
then

ca(ea+Icea)) = Kf0+ c(ea+ Kea) E D(T')
and

ca(ea+ Kea)) = TKf0 +

=

= KT'(f0 + + Kea))

for all f0 + + Kea) E D( T'). Consequently, T' is K-real.
Let T' now be a K-real seif-adjoint extension of T, and let V' be the

Cayley transform of T'.' With the aid of Zorn's lemma we can show the
existence of a maximal orthonormal system a E A) in N÷ with the
property

= for <
Then the formulae

D(S) =D(T)+
Sf— T'f for fED(S)

define a K-real symmetric extension of T (this can be proved as above). If
we assume that {ea a E A) is not an orthonormal basis of then there
is a non-zero element f of R( — i S ) Then V'f E R(i S) Kf E
R(i — S) and KV'f E R( — i — S ) consequently,.f + KV'f E R( — i — S)
If f+ KV'f= 0, then the orthonormal system {ea a E A) can be enlarged
by taking the element since then Kf= — V'f and thus Ke= V'e.
If then we can choose e = IIf+ KV'f), since

V'(f+ Kv'f) = V'f+ V'KV'f = V'f+ Kf = K(f+ KV'f).

am indebted to Dr. Jürgen Voigt for the following proof.
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Here we have used the fact that V1 = (i — T')( — i — T') —', K(i — T') =
(—i — T')K, and K(—i — T')' = (i — — T')K(—i — T')' =
(i — T') — 'K( — i — T')( — i — T') —' = (i — T') 'K, so that V' KV' = K. There-
fore, in both cases we obtain a contradiction to the maximality of the
system (ea : aEA). U

EXERCISES

8.3. Assume that T is a symmetric operator on a real Hubert space H, the space Hc
is the complexification of H, and K is the conjugation defined in as in
Exercise 7.25.
(a) The complexification Tc of T is symmetric and K-real; therefore

possesses K-real seif-adjoint extensions.
(b) The K-real self-adjoint extensions S of Tc have the form S = (T')c, where

the T' are seif-adjoint extensions of T.
(c) Every symmetric operator on a real Hubert space has seif-adjoint exten-

sions.

8.4. A symmetric operator (on a real or complex Hubert space) is essentially
seif-adjoint if and only if it has a unique seif-adjoint extension. (The complex
case was considered in Theorem 8.7.)

8.5. Let T be a symmetric operator. If is maximal symmetric for some n E
n> 1, then Tm is essentially self-adjoint for m E m n, and Tm— Tm.
Hint: First consider the complex case. T is seif-adjoint by Theorem 5.22; the
assumption and the inclusion T'7c imply that T'1— T'1; D( T") is a core of
T"1 for m <n; therefore, D(Tm) is a core of p", too.

8.6 (a) If T is a K-real operator, then T* is also K-real.
(b) If T' is a symmetric extension of a K-real operator T, then T' is K-real if

and only if KD(T') c D(T').
(c) Let T be a K-real symmetric operator, and let {ea : a E A), : a E A) be

orthonormal bases of The operators N_ defined by the
formulae

(
ea) = Kea, cafa) = Kfa for 12 <

are equal (i.e., the K-real self-adjoint extensions induced by V1 and V2 are
equal) if and only if <ea, is real for all a, /3 E A.

8.7. Let T be a symmetric K-real operator with defect (1, 1). Then every self-
adjoint extension of T is also K-real.

Hint: cf. Theorem 8.15.

8.3 Spectra of seif-adjoint extensions of
a symmetric operator

In this section we study what can be said about the spectra of the
seif-adjoint extensions of a given symmetric operator (with equal defect
indices).
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In what follows T will always be a closed symmetric operator. Let us set
n(T, A)= dim N(A— T). If A is an eigenvalue of T, then n(T, A) is the
multiplicity of A. If A is not an eigenvalue, then n( T, A) =0.

Theorem 8.16. If T' is an rn-dimensional extension of T, then

dim(N(A — T') e N(A — T)) m.

If, in addition, n( T, A) < oo, then n( T', X) — n( T, A) ( m.

PROOF. It is obvious that N(A — T) c N(A — T'). The formula

(N(A— T')eN(A— T)) n 0(T) =
implies

(N(A— T')eN(A— T)) -i- 0(T) cD(T').
Therefore,

dim(N(A— T')eN(A— T)) dim D(T')/D(T) = m.

If n(T, A) < oo, then the second assertion follows from this.

Let = N(z — T)' for every z E The operator T obviously maps
N(z — T) into itself. We also have T(HZ n D(T))c since for all fE

0(T) and gEN(z— T)

<g, Tf) = <Tg,f> = z*<g,f> = 0,

i.e., TJE N(z — T)' = Consequently, is a reducing subspace of T.
We denote by T to i.e.,

n 0(T) and Tf f E

It is obvious that z — is injective (as we have excluded exactly the null
space). Being a restriction of a symmetric operator, is Hermitian. D(
is dense in since any f E that is orthogonal to

D( T) D( + N(z — T). Therefore, is a symmetric oper-
ator on The operator is closed.

In the following we call S(T) = \ 11T) the spectral kernel of T. The set

Se(T) = isunboundedor n(T,z)=oo)

is called the essential spectral kernel of T.

Theorem 8.17. Let T be a closed symmetric operator.
(a) We have Se(T)C S(T)c and S(T)ci cr(T).
(b) If T' is a closed symmetric extension of T, then S( T) c S( T') and

Se( T) C Se( T').
(c) If T' is a finite-dimensional symmetric extension of T, then Se(T')

= Se(T).
(d) If T is self-adjoint, then S(T) = a(T) and Se( T) = ae(T).



8.3 Spectra of seif-adjoint extensions of a symmetric operator 245

PROOF.

(a) If A E Se(T), then dim N(A — T) oc or (A — is unbounded. It is
clear that in both cases A does not lie in F(T), i.e., A E S(T). It is also
evident that S(T) c since F(T) contains the upper and lower
half-planes. (A — T) is not continuously invertible for A E S(T); there-
fore, S(T) c a(T).

(b) The inclusion I'( T') c F( T) is evident because of the definition of
F(T). Hence, 8(T) c S(T'). We show that Se(T) C Se(T'). To this end,
let A E Se(T). If n(T', A)= oo, then A E Se(T'). Consequently, we can
assume without loss of generality that n(T, A) <n(T', A) <oc, i.e., that
(A — TA)1 is unbounded. Then there exists a sequence in D( for
which = 1 and (A— The sequence contains no con-
vergent subsequence, since fflk—*f would imply MfM = I and TJ,,-+Af,
i.e., f E D(TA) (as TA is closed) and (A — 0; this would contradict
the injectivity of A — TA. Let P now denote the orthogonal projection
onto the finite-dimensional subspace N(A — T'), and let = (I —

P is compact, there exist a subsequence (fflk) of and an h E H
for which The sequence (ga) with =(1 is therefore
not convergent, and

(A— = (A— T')fflk — (A— T')Pfflk (A—

Hence, (A — is unbounded, and thus A E Se(T').
(c) It is sufficient to prove that Se(T') C Se(T), since we already have

Se(T) C Assume that A Se(T). Then we have to prove that
A Se(T'). It follows from n(T, A)< oo by Theorem 8.16 that n(T', A)

A)+ m <cc. The operator (A— Tx)' is continuous and closed;
therefore, R(A — T) R(A — = D((A — ') is closed. Since T' is a
finite-dimensional extension of T, there are finitely many elements
f1,...,f1such that

R(A— T') =R(A— T) + L(f1, .. . ,f1}.

Therefore, D(A — = R(A — = R(A — T') is closed by Theorem
3.4, and thus the closed operator (A — is continuous. Hence,
A E Se(T').

(d) The equality S( T) = a( T) follows from the characterization of the

spectral points of a self-adjoint operator given in Theorem 5.24. We
show that Se(T) = ae(T). Let A E Se(T). If n(T, A)= cc, then A E ae(T).
If (A — Tx)' is not continuous, then we show that A is an accumulation
point of the spectrum of T. If this were not the case, then there would
be an >0 for which (A — €, A + c) n a(T) C (A), and with the spectral
family E of T we would then have

II(A - T)f 112 dIIE(t)f 112 >
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for all fE N(A— T)' n D(T)= R(E({A}))' n 0(T), which contradicts
the discontinuity of (A — Hence we have A E Ge(T) in this case,
also, and thus Se(T) C Ge(T).

Assume that A E ie(T). If A is an eigenvalue of infinite multiplicity,
then A E Se( T). If A is an accumulation point of a( T), then there is a
sequence (fr) for which

R(E(A — E(A) + E(A —) — E(A
—

-!-)), = 1.

We have E R(E({A}))' n D(T) = n 0(T) and (A — =
(A — consequently, (A — is not continuous, so that A E

0

Theorem 8.18. Let T be a closed symmetric operator on a complex Hi/bert
space with equal finite defect indices. Then all seif-adjoint extensions of T
have the same essential spectrum. If some seif-adjoint extension of T has a
pure discrete spectrum, then all self-adjoint extensions of T do, too.

PROOF. The first assertion immediately follows from Theorem 8.17(c) and
(d). The second assertion follows from the fact that the spectrum is discrete
if and only if the essential spectrum is empty.

Theorem 8.19. Let T be a closed symmetric operator on a complex Hi/bert
space with equal finite defect indices (m, m) and assume that

forall fED(T)
with some A E and c >0. Then every seif-adjoint extension T' of T has the
following property: a( T') n (A — c, A + c) contains only isolated eigenvalues
with total multiplicity ( m.

PROOF. By the first proposition after Theorem 7.24 we only have to prove
that dim R(E(A + c — ) — E(A — c)) <m for the spectral family E of T'.
Assume that dim R(E(A + c — ) — E(A — c)) > m. Since

dim D( T')/D( T) = m and R(E(A + c —) — E(A — c)) c D( T'),

there exists an fE R(E(A+ c —)— E(A— c))n 0(T), f

f IA - 112 <cIIffl,
IA—tI<c )

which is a contradiction. LI

Corollary 1. Let T be a closed symmetric operator on a complex Hi/bert
space with finite defect indices (m, m), and let T1 and T2 be se/f-adjoint
extensions of T. If a( T1) fl (a, b) =0, then a( T2) n (a, b) consists of only
isolated eigenvalues of total multiplicity <m.
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PROOF. If — cc <a <b < cc, then T satisfies the assumptions of Theorem
8.19 with A—(a+b)/2 and c=(b—a)/2, since for allfED(T)

I(A- IKA- T1)f 112
= f IA - t12 dIIE1(t)f 112 > c2UftI2,

Ix—tI>c

where E1 is the spectral family of T1. The assertion therefore follows by
taking T' T2. If (a, b) is unbounded, then Theorem 8.19 can be applied
to every bounded subinterval (a', b') c (a, b).

Corollary 2. If T is a closed symmetric operator on a complex Hubert space,
bounded from below with lower bound y and finite defect indices (m, m), and
T' is a seif-adjoint extension of T, then cr(T') fl (— cc, y) consists of only
isolated eigenvalues with total multiplicity m.

PROOF. Theorem 8.19 can be applied with any A <y and c = y — A, since

lI(A T)fII > >

for ailfE

EXERCISE

8.8. Let T be a closed symmetric operator with equal finite defect indices (m, m),
and let T1 and T2 be seif-adjoint extensions of T with spectral families E1 and
E2. Then

dim R(E2(b —) — E2(a)) m + dim R(E1(b —) — E1(a)).

Hint: Use Exercise 7.37.

8.4 Second order ordinary differential operators

In this section we would like to apply the results of Sections 8.1 to 8.3 to
second order ordinary differential operators. This way we obtain part of
the theory of Sturm-Lioville operators developed by Weyl, Titchmarsh,
and Kodaira. For further results and examples we refer the reader to
Hellwig [15] and Jörgens- Rellich [20].

Let (a, b) be a bounded or unbounded interval in and let r: (a, b)—*
be a measurable and almost everywhere positive locally integrable

function (i.e., let it be integrable over every compact subinterval of (a, b)).
In the following we consider the Hilbert space L2(a, b, r). This is the space
of (equivalence classes of) measurable functions f defined on (a, b) for
which dx < cc. The scalar product on L2(a, b, r) is

<f g>
= fbf(x)*g(x)r(x)

dx.

We denote the corresponding norm by . The formula Ur: L2(a, b, r)
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b), Urf= r'/2f defines an isomorphism of L2(a, b, r) onto L2(a, b);
this shows, in particular, that L2(a, b, r) is a Hubert space.

First we consider differential forms L of the type

Lf = (- (pf')' +isf'+i(sf)' + qf}, (8.8)

where the coefficients p, q, r, s satisfy the following assumptions:

(8.9) (a) p, q, r, and s are real-valued Continuous functions defined on
(a, b); moreover, p and s are continuously differentiable.

(b) p(x) >0 and r(x) >0 for all x E (a, b).

L is said to be regular at a if a> — oo and the coefficients p, q, r and s
can be continuously extended to [a, b) with p(a)> 0 and r(a) >0. Regular-
ity at b (b < x) can be defined in a corresponding way. L is said to be
regular if L is regular at a and b. L is said to be singular at a (singular at b,
singular) if L is not regular at a (at b, at a or b).

We now define operators on L2(a, b, r) with the aid of a differential
form L such as the one given by (8.8). The maximal operator T induced by
L is defined by the formulae

D(T) = L2(a, b, r): f is continuously differentiable,

f' is absolutely continuous on (a, b), and Lf E L2(a, b, r)}2
and

Tf—Lf for fED(T).
The minimal operator T0 induced by L is defined by the formulae

D( T0) { f E D( T): the support off is compact and contained in (a, b) },
and

T0f = Tf for f E 0(T0).

Theorem 8.20. Let L be as in (8.8). The operator T0 is symmetric. s =0,
then T0 has equal defect indices, i.e., T0 has self-adjoint extensions.

PROOF. The Hermitian character of T0 follows by integration by parts.
0(T0) is dense, because b) c D(T0). Therefore, T0 is symmetric. If
s =0, then T0 is K-real for the natural conjugation on L2(a, b, r)
The assertion follows from this by Theorem 8.9. LI

If z E C and g : (a, b)—*C is a locally integrable function, then we say
thatf: (a, is a solution of the equation (L — z)f= g if f is continu-
ously differentiable, f' is absolutely continuous, and (L — z)f(x) = g(x)

2 Since f' is absolutely continuous, pf' is also absolutely continuous. Let (pf')' be the
derivative of pf' in the sense of Appendix A5.
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almost everywhere in (a, b). Every solution f of the homogeneous equation
(L — z)f= 0 is obviously twice continuously differentiable, since (pf')' is
continuous in this case.

The solutions of the homogeneous equation (L — z)f— 0 constitute a
two-dimensional (complex) vector space.3 Two solutions u1, u2 constitute a
fundamental system (i.e., they are linearly independent) if the modified
Wronskian determinant

W(u1, U2, x) = p(x) det( u2(x)) -
u2(x)

does not vanish for some (and then for all) x E (a, b).
If g: (a, b)—*C is locally integrable and u1, u2 is a fundamental system

for the equation (L — z)u =0, then the solutions h of the equation (L — z)h
= g are given by the formula

h(x) = c1u1(x) +c2u2(x) + ui(x)f W(u1, u2,y)'u2(y)g(y)r(y) dy

— u2(x)f W(u1, u2, 'u1(y)g(y)r(y) dy, (8.10)

where cE(a, b) and c1, c2EC.
For continuously differentiable functions f, g (a, we define

= p(x)(f'(x)*g(x) _f(x)*g'(x)) + 2is(x)f(x)*g(x)

for x E (a, b). If, in addition, f' and g' are absolutely continuous, then

f(f(x)*Lg(x)_(Lf(xfl*g(x)}r(x) dx = g] (8.11)

for [a, /3] c(a, b). It follows from this that for f, gE D(T) the limits
If, gL, and [f, = exist. We have

Tg> — <Tf, g> g E 0(T). (8.12)

Theorem 8.21. Let L2, 0(a, b, r) be the subsp ace of those functions in
L2(a, b, r) that vanish almost everywhere near a and b. Then

R(T0) {kEL2,o(a, b, r) :
fbu(x)*k(x)r(x) dx=0

for every solution u of the equation Lu = 0).

PROOF. We denote the subspace on the right hand side by R. For f E D( T0)
and for every solution u of the equation Lu =0 we obtain via integration

Concerning the results mentioned here about ordinary differential equations we refer to the
textbooks on this subject, for example, Knobloch-Kappel [23], Chapter I.
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by parts that
b b

f u(x)*(Tof)(x)r(x) dx f (Lu)(x)*f(x)r(x) dx =0.

Therefore, R(T0) c R. Now let k E R, and let [a, /3] be a compact subinter-
val of (a, b) with the property that k vanishes outside [a, /3]. For c E(a, a)
and c1 = c2 =0 let h be the solution of the equation Lh = k given by (8.10)
for z =0. Then h' is absolutely continuous, and h(x) =0 for x E (a, a). For
every solution u of the equation Lu =0 and for every x0 E (a, a), x E (/3, b)

[u,h]

=
(u(y)*k(y) - (Lu(y))*h(y)}r(y) dy =0.

As this holds for every solution u of the equation Lu =0, it follows that
h(x) =0 for all x E (/3, b) (if we choose the solution u for which u(x) =0
and u'(x) = 1). Therefore, h E 0(T0) and T0h = k. U

Theorem 8.22. We have = T. The operator T0 is essentially self-adjoint if
and only if T is symmetric. Then T0 = T.

PROOF. Integration by parts shows that T0 and T are formal adjoints of
each other. To prove that = T, it remains to prove that c 0(T).
Letf E Then g = is locally integrable. Let h be a solution of the
equation Lh = g. Then

fb(f(x) - h(x))*( T0k)(x)r(x) dy

I dx =0

for all k E D( T0). Hence, N(F) D R( T0) for the functional

F: L2, 0(a, b, r) —* C, / fb(f(x) — h(x))*l(x)r(x) dx.

Consequently, by Theorem 8.21 and Theorem 4.1 we have F= c1F1 + c2F2
with appropriate c1, c2 E C and

L20(a, b, r) C, dx for j = 1,2,

where u1, u2 is a fundamental system of the differential equation Lu =0.
This implies (compare with the proof of Theorem 6.29) that

f(x) — h(x) = c1u1(x) + c2u2(x) almost everywhere in (a, b).

Hence, f is a solution of the equation Lf= g. Since f E L2(a, b, r), it follows
thatf E D(T). The rest follows from Theorem 5.20. U



8.4 Second order ordinary differential operators 251

Theorem 8.23. The defect index y + = + ( (y — = y (T0)) is equal to the
number of linearly independent solutions of the equation (L + i) u
=0 ((L — i)u =0) that lie in L2(a, b, r). If L is regular, then the defect
indices of T0 are equal to (2, 2).

PROOF. We have R(i — = N(i + T) and R(— i — T0)' = N(— i + T).
Furthermore, N( ± i + T) is equal to the set of those solutions of the
equation (L ± i)u =0 that lie in L2(a, b, r). If L is regular, then every
solution of the equation (L ± i)u =0 is in L2(a, b, r). Consequently,
dimN(±i+T)=2. o

Hence for the defect indices and y_ of T0 there are only three
possible values: 0, 1, and 2. If the defect indices are (0, 0), then T0 = T is

seif-adjoint. If the defect indices are equal and different from zero, then
y) = (y, y) = (1, 1) or (2, 2). Consequently, by Theorem 8.13(b) every

y-dimensional symmetric extension of T0 is seif-adjoint.
Theorem 8.18 and Corollary 2 to Theorem 8.19 immediately imply

Theorem 8.24. Let L be a differential form such as in (8.8). All seif-adjoint
extensions of T0 have the same essential spectrum. If TI'0 is semibounded, then
all self-adjoint extensions of T0 are semibounded.

Theorem 8.25. Let L be a regular differential form of the kind (8.8). Then we
have the following:
(a) For every f E D( T) the functions f and f' are continuously extendible to

[a, b]. Forf, gE D(T) we have

=
p(x)(f'(x)*g(x) _f(x)*g'(x)) + 2isf(x)*g(x) for all x E [a, b]

(b) We have D(T0) = (f E D(T) : f(a) =f'(a) =f(b) —f'(b) = 0}.

PROOF.

(a) If f E D(T) and g = Tf, then f can be represented in the form (8.10)
with a fundamental system u1, u2 of the equation Lu =0. As the
functions u1 and uJ are continuously extendible to [a, b}, the same
follows also for f from this representation. The rest can be obtained
from the definitions of [. , •]a and [.

(b) There exists a 'p E 0(T) such that cp(a) =0, 'p'(a) = I and 'p(x) =0 for x
near b (it is enough to choose 'p twice continuously differentiable).
Then for every f D( T0) it follows from part (a) that

0 = <'p, T0f> — <Tcp,f> = = —p(a)f(a),

and thus f(a) =0. If we now choose 'p such that 'p(a) = 1 and 'p'(a) =0,
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then we find that f'(a)= 0, too. We can show similarly thatf(b) =f'(b)
=0. Since T0 c T, we therefore obtain that

cD0 = (fED(T) :f(a)=f'(a)—f(b)=f'(b)=O).

Let f0 be defined by the formulae D(T0) = D0 and T0f= Tf for
f E D( T0). Then by part (a)

<f, Tg> -<T0f,g> =

f E D(T0) and g E D(T), i.e., T0 and T are formal adjoints of
each other. Hence, T0 c T* = T0, and thus D0 c D(T0). 0

We perform the construction of seif-adjoint extensions only for the case
s =0. Hence, in the following we only consider Sturm-Liouville differential
forms

Lf=![_(pf')'+qf), (8.13)

where p, q, and r satisfy the assumptions (8.9(a)) and (8.9(b)). In this case
T0 always possesses seif-adjoint extensions by Theorem 8.20.

We have (d/dx) W(u1, u2, x) =0 for any two solutions u1, u2 of the
equation (L — z)u =0, as can be easily verified. Therefore, W(u1, u2, x) is
constant in (a, b). We briefly write W(u1, u2) for this value.

For any two continuously differentiable functions f, g : (a, b)—*C and
x E (a, b) we have now

= p(x)(f'(x)*g(x) _f(x)*g'(x)) — W(f*, g, x). (8.14)

Corresponding assertions hold in the regular case for x = a and x = b,
respectively.

Theorem 8.26. Let L be a regular Sturm-Liouville differential form as in
(8.13).
(a) The formulae

D(T
7(b) cosf3—f'(b) sin /3=0J'

Tf for

define a seif-adjoint extension of T0 for arbitrary a, ,8 E [0, 'n).4

The boundary conditions occurring here are called "separated boundary conditions", since
every boundary condition affects only one boundary point. There are also "mixed boundary
conditions" that define seif-adjoint extensions of T0 (cf. Exercises 8.10 and 8.11).
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(b) For every z E P(Ta the resolvent = (z — Ta has the form

= W(Ua, ub) dy

dy},

where Ua and Ub are non-trivial solutions of the equation (L z)u =0 that
satisfy the boundary condition at a and b, respectively (hence, for
example, sin a, cos a, ub(b) = sin /3, and cos /3).

(c) The operators Ta /3 have pure discrete spectrum. Every eigenvalue
simple.

PROOF.

(a) We can verify easily that Ta is symmetric. Hence, it is sufficient to

show that Ta is an (at least) two-dimensional extension of T0. To this

end, let us choose and Pb from D( T) in such a way that we have

(Pa(a) sin a, a, near b,

,S, /3, cpb(x)—O near a.

These elements obviously lie D( Ta /3) and are linearly independent

modulo D( T0), i.e., no non-trivial linear combination lies in D( T0).

(b) The functions Ua and Ub are linearly independent, since otherwise Ua

would fulfill the boundary conditions at a and b, and z would be an
eigenvalue of which would contradict the relation z E p( Ta
Therefore, W(Ua, ub) 0. Let K be the integral operator given in the
theorem. If we define Ur as at the beginning of this section, then

is an integral operator on L2(a, b) with kernel

1
for x >y,

k(x,y) =
L

W(Ua, ub) for x <y.

The function k obviously belongs to L2[(a, b) x (a, b)], i.e., K is a

Hilbert-Schmidt operator. Hence, K belongs to B(L2(a, b, r)). For all
g E L2(a, b, r) we have

Kg(x) = CUa(X) + ub) dy

_Ua(X)f dy} (8.15)

with c = W(Ua, ub) dy. Therefore, by (8.10) Kg is a
solution of the equation (z — L)u = g. We can infer from (8.15) that for
g E L2, 0(a, b, r) the function Kg is a multiple of Ua in a neighborhood
of a and a multiple of Ub in a neighborhood of b. Consequently,
Kg E D( Ta The operator K therefore coincides with on
L2, 0(a, b, r). Since L2 0(a, b, r) is dense and since the operators K and

are continuous, it follows that K=
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(c) is a normal and injective Hubert-Schmidt operator (ci. the proof of
part (b)). Consequently, there exist an orthonormal basis : n E
in L2(a, b, r) and a null-sequence (zn) for which ; 0 (n E and

forall JEL2(a,b,r).
nEN

It follows from this that

forall

n E As every solution of the
equation (A — Ta ,3)u =0 is determined by the boundary condition at
one boundary point up to a constant factor, every eigenvalue is simple.
Hence, a( Ta, = ad( Ta

Let us now turn to the singular case (more precisely, the not necessarily
regular case).

Theorem 8.27 (The Weyl alternative). Let L be a Sturm-Liouville differen-
tial form defined on (a, b), and let c E (a, b). Either every solution u of the
equation (L — z)u 0 lies in L2(c, b, r) for every z E C or for every z E C
there exists at least one solution u of the equation (L — z)u =0 for which
u E L2(c, b, r). In the second case, for every z E C \ there exists (up to a
factor) exactly one solution u of the equation (L — z)u =0 for which u E
L2(c, b, r).

According to H. Weyl we say in the first case that we have the limit
circle case (LCC) at b; in the second case we say that we have the limit
point case (LPC) at b. The terminology can be explained from the original
construction of Weyl (ci. H. Weyl [56]; cf. also Heliwig [15] and Jörgens-
Rellich [20]). A corresponding theorem holds for the boundary point a.
The limit circle case at a and limit point case at a are defined similarly.

PROOF. In order to prove the alternative, it is sufficient to show the
following: If there exists a z0 E C such that u E L2(c, b, r) for every solution
u of the equation (L — z0)u 0, then this holds for all Z E C. Let v1, v2 be a
fundamental system of the equation (L — z0)v =0. (We can assume, with-
out loss of generality, that W(v1, v2) = 1.) We have (L — Z0)u = (z — z0)u
for every solution u of the equation (L — z)u =0. It follows from this by
(8.10) that

u(x) = c1v1(x) + c2v2(x)

+ (Z — zo)f {v1(x)v2(y) — v2(x)v1(y)}u(y)r(y) dy.
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With V = lvii + 1v21, c max(Ic1i, c21) and M= 21z — dy it
follows that

lu(x)l2 < 2c2v(x)2 + 21z — zoI2v(x)2f v(y)2r(y) dyf u(y)12r(y) dy

+ Mv(x)2f u(y)12r(y) dy.

As v E L2(c, b, r), there exists a d E (c, b) such that

dx < (2M)'.

Consequently, for all x1 E(d, b)

id dx < 2c2f'v(x)2r(x) dx

+Mf v(x)2r(x){f lu(y)12r(y) dy} dx

2c2fbv(x)2r(x) dx dy,

and thus

dx < 4c2Jhv(x)2r(x) dx + J iu(y)12r(y) dy.

This implies that u E L2(d, b, r), and thus u E L2(c, b, r), as well, since u is
continuous on (a, b).

Let us now assume that we have the limit point case at b, i.e., that for
every z E C there exists (up to a constant factor) at most one solution u of
the equation (L — z)u 0 such that u E L2(c, b, r). It remains to prove that
for every z E C \ there exists at least one solution with this property. For
this we consider the differential form L on the interval (c, b). The form L
is obviously regular at c. Let T0 and T be the minimal and the maximal
operators on L2(c, b, r) induced by L. It is sufficient to show that T is not
symmetric, since this implies that T0 has positive defect indices, i.e., that
N(z — (0} for every z E In order to prove this we use two twice
continuously differentiable functions p2 [c, for which

p1(c) = 1, = 0, p1(x) = 0 near b,

q2(c) = 0, 1, q2(x) = 0 near b,

Then p1, D(T) and

<p1,

T is not symmetric. LII

Auxiliary theorem 8.28. Let L be a Sturm-Liouville differential form on
(a, b).
(a)
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(b) Let us have the limit circle case at a. If u is a solution of the equation
(L — z)u =0 for some z E C, the function u0 is twice continuously dif-
ferentiable on (a, b), and we have u0(x) = u(x) near a and u0(x) =0 near

b, then u0ED(T)\D(T0).
(c) If we have the limit point case at a, then [f, g

for

f g E a E D( T) such that

g0(x) = g(x) near a and g0(x) =0 near b (proof!). Therefore,

= =0.

(b) u0 obviously lies in D( T). If v is a further solution of the equation

(L — z)u =0 such that W(u, v) 0, and v0 is defined analogously to u0,

then we also have E D( T) and

[u0, =[u, v*] = — W(u*, v*) = — W(u, v)* 0.

Thus, u0 0(T0) by part (a).

(c) We may assume without loss of generality that L is regular at b

(otherwise we consider L on (a, c) with some c E (a, b)). Then the

defect indices of T0 are (1, 1) by Theorems 8.27 and 8.23. Let u1, u2 be

linearly independent solutions of the equation Lu = 0, and let v1, v2 be
twice continuously differentiable functions for which = u1(x) near
b and v1(x) =0 near a. By part (b) the elements v1, v2 belong to D(.T)

and are linearly independent modulo D( T0). Consequently, D( T) =
0(T0) + L(v1, v2}. This implies that for arbitrary f, g E 0(T) there are

elements f0, g0 E D( T0) that coincide with f and g, respectively, in a

neighborhood of a. It follows by part (a) that [f, = [fo, goL =0. U

We are now in a position to give seif-adjoint extensions of T0 in the

singular case, as well.

Theorem 8.29. Let L be a Sturm-Liouville differentialform (8.13). Moreover,
let A E and let v and w be real solutions of the equation (L — A)u =0.
(a) The operator defined by the formulae

( [v, f] =0 if we have the LCC at a
D(T

W [w, f] b
=0 if we have the LCC at b

Tf for

define a seif-adjoint extension of T0.

If we have the limit point case at a and/or b, then the index v and/or w has no significance.
Cf. also footnote 4.
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(b) For z E C \ the resolvent = (z — of the form

= W(Ua, ub) {ub(x)fua(Y)g(Y)r(Y) dy

+
dy

where Ua and Ub are the solutions of the equation (L — z)u = 0, uniquely
determined up to a factor by the conditions

[v, Ua] a
= 0 if we have the LCC at a, respectively

Ua E L2(a, c, r) if we have the LPC at a,

[w, Ub] b
= 0 if we have the LCC at b, respectively

Ub E L2(c, b, r) if we have the LPC at b.

(c) If we have the limit circle case at both a and b, then has a pure
discrete spectrum.

(d) All eigenvalues of are simple.

PROOF.

(a) If we have the limit point case at both boundary points, then

Tg>—<Tf,g> = 0 forall f,gED(T)

by Auxiliary theorem 8.28. Consequently, T is symmetric and thus
seif-adjoint by Theorem 8.22. This is the assertion in this case.

If we have the limit circle case at a and the limit point case at b, then
the defect indices are (1, 1), as immediately follows from Theorem 8.27
(the Weyl alternative). If v0 is a twice continuously differentiable
function for which v0(x) = v(x) near a and v0(x) =0 near b, then
v0E D(T)\D(T0) by Auxiliary theorem 8.28(b). Moreover, we obvi-
ously have D(T0) + L{v0} c D(TV If u is a solution of the equation
(L — A)u =0 that is linearly independent of v and if u0 is defined
analogously to v0, then u0 D( Therefore is a proper restric-
tion of T, and thus = D(T0) + L{v0} (since T is a two-dimen-
sional extension of T0). With the aid of this representation of D(
we can immediately see that is symmetric. Hence, is a
one-dimensional symmetric extension of T0, and thus it is seif-adjoint.

If we have the limit circle case at both boundary points, then the
defect indices are (2, 2). We can show in an entirely analogous way as
in the case just treated that is a two-dimensional symmetric
extension of T0. Consequently, is seif-adjoint.
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(b) If we have the limit point case at a (respectively at b), then Ua
(respectively ub) is determined up to a factor. If we have the limit circle
case at a and u1, u2 is a fundamental system of the equation (L — z)u =
0, then because of the equality [v, cu1 + du2} a = c[v, Ui]a + d[v, U2]a,
there is at least one non-trivial linear combination Ua = cu1 + du2 for
which [v, Ua]a =0. On the other hand, we do not have [v, Ui]a = [t), U21a

=0, since otherwise there would exist at least one non-trivial solution
of the equation — z)f= 0, which contradicts the relation z E C\
c p( We can handle the boundary point b in a similar way.

Let K0 be the restriction, to L2 0(a, b, r), of the integral operator
given in the formulation of our theorem. As in Theorem 8.26(b), we
can show that K0 coincides with the restriction of to L2, 0(a, b, r). If
K is the maximal integral operator defined by the formula in our
theorem, then K is a closed operator (as is a Carleman
operator on L2(a, b)). Since K0 is continuous and densely defined, K is
also continuous, and K=

(c) This can be proved in exactly the same way as in Theorem 8.26(c),
because Ub E L2(a, b, r).

(d) If we have the limit point case at at least one boundary point, then the
assertion is clear, since the space of solutions of the equation (A — T)u
=0 is at most one-dimensional (Theorem 8.27). Let us now assume
that we have the limit circle case at both boundary points. Assume that
A is an eigenvalue of multiplicity 2 (the multiplicity cannot be greater),
and let u1, u2 be linearly independent eigenelements. Let a and b

be twice continuously differentiable functions for which

= near a, = 0 near b,

uJ,b(x) = 0 near a, uJ,b(x) = near b

for .1= 1, 2. These are four elements from D( that are linearly
independent modulo D(T0). This is a contradiction to

dim D(TV, = 2.

EXERCISES

8.9. Let L be a regular differential form of the form (8.8). The formulae D(T1) =
D(T) :f(a)=f(b)=0) and T1f= Tf forfE D(T1) define a seif-adjoint

extension of T0.

8.10. Let Lf(x) =f"(x) + q(x) for x E(0, 1). Assume that q is continuously extend-
ible to [0, 1].
(a) The operator T,, defined by the formulae

D(T,,) =
T,,f=Tf for JED(T1,)

is a seif-adjoint extension of T0 for every E C such that = 1 (the
boundary conditions are mixed).
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(b) Prove, with the aid of (a) (for the case q =0) that the eigenvalues are in
general not simple in the case of mixed boundary conditions.

8.11. Let L be a Sturm-Liouville differential form with limit circle case at a and b.
(a) If A is real, and v, w are real linearly independent solutions of the

equation (L — y)u = 0, then the formulae D(TV = D(T0) + L(v, w),
T(V, w)f— Tf for! E D(T(V, w) define a self-adjoint extension of T0.

(b) We have w)) = (f E D(T) : [v,f]b — [V,f]a = [w,flb — [W,fla 0)
(these are mixed boundary conditions).

8.12. The representation of given in Theorem 8.29(b) also holds for z E fl

8.13. (a) Let L be a Sturm-Liouville differential form on (a, b) such that
(q(x)/r(x)) > y for x x0. If g E L2(x0, b, r) for g(x) = ds,
then we have the limit point case at b.
Hint: Consider that solution u of the equation (L — y)u =0 for which
u(x0)= u'(x0)= 1.

(b) Let L be a Sturm-Liouville differential form on (0, 1) such that p(x) =
r(x) = 1 and q(x) cx2 with c > 3/4. Then we have the limit point case
at 0.

8.14. Let L be a differential form of the form (8.8) with p = I.
(a) Consider the unitary operator U defined on L2(a, b, r) by the formula

(Uf)(x) = exp( — if dt)f(x). Then

ULU 'g(x)
= r(x) { -g"(x) + (q(x) - s2(x))g(x)}.

(b) T0 has equal defect indices.

8.15. (a) The self-adjoint extensions of T0 given in Theorem 8.26 and Theorem
8.29 are K-real (Kf=f).

(b) The operators from Exercise 8.10 are not K-real for E R.
(c) If we have the limit point case at at least one boundary point, then

Theorem 8.29 provides all K-real self-adjoint extensions of T0. (These are
all self-adjoint extensions of T0 by Exercise 8.7.)

8.5 Analytic vectors and tensor products of
self-adj oint operators

With the aid of the results of Section 8.1 we can also prove the criterion of
Nelson for the essential self-adjointness of symmetric operators. For this
we need the notion of analytic vectors.

Let S be a symmetric operator on the Hubert space H. Introduce the
notation C°°(S)= An elementfe C°°(S) is called an analytic
vector of S if there exists a t(f) >0 such that

<oo for t( <t(f)
n=O



260 8 Seif-adjoint extensions of symmetric operators

Theorem 8.30. If S is a seif-adjoint operator andf is an analytic vector of 5,
then

00

f E and

for every z E such that Izi <t(f).
PROOF. Let E denote the spectral family of S. Then

M 1/2
I M

=11 1 ezs dE(s)Ji

M 00 / \fl
dE(s)

ii
n!

s'd
00

Al
E(s)Jfl

n=O n!
Ii —M

00

If

n=O

for every M >0 and z E such that IzI <t(f). Letting M tend to oo, we
obtain that f E D(ezS). Furthermore,

00 ' \fl.00 .00
ezSf

I dE(s)f
= j dE(s)f

00n=O n!

m 00 (zs)fldEOf
—00

n

=
n!

n nM
II

(zs)
dE(s)fD= urn n!

1 00
Zn M

= urn —f Sn dE(s)fIi
M_*oo(fn_.m±1 n! —M

00
f zf" 00

fl!11L00n=m+ I

= as m
n!n=m± 1



8.5 Analytic vectors and tensor products of seif-adjoint operators 261

Theorem 8.31 (Nelson). Let T be a symmetric operator on the Hi/bert space
H. Assume that the set of analytic vectors of T is dense. Then T is essentially
seif-adjoint.

PROOF.

(a) First we consider the complex case. Introduce the notations R = H H
and T= TEE?(— T) (i.e., D(T)= 0(T) and T(f, g)=(Tf, — Tg)
for (f, g) E D(T)). If -y_) denote the defect indices of T, then the
defect indices of T are + + -y_). Therefore, T possesses
seif-adjoint extensions. We can also see from the defect indices of T
that T is essentially self-adjoint if and only if T is essentially self-
adjoint. Hence, it is enough to prove that T is essentially self-adjoint.

The set of analytic vectors of T is dense: If f and g are analytic
vectors of T, then (f, g) is an analytic vector of T. Consequently, it is
sufficient to show the following (where we write T instead of T): If T
is a symmetric operator with equal defect indices and a dense set of
analytic vectors, then T is essentially self-adjoint.

Let S be a self-adjoint extension of T. 1ff is an analytic vector of T,
thenf is also an analytic vector of S. Because the formula

II = II T'7f II, the element is also an analytic vector of
S for every s E and = t(f). Then for every s E Eli, z E C such
that Iz — sI <t(f) and for every g E H we have by Theorem 8.30 that

f E =
and

F(z) = <g, = <g,

= n=O n!

Consequently, F is holomorphic in (z E C: hIm zi <t(f)}.
If g E R(i — T) = N( — i — T*), then = j)flg for all n E

Therefore, g> = (—i)'1<f, g>. This implies for all n E that

= <g, = <g, = (— 1)"<g,f> = (— 1)"F(O).

Hence, for all s E

<g, = F(s) = =

Since is unitary, the function F is bounded. Consequently,
<g,f> =0 for every analytic vector f of T. Hence, R(i— T)' = (0}.
The equality R( — i — T)' = {0} follows similarly.

(b) Let H now be a real Hubert space. Then the set of analytic vectors of
the complexification is dense, namely it is equal to the complex
linear hull of the analytic vectors of T (observe that the set of analytic
vectors is a vector space).
T is essentially self-adjoint by Exercise 5.32(b).
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Corollary. A closed symmetric operator T is seif-adjoint if and only if the set
of analytic vectors of T is dense.

PROOF. If the set of analytic vectors of T is dense, then T is essentially
seif-adjoint by Theorem 8.31. As T is closed, it is seif-adjoint.

Let T now be seif-adjoint, and let E denote the spectral family of T.
Then all elements of R(E(t) — E( — t)) are analytic vectors of T for every
t >0, since ii IfII for f E R(E(t) — E(— t)). As U 1>0R(E(t) —

— t)) is dense in H, the assertion follows.

The above results enable us to prove the essential self-adjointness of
tensor products of operators. Let H1 and H2 be Hubert spaces, and let us
consider the space H = H1 ® H2 (cf. Section 3.4). If T1 and T2 are operators
on H1 and H2, respectively, then we define the operator T1 0 T2 on H1 H2

by the formulae

D(T1® T2) =D(T1)® D(T2),
and

(Tl®

In order to prove that this is a linear operator, it is sufficient to prove that
this definition is independent of the representation of the elements from
0(T1) 0 0(T2) as linear combinations of simple tensors; the linearity then
follows directly from the definition. In order to prove this, we have to show
that 1c3f3® = 0 implies T2g3 = 0. By (3.3) we have

0 =0 if and only if this sum can be written as a finite linear
combination of elements of the form

bkYk).
j=1 k=1 j=1 k=1

Then T1 f3 0 T2 is also a linear combination of elements of the
same form, and thus it is equal to zero.

In what follows we study, for two given operators T1 and T2, the
operators

A—T10T2 and B—T1®12+110T2.
We have D(A)= D(B)= D(T1)® 0(T2).

Theorem 8.32. Let H1, H2, T1, T2, A and B be as above.
(a) A is different from zero (i.e., there exists an f E 0(A) such that Af /= 0) if

and only if T1 and T2 are different from zero. If A is different from zero,
then A is bounded if and only if T1 and T2 are bounded. Then

1 =
II

(b) If CO), then B is bounded if and only if T1 and T2 are bounded.
Then IIBII < 11T1!f + IIT2H.
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(c) If T1 and T2 are densely defined, then A and B are also densely defined,
andA*D and B*J If T1 and T2are symmet-
ric, then A and B are symmetric.

PROOF.

(a) If T1 and T2 are different from zero, then there are elementsf1 E D(T1)
and f2 E 0(T2) for which T1 f1 0 and T2f2 0. Hence A(f1 ®f2) 0,
i.e., A 0. If one of the operators T1 and T2 is zero, then A (f1 ®f2) =
T1 f1 ® T2f2 0 for all f1 E D( T1) and f2 E 0(T2). Because of the equal-
ity 0(A)= L{f1 ®f2 f1 E D(T1), f2 E D(T2)}, it follows from this that
Af=0 for allfE 0(A), i.e., that A =0.

Assume now that A 0 is bounded. Then for all f1 E D( T1), f2 E
D( T2) such that f1 = II f2 II = 1 we have

JI T1f111
J = II T1f1 ® T2f2H = IIA(f1 ®f2)ll < JA 1. (8.16)

As T2 0, there is an f2 E D( T2) such that If2 I = I and T2 f2 0.
Therefore, it follows that

ltT1f1II JT2f2Il'IIAII for all f1 E 0(T1), 11f111 = 1.

Consequently, T1 is bounded. We can prove in just the same way that
T2 is bounded. The left side of (8.16) assumes values arbitrarily close to
II

thus
II Till II :T'2I1 < HAIl.

Now let T1 and T2 be bounded. We show that A is bounded and
IA T1 1111 T211. Because of the formula A = (T1 ® '2)('j ® T2) it is

sufficient to prove that the operators T, ® and ® T2 are bounded
and T1 ® 1211 T1II and ® T211 We show the first inequal-
ity. To do this, we use the fact that according to (3.5) every element
fE 0(T1)®D(12)=D(T1)®H2 can be written in the

with orthonormal elements j 1,. . . , n. For such an f we have

2

II(T1®12)flI2 = =
j=1

T1 and T2 are bounded, then the boundedness of T1 ® and ® T2
follows as in (a). Therefore, lB II

II
T1 II + T211. If T1 is unbounded

and D( T2) is different from zero, then there exist a sequence from
D(T1) for which 1 and oo and a g E D(T2) for which
llgII= 1. Then

> ®gII — IlL® = —

as Hence, B is unbounded. The same follows if T2 is un-
bounded and 0(T1) is different from zero.



264 8 Seif-adjoint extensions of synimetric operators

(c) We can easily verify that A and 0 (respectively B and ® +
0 TjC) are formal adjoints of each other. This implies that A * :

0 and B* 0 '2+ 0 The last assertion immediately
follows from this. E1

Theorem 8.33. Let T1 and T2 be essentially seif-adjoint operators on H1 and
H2, respectively. Then the operators A = T1 0 T2 and B T1 012+ 0
are essentially self-adjoint on H = H1 0 H2.

PROOF.

(a) First we assume that T1 and T2 are seif-adjoint. Then A and B are
symmetric according to Theorem 8.32(c). We construct total sets of
analytic vectors for A and B. As the linear combinations of analytic
vectors are again analytic vectors, the assertion follows from this by
Theorem 8.31.

First we consider the operator A. Let M1 and M2 be the sets of
analytic vectors of and respectively. We show that all 012
such that E are analytic vectors of A. If

II II <oc for j = 1, 2 and 0 t <t0,
n=O

then

n=O n!
IA ®f2)II

=
I

0
I I

n0 n.

=

1/2

< { n=O

.

1/2

= {
1/2

1

}n=O .

for 0 ( t <t0. Consequently, f1 Of2 is an analytic vector of A. As the P4
are dense subsets of (j = 1, 2), the set of these analytic vectors is
total in H1® H2.

Now we consider B. Let M1 and M2 now be the sets of analytic
vectors of T1 and T2, respectively. Assume that for E 14 we have

<oo for j = 1, 2 and 0 <t <t0.
n=O n.
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Then

I
n=O k=O I

12! k=O
lf I HI

n=Ok=O . (n ).

=
{

II II

}k=O ).

= { k=O . m=O

<00
for 0 t <t0. Consequently, f1 ®f2 is an analytic vector of B. The set of
these analytic vectors is total in H1 H2. — —

(b) Let T1 and T2 now be essentially seif-adjoint, i.e., let T1 and T2 be
self-adjoint. The operators A and B are symmetric, and thus closable.
We can verify easily that

A =T1®T2DT1®T2,

B= T1®12+11®T2ij T1®12+ T2.

The essential self-adjointness of A and B now follows from part (a) of
the proof. LI

Theorem 8.34. Let T1 and T2 be seif-adjoint on H1 and H2 with spectral
families E1 and E2, respectively. Then

<f1 ®f2, E(t)(g1®g2)> = E1(t—s)g1> E2(s)g2>

for the spectral family E of B= T1 ® + T2 and for all f1, E
H1,f2, g2E

PROOF. The formulae F1(t) E1(t) 0 and F2(t) = 0 E define
spectral families on H = H1 0 H2. We show this for
(a) Because of the formulae = (E1 0 12)* D ® '2 we have

= F1. It is obvious that F1(t)F1(s)f= F1(s)F1(t)f— F1(t)f for f E
H1 0 H2 and t s. Due to continuity arguments (cf. Theorem 8.32(a))
this holds for all f E H1 0 H2. In particular, F1(t)2 = F1(t), i.e., all F1(t)
are orthogonal projections.
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(b) We have F1(t)F1(s) = F1(s)F1(t) = F1(t) for t <s by part (a); this proves
that F1 is increasing.

(c) For f=f1 ®f2 we have

F1(t + )f— = II(E1(t + €) — E1(t))f111 Lf211 0 as 0 +

This proves the right continuity of F1(t)f for all f E H1 0 H2
(cf. Theorem 4.23(b)).

(d) For f=f1 ®f2 we have F1(t)f= E1(t)f1 as — 00 and
as oo. This implies the corresponding assertion for all

f E H1 (cf. Theorem 4.23(b)).
The spectral families F1 and F2 commute, since

F1(t)F2(s)f = E1(t)f1 0 E2(s)f2 = F2(s)F1(t)f

for all f=f1 Of2. This then holds for all f E H1 Consequently, the
equality

G(t+is) = F1(t)F2(s), s, t E R

defines a complex spectral family on H1 H2. We obviously have G(t + is)
= E1(t) 0 E2(s). We show that

= O(u) = f(Re z + Im z) dG(z),

where u is the function defined by the formulae u : u(z) = Re z +
Im z. As B and O(u) are seif-adjoint (u is real-valued), it is enough to
prove that B c Ô(u). It will follow from this that B C O(u), and thus
B= Ô(u). For f=f1 Of2 E D(T1)® D(T2) we have

f djj G(z)f112 2f{(Re z)2+(Im z)2} dItG(z)f112

= 2{f(Re z)2 dIjG(z)f112 +f (Im z)2 df G(z)f112}

= 2{ ft2 +fs2 dIIE2(s)f211211f1112}

= T2f2112} < 00.

Consequently, f E D(G(u)) and

= f(Re z + Im z) dG(z)f = fRe z dG(z)f + JIm z dG(z)f

= (ft dEi(t)fi) ®f2 ® (fs dE2(s)f2) = Bf.

If we consider linear combinations of such elements, then it follows that
B c G(u).

Now we can give the spectral family E of B= Ô(u). We have

E(t) = G((z E C : Re z + Im z <t)) = O(x(ZEC. Rez±Imz<t)).
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E(.) is obviously a spectral family. For every f E H1 H2 we have

ft2 = f(Re z+Im z)2 dli G(z)f 112.

Consequently, D(E(id)) = D(G(u)) = 0(B). For all f E 0(B)

ft dE(t)f = fu(z) dG(z)f = Bf.

Hence, E(id) = B, i.e., E is the spectral family of B.
By Fubini's theorem we have for all f1 ®f2 E H1 ® H2 that

IIE(t)(f1®f2)lI2 = f dli G(z)(f1 ®f2)112
Re z + Im z <t

= d5llE2(s)f2112

=

The assertion follows from this by means of the polarization identity. 0
Theorem 8.35. Let T1 and T2 be seif-adjoint operators on complex Hi/bert
spaces, and let B = T1 012+ 0 Then

exp(ith) = exp(itT1) 0 exp(itT2).

PROOF. For all simple tensors fOg such that f E 0(T1) and g E 0(T2) we
havef®gED(B), and thus

=

Hence, u(t) = exp(itB)(f 0 g) is a solution of the initial value problem

= u(O) = fOg.

On the other hand, it is easy to prove that

u(t) =[exp(itT1)f]®g+f®[exp(itT2)g]

is also a solution of this initial value problem. The solution is uniquely
determined by the Corollary to Theorem 7.38. This proves the assertion. 0

EXERCISES

8.16. Let T be a seif-adjoint multiplication operator on L2(R, p) (respectively on
pa)). Give a dense set of analytic vectors of T.

8.17. There are essentially seif-adjoint operators whose sets of analytic vectors are
not dense.
Hint: Let T be defined by the equalities D(T)= Tf=(1/i)f' + q'J',
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where q(x) =0 for x 0, and q(x) = 1 for x >0. 1ff is an analytic vector of T,
then f(0) = 0. If the set of analytic vectors of T were dense, then the same
would hold for the operator T0 c T with D(T0) = {f E : f(0)= 0); the
defect indices of T0 are equal to (1, 1).

8.18. Let T1 and be the operators of multiplication by the variables on
and on a13), respectively.

(a) T1 T2 is the operator of multiplication by x1x2 on
Pa X a13).

(b) T1 ® + 0 T2 is the operator of multiplication by x1 + x2 on
Pa Xa13).

(c) Prove Theorem 8.34 with the aid of (b) and the spectral representation
theorem.

8.19. (a) If T1 0 is different from zero, then T1 0 T2 is symmetric if and only if
there exists a c E K, c 0 for which cT1 and c are symmetric.

(b) T1 0 '2+ 0 T2 is symmetric if and only if there exists a c E for which
T1 — id1 and + id2 are symmetric; we have T1 ® '2+ 0 =
(T1 — 12+11 ®(T2 + id2). (If H1 and H2 are real Hilbert spaces,
then T1 ® + 0 T2 is symmetric if and only if T1 and T2 are symmet-
ric.)

8.20. Let T1 and T2 be self-adjoint. Then for B = T1 012+ 0 T2 we have

= {AEIR :

A of B is equal to
where is the multiplicity of the eigenvalue of T1.

8.21. Assume that T1, T2 and B are as in Exercise 8.20, T2 has a pure point
spectrum, and denotes the projection onto N( T2 — s). Then

E(t) =
SE

where E and E1 denote the spectral families of B and T1, respectively.

8.22. Let T1 and be seif-adjoint operators with spectral families E1 and E2. If
E1(t)E2(s)= E2(s)E1(t) for all t, sE IR, then the operators T1 + T2 and T1T2
are essentially seif-adjoint.
Hint: For all bounded intervals J1 and J2 the set consists of
analytic vectors of T1 + T2 and T1 T2.



Perturbation theory for
self -adj oint operators

Here we will deal almost exclusively with the perturbation theory for
self-adjoint and essentially seif-adjoint operators. Essentially two questions
arise:

(9.1) Let T be a seif-adjoint or essentially seif-adjoint operator on the
Hi/bert space H. Let V be a symmetric operator, a perturbation. Is T+ V
also seif-adjoint or essentially self-adjoint?

(9.2) Let T be a seif-adjoint operator and assume that we know certain
properties of its spectrum. Can we say anything about the spectral properties
of T+ V(or T+ V)?

We already answered question (9.1) in Section 5.3. Now we turn our
attention to question (9.2). We shall study the question of whether T and
T + V have the same essential spectrum and whether the semi-bounded-
ness of T implies that of T + V. Moreover, we obtain results concerning
the perturbation of the discrete spectrum and concerning the continuous
dependence, on the given operator, of the spectrum and the spectral
family. Further results of this kind are also included in Section 7.5. For the
absolutely continuous spectrum, see also Chapter 11.

9.1 Relatively bounded perturbations

First we consider the case where the unperturbed operator T is bounded
from below.

Theorem 9.1. Let T be seif-adjoini' and bounded from below with lower bound
Let V be symmetric and T-bounded with T-bound < 1. Then T + V is

269
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seif-adjoint and bounded from below. If

aIIfII + bIJ Tf for all f E 0(T)
with some b < 1, then

= Yr—max( l_b,a+bIYTI)

is a lower bound of T + V.

PROOF. By Corollary 2 to Theorem 7.22 it is sufficient to show that
(—00, y) is contained in p(T+ V), i.e., that the operator T+ V—A=
(T — A) + V is bijective for every A <y. By Theorem 5.11, this is surely the
case if II VR(A, < 1. We obtain from the spectral theorem that

VR(A, T)II T)II + blI TR(A,

<a(YT—A)' + b sup{ItI(t—A)' : t

= + b max{1,

+bIyTI(YT—A)'}.

The last expression is obviously less than 1 for A <y. 0

Theorem 9.2. Let T be seif-adjoint and bounded from below, and let V be
symmetric and T- bounded. If T + V is closed for all E [0, 1], then T + V is
seif-adjoint and bounded from below.

PROOF. The operator T+ V is seif-adjoint by Theorem 5.27. For every
lithe operator V is relatively bounded with respect to T+ i.e.,

there exist 0 and 0 for which

II +

Consequently, for
I —

II + + I II

+ V)fII +

and thus
< +

The segment [0, 1] is covered by the open intervals — +
1),

p. E[0, I]. Consequently, there are finitely many . . , p.,, for
which the corresponding intervals cover the whole interval [0, 1]. The
operator V is therefore (T + V)-bounded for all p. E [0, 1] with relative
bound :j= 1,.. . , n}. If we choose such that b/m<
1 holds, then by successive applications of Theorem 9.1 we obtain the
semi-boundedness of T+(l/m) V, T+2(l/m) V,..., T+ V. LI
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Theorem 9.1 also enables us to prove the following useful inequalities.

Theorem 9.3 (Heinz). Assume that T is seif-adjoint, non-negative, S is
symmetric, D(T) c D(S), and ISfM ' II Tf II for a/if E 0(T). Then

<f,Tf> forail fED(T).

PROOF. Theorem 9.1 applies with V = icS for every K E (— 1, 1) if we take
a = 0, b = and YT = 0. Then = 0. Consequently, T+ KS is self-adjoint
and non-negative for every icE (— 1, 1). For ic—* ± 1 we get

(T+ S)f> >0
for all f E D(T),

(T—S)f> >0)
and thus

Tf> > Sf>( for all f E 0(T). 0
Theorem 9.4. Let S and T be seif-adjoint and non-negative.
(a) 0(T) cD(S) and 11Sf U II Tf for all f E 0(T) imply

cD(S'12) and IIS"2f11 II for al/f E D(T"2).
(b) D(T) C D(S) implies D(T 1/2) C D(S The equality D(T) = D(S) im-

plies 0(T'/2)= D(S1"2).

PROOF.

(a) It follows from Theorem 9.3 that

<f,Sf> Tf> = IIT"2fl12 forall fED(T).

Let f E D(T"2). Since 0(T) is a core of there is a sequence
from 0(T) for which and T"2f. Then (S is also a
Cauchy sequence. Therefore, f E D(S 1/2) and S'/2f= ffl.
Consequently,

= lim urn = lT1I2fJJ.
n—*cy3

(b) Because of the inclusion 0(T) c 0(S), the operator S is T-bounded by
Theorem 5.9, i.e., there exists a c > 0 such that

II Sf11 c(lIf II TfII) c(11f1l2 +11 Tf112)l/2

2<f, Tf> +11 T)fll.

By part (a), D((I + T)'/2) is therefore contained in D(S 1/2) We can
immediately infer from the spectral theorem that D(T"2) = D((I +
T)' /2). Consequently, D( T' C D(S 1/2). If D( T) 0(S), then it also
follows that D(S 1/2) c D(T 1/2) and thus that D(S 1/2) = D(T"2). 0

Now we prove a result concerning the continuous dependence, on the
given operator, of thc spectrum and the essential spectrum.
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Theorem 9.5. Let T and (n E be seif-adjoint, and assume that
0(T) = D( Assume, furthermore, that there are null-sequences (an) and

which

ll(T— + ball TfIl for all f E 0(T).

Then = and Ge(T) =

PROOF. We have to prove that A E ae( T) (respectively A E a( T)) if and only
if there is a sequence (A,?) for which A,? E ae(Tn) (respectively E
and —*A. There is no loss of generality in considering only the point
A =0. Let E and denote the spectral families of T and
(a) If 0 E cr(T), then there is a sequence from D(T) for which = 1

and Then

d(O, a(T,3) + II(T—

(1 + + 0 as n 00.

Therefore, d(0, a( i.e., 0 E Ta).
If 0 then T is bijective. Since

II(T + + Al 11T'lI,

by Theorem 5.11 — A is also bijective for <(211 T 'll)
1 and

sufficiently large n E Hence, 0 E
(b) Assume that 0 E Ge(T). Then dim R(E(c) — E( — €)) = x for every €>

0, by Theorem 7.24. If n0 E is such that + <€ for all n > n0,
then it follows for all n > n0 and f E R(E(€) — E( — €)), 0 that

IITJII + j(T— 11f11 + +

<2€llfll.
It follows from this that dim — — 2)) = 00, since otherwise
there would exist an

f E — E(— €)), 0;

for this f we would have

2€ljfJl < II Till <2€IlfJI.
By the proposition preceding Theorem 7.25 we have ae( n [— 2€, 2€]

0 for every n > n0. As >0 was arbitrary, it follows that 0 E
Ta).

Let us assume that 0 E Oe( T), i.e., that there exists an >0 such that
dim R(E(€)— E(— €))< oo. If n0 E 1%I is such that <€/3 <1/3
for all n > n0, then

II TfIl — lI(T— > TfII — — TfII

= Tfll —
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for all n >n0 andfE R(E(€)— It follows from this that
dim — c/3)) < oc, since otherwise there would exist an

f E R(E()— E(—€))', 0;

for this f we would have

II Till >

Consequently, (— c/3, e/3) n 5e(Tn) 0 for all n > n0, and thus 0

Corollary. Assume that T is seif-adjoint, V is symmetric and T-bounded, and
denotes the set of those real p. for which T + p. V is seif-adjoint. Then the

set- valued functions jz a( T + p. V) and + p. V) are continuous on
(i.e., if E and then ci(T+ p.0V) = p..,, V) and

Ge(T+

PROOF. V is (T + V)-bounded for every E Therefore,

l{(T+p.0V)—(T+ =

I I
— p.0 V)f II.

Consequently, the operators T + p.0V and T + V satisfy the assumptions
of Theorem 9.5. 0

EXERCISES

9.1. The converse of Theorem 9.4(a) does not hold. If we consider the operators
induced by the matrices

S=3(' D
and T=4(l 0)

on C2 (with the usual scalar product), then S < T, but not S2 < T2.

9.2. Let the assumptions of Theorem 9.5 be satisfied. Assume that a, /3 E n p(T)
and a </3. Then a, /3 for large n and (E(/3)—
E(a))II—*0 as

Hint: The second resolvent identity, Exercise 7.20, and Theorem 9.5.

9.2 Relatively compact perturbations and
the essential spectrum

By Theorem 7.24 the number A E belongs to the essential spectrum of a
self -adjoint operator T if and only if there exists a sequence from D( T)
for which

urn 0, (A— (9.3)
fl —*00
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Such a sequence is called a singular sequence for T and A. With the aid of
this characterization, we can prove the following theorem.

Theorem 9.6. Let T1 and T2 be seif-adjoint operators with the spectral
families E1 and E2.
(a) If R(E1(J)) C and (T1 — T2)E1(J) is compact for every bounded

interval J, then ae(Ti) C ae(T2).
(b) If the assumptions of (a) are satisfied and D( T1) C D( T2), then every

sequence that is singular for T1 and A is also singular for T2 and A.

PROOF.

(a) Assume that A E Ge( T1). As in the proof of Theorem 7.24 (part (i)
implies (ii)) we can show that there exists a singular sequence for
T1 and A that is contained in R(E1(A + 1) — E1(A — 1)) (cf. also part (b)
of this proof). As tends to 0 weakly and as (T1 — T2) (E1(X + 1)—
E1(A — 1)) is compact, we have

(T1— = (T1— T2)(E1(A+ l)—E1(A—

as n—> oO (cf. Theorem 6.3). We obtain from this that

as n oo. Therefore, is a singular sequence for T2 and A, and thus
A E ae(T2).

(b) Due to the inclusion 0(T1) C 0(T2), the operator T2 is relatively
bounded with respect to T1 (cf. Theorem 5.9). Let be a singular
sequence for T1 and A. Then

1K'- E1(A+ 1) + E1(X- f +f 1

(—oo,X—1J (A+1,oo)

- tJ2

= (9.4)

and

l)+E1(A—

= f + f ti2
(—oc,,A—1J (X+1,oo)

f + f (IAI + A - tD2
(—oo,X—1} (X+1,oo)

— E1(A + 1) + E1(A —

as (9.5)
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Hence, ((E1(A+ 1)— E1(A— is a singular sequence for T1 and A

that is contained in R(E1(A+ 1)— E1(A— I)). As in part (a), it follows
that

as n—oo.

Since T2 is bounded with respect to T1, we can derive from (9.4) and
(9.5) that

as

and thus
as

Consequently, is a singular sequence for T2 and A. 0
If in Theorem 9.6 we make the assumptions symmetrical with respect to

T1 and T2, then we obtain a criterion for the coincidence of the essential
spectra and for the coincidence of the singular sequences (in the following
we say that T1 and T2 have the same singular sequences if is a singular
sequence for T1 and A if and only if is a singular sequence for T2 and
A). However, the result is not very useful in this form since too many
properties of T1 and T2 are explicitly assumed; usually only one of these
operators (the unperturbed one) is known accurately. In what follows we
give conditions that imply the assumptions of Theorem 9.6. First we need
some preparation.

Let H1, H2, and H3 be Hilbert spaces. Let A be an operator from H1 into
H2. An operator B from H1 into H3 is said to be A-compact if 0(A) C 0(B)
and B, as a mapping from (0(A), . into H3, is compact. If A is
bounded and D(A) = H1, then it is obvious that B is A -compact if and only
if B is compact (since the norms . and are then equivalent).

Proposition. If A is an A 1-bounded operator and B is A -compact, then B is
also A 1-compact. If A is densely defined and closed, then B is A-compact if
and only if B is (A -compact.

PROOF. Any II
. (A 1-bounded set is also . Consequently,

every II . ((A1-bounded set is mapped by B onto a relatively compact set.
The second assertion follows from the equalities 0(A) = O((AI) and I! .

If B is an A -compact operator, then B, as an operator from
(D(A), . into H3, is bounded, i.e., B is A-bounded. In fact, much
more is true.

Theorem 9.7. Let A be an operator from H1 into H2, and let B be an
A-compact operator from H1 into H3. If A or B is closable, then B is
A -bounded with A -bound zero.
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PROOF. Let us assume that the A -bound of B is positive. Then there exists
an >0 with the property that for every n E there is an e 0(A) such
that + (we can choose any positive number c that is
less than the A-bound of B). If we put = then 1 and

c(ll g,jl + nil + < 1

for all nEI%I such that n >c. It follows from this that and
+ < 1/c.

First let B be closable. As B is A-compact, there exists a subsequence
of (ga) for which E H3. The formula = 1 implies

lihil = 1. This is a contradiction because of and the closability of B.
Now let A be closable. Without loss of generality we can assume that

D(B) = D(A). By Theorem 6.2 the operator B can be extended to an
A-compact operator B on 0(A). Consequently, we can assume without loss
of generality that A is closed. Since < i/c, there exists a sub-
sequence of (ga) such that h E H2 (cf. Theorem 4.25). Hence,

(0, h)= w Ago) E G(A)= G(A), and thus h = 0. It follows by
Theorem 6.3 that —*0, which contradicts the equality

B B is A -compact if and only if it is (A + B)-
compact.

PROOF. Let B be A-compact. Since 0(A) c D(B), we have D(A + B)
= D(A)c 0(B). By Theorem 9.7 there is an a >0 such that IlBf II <aIlfil +
lAf 11/2 for alif E 0(A). Consequently, for all f E 0(A)

IlAfil < 2(ilAfII — IlBfiI + aIifll) < + B)fIi + aIIfii),
i.e., A is (A + B )-bounded. The (A + B)-compactness of B follows by the
above proposition. We can prove similarly the other direction. 0
Theorem 9.8. Let A be a closed operator from H1 into H2, and let B be an
operator from H1 into Then the following assertions are equivalent.
(i) B is A - compact.

(ii) and imply that
If A is seif-adjoint on H1 and E denotes its spectral family, then these
assertions are equivalent to

(iii) BE(J) is compact for every bounded interval J, and B is A -bounded with
A-bound zero.

PROOF. (i) implies (ii): If 0 and 0, then

=

for all g E 0(A), i.e., weakly tends to zero in the Hilbert space
(0(A), It follows from this by Theorem 6.3 that

(ii) implies (i): Let be a weak null-sequence in (0(A), <. , i.e.,
assume that g> + h>—*0 for all (g, h) E G(A). By Theorem 6.3 it
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is sufficient to show that tends to zero as Since <fe' g> +
h> = 0 for all (g, Ii) E G(A)', we have

+ forall (g, h)EH1EF3H2.

It follows from this that f,, 0 and 0, and thus (because of
(ii)).

(i) implies (iii): By Theorem 9.7 the operator B is A-bounded with
A-bound zero. Let be a bounded sequence in H1. Then the sequence

is also bounded, because

= f sup(t2 : t EJ}.

Consequently, is a bounded sequence in (D(A), <. , and by
(i) there exists a subsequence for which (BE(J)fflk) is convergent.
Hence, BE(J) is compact.

(iii) implies (i): Let (f,j be a weak null-sequence from (D(A), <. ,

i.e., assume that g> + for all (g, h) E H1 H1 (cf. the "(ii)
implies (i)" part of the proof). Then 0, and thus B(E(N) — E( —

N >0. Since 'the A-bound of B is equal to 0, for every >0
there is a C >0 such that

+ for all JED(A).

Therefore, for all n E and sufficiently large N

and thus
lim sup c urn sup

n—*oo

Since the sequence is bounded and since >0 was arbitrary, it
follows that Consequently, B is A-compact. 0

Now we can prove an old result that is essentially due to H. Weyl.

Theorem 9.9. Let T be a self-adjoin: operator on the Hubert space H, and let
V be a symmetric T-compact operator. Then T + V is self-adjoin:, T and
T + V have the same singular sequences, and Ge( T) = Ge( T + V).

PROOF. By Theorem 9.7 the operator V is T-bounded with T-bound 0.
Therefore, T+ V is self-adjoint by Theorem 5.28. V is also (T+ V)-
compact by the corollary to Theorem 9.7. Now it follows from Theorem
9.8 that T1 = T and T2 = T+ V satisfy the assumptions of Theorem 9.6(b),
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just as T1 = T+ V and T2 = T do. Consequently, T and T+ V have the
same singular sequences, and Ge(T+ V)= ae(T). 0

In applications (particularly to differential operators) it is important that
the assumptions of Theorem 9.9 can be somewhat weakened. First we
prove some preparatory theorems.

Theorem 9.10. Let T be a seif-adjoint operator on H such that p( T) 0, and
let p >0. An operator V is T"-compact (respectively T"-bounded) if and only
if V(z — T) is compact (respectively bounded) for some (and then for all)
z Ep(T).

(The operators T" and (z — T) are defined with the aid of the spectral
theorem by the formulae T" = dE(t) and (z — = f(z — t)" dE(t),
where and — are chosen to be continuous on a(T).)

PROOF. We obviously have D(T") = D((z — Tfl; the and the
(z — Tv-norm are equivalent. Consequently, V is T"-compact (T"-
bounded) if and only if it is (z — Ti-compact ((z — Since
(z — D(T")

is and only• if V(z — T)" is compact
(bounded). 0
Theorem 9.11. Let T be a self-adjoint operator with spectral family E, and let
V be a T-bounded operator. Then
(a) V is T"-bounded with T"-bound zero for all p> 1.
(b) If V is T"-compact for some p > 0, then VE(J) is compact for every

bounded interval J.
(c) If VE(J) is compact for every bounded interval J, then V is T"-compact

for every p> 1.
(d) V is T-compact if and only if it is T2-compact and T-bounded with

T-bound zero.

PROOF.

(a) There are numbers a, b > 0 such that
I

Vf I
I

a f + b I Tf I for all
fED(T). We have D(T")cD(T) forp>l, and thus

VfII < II v(E(N) — E( — N))fII + V(I — E(N) + E( — N))fII

( + bNIlfIl + aIIfIJ + bJIT(I—E(N)+E(—N))fII

(2a+bN)JIfII

f E D( T") and N 0. Since N can be chosen arbitrarily large,
the assertion follows from this.

(b) Let (f,,) be a bounded sequence. Then is a bounded sequence
in <. , Since V is T"-compact, there exists a subsequence
(E(J)fflk) for which ( VE(J)fflk) is convergent. Hence, VE(J) is compact.
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(c) The operator

is compact for every N 0, and

V(1 + E(N) + E(- N))II V(1 + ITIY'II(l +

Consequently, V(1 + I = V(l + I — E( — N)),
and thus V(1 + I is V is therefore T"-compact by
Theorem 9.10 and the proposition preceding Theorem 9.7.

(d) This follows from Theorem 9.8 and parts (b) and (c) of this theorem. 0

Theorem 9.12. Let T1 and T2 be seif-adjoint operators and assume that
D(T1)= D(T2). Put V= T2— T1.
(a) V is if and only if it is Ti-compact.
(b) If V is (or then (z — T1)2 — (z — T2)2 is

compact for eveiy z E p( T1) n p( T2).

(c) If V is then for eveiy T1-bounded operator W we have the
following: W is if and only if ills

PROOF. Write = (z
—

7,)-'for z E p(T1) n p(T2). Then the operators
are bounded forj 1, 2. (If H is real and a(T1) U a(T2) = then H must
be complexified in order that we may have p(T1) n p(T2) 0.)
(a) If V is then VR is compact by Theorem 9.10. It follows

from the resolvent identity R2 — R1 = R1 yR2 = R2VR1 that

R? = (R1 + R2VR 1)(R1 + R1VR2) = (1+ VR2), (9.6)

and thus

= (1+ VR2). (9.7)

It follows from this that V is Ti-compact.
We can prove similarly the reverse direction.

(b) Let V be (9.6) implies that

- = + VR2)

=[(z*_ T2)'V(z*_ T1)2]* + R2VR?(I+ VR2);

here we have used the equality

(z* — T2)' V(z* — = g>

for all f, g E H. As V(z* — T1)2 and are compact, the compact-
ness of — follows.

(c) Let W be Then WR is compact. It follows from (9.6)
that

= (wR?+ VR2).
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As WR? and yR12 are compact, W is
Ti-compact. We can prove similarly the other direction. 0

Theorem 9.13. Let T be a self-adjoint operator on H, and denote its spectral
family by E. Assume that V is symmetric, 0(T) c D( V), and T + V is
seif-adjoint. Assume, furthermore, that VE(J) is compact for every bounded
interval J (this condition can be replaced by the following: V is T"-compact
for some p > 0). Then T and T + V have the same singular sequences. In
particular, = (Je(T+ V).

PROOF. It follows from the assumptions that V is T2-compact, and thus
also (T+ V)2-compact by Theorem 9.12. Therefore VE'(J) is also compact
for every bounded interval J, where E' denotes the spectral family of
T + V. The assumptions of Theorem 9.6(b) are therefore satisfied for
T1= T, T2= T+ V and for T1= T+ V, T2= T. If V is T"-compact for
some p 0, then the compactness of VE( J) follows from Theorem 9.11(b)
for every bounded interval J. [ii]

The assumptions of Theorem 9.13 do not guarantee that T + V is
semi-bounded in case T is semi-bounded.

EXAMPLE 1. Let T be a semi-bounded seif-adjoint operator with discrete
spectrum, i.e., assume that there exist an orthonormal basis : n E
and a sequence (An) for which oo and

0(T) = {fEH:

Tf= for fED(T).

Furthermore, write V = —2 T. Then V is T-bounded and — T = T + V is
self-adjoint. Since the space R(E(J)) is finite-dimensional for every
bounded interval J, the operator VE(J) is compact. Consequently, all
assumptions of Theorem 9.13 are satisfied, T is bounded from below, and
T+ V is not bounded from below.

The following theorem studies the behavior of gaps in the essential
spectrum of T in the case of a non-negative T2-compact perturbation.

Theorem 9.14. Let T be a seif-adjoint operator on H such that fl (a, b)
=0. Assume that the point b is not an accumulation point of those eigenval-
ues of T that belong to (a, b). Assume, furthermore, that V is symmetric,
non-negative, T2-compact and T-bounded with T-bound < 1. Then Ge( T + V)
fl (a, b) =0, and b is not an accumulation point of those eigenvalues of
T + V that belong to (a, b). (If V ( 0, then a similar result holds for the point
a.)
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PROOF. We only have to prove the second assertion. We can assume,
without loss of generality, that (a, b)=(— 1, 1). We use Theorem 7.25.

Since, by assumption, V is T-bounded with T-bound < 1, there exists a
c> 0 for which

c(IIfIl+lf(T+sV)fII) forall JED(T) and sE[0, 1].

Let s0 E [0, 1] be chosen such that 1 is not an accumulation point of
eigenvalues of T + s0 V belonging to (— 1, 1). By assumption, this holds for
s0 =0 in any event. Let E0 denote the spectral family of T + s0 V. Since
ae( T + s0 V) n (— 1, 1) = 0 (cf. Theorem 9.13), E0( 1 —) — E0(O) is of finite
rank.

For alifE D(T) we have

< + IKT+ soV)flt) < + IT+

It follows from this by Theorem 9.3 that

<f, Vf> < 2c<f, (1 + IT+ s0VI)f> for f E 0(T),
and thus

<f, Vf> 2c<f, (1 — T — V)f> for f E R(E0(0)) ii D( T).

If s >s0 and s — s0 (l/4c), then T+ sV= (T+ s0V) + (s — s0)V is self-
adjoint and

(T+sV)f> = (T+s0V)f> + (s-s0)<f, Vf>

<f,(T+s0V)f>+(1/4c)<f, Vf>

= (T+soV)f> + <

f E R(E0(0)) n 0(T). It is obvious that

<f, (T+sV)f> > <f, (T+soV)f> >

forfE R(I— E0(1 —))n 0(T).
Since R(E0(1 —) — E0(0)) is finite-dimensional, Theorem 7.25 implies the

following: The interval 1) contains at most finitely many points of the
spectrum of T+ sV, and thus 1 is not an accumulation point of the
eigenvalues of T+ sV from (— 1, 1).

If we choose mE such that m> 4c, and = 1/rn, then in this way we
can prove the assertion step by step for T+2jiV,. .., T+rn4aV=
T + V, starting with s0 =0. D
REMARK. In Theorem 9.14 the T-boundedness of V with T-bound < 1 is
not necessary. Instead, it is enough to assume that V is T-bounded and
T+ sV is seif-adjoint for all s E [0, 1]. For the proof see the technique used
in Theorem 9.2.
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EXERCISES

9.3. Let T1 and T2 be seif-adjoint such that D(T1) D D(T2).
(a) If T1 has a pure discrete spectrum, then so does T2.
(b) If (AJ')) and {AJ2)) are the eigenvalues of T1 and T2, respectively (each

eigenvalue counted according to its multiplicity), then > + b for
all j, with appropriate numbers a >0 and b > 0.
Hint: Use the equality (i — = (i — T2)'(i — T1)(i — T1)', the
boundedness of (i — T2) '(i — T1), and (7.3).

9.4. Let T be self-adjoint, and denote by E its spectral family. If V is T-bounded,
and VE(J) is compact for every bounded interval J, then V is f( T)-compact
for every E-measurable function f such that It — 'f(t)I = 00.

9.5. For a normal operator A let us define the essential spectrum Ge(A) to be the set
of accumulation points of a(A) plus the set of eigenvalues of infinite multiplic-
ity. (This definition extends the definition for seif-adjoint operators.)
(a) A E Ge(A) if and only if there exists a sequence from D(A) such that

lim and is a singular sequence for
A and A).

(b) If A1 and A2 are normal, D(A = D(A2), and p(A 1) n p(A2) 0, and if
A1 A2 is A f-compact for some p >0, then Ge(A 1) C Ge(A2).

(c) Let T1 and T2 be normal. If Ge((Z T1) ') Oe((Z — T2) 1) for some
z Ep(T1) n p(T2), then Ge(Ti) = Ge(T2). If (z — T1)' — (z — T2) 1 is com-
pact for some z Ep(T1) n p(T2), then Ge(Ti) = Ge(T2).

(d) With the aid of (c) and Theorem 8.10 prove that all seif-adjoint extensions
of a symmetric operator with finite defect indices have the same essential
spectrum.

9.6. Let T be a seif-adjoint operator such that (a, b)n G(T) =0 or (a, b)n Ge(T) =
0. If V >0 is symmetric, D(T)cD(V), T+ V is seif-adjoint, and Vf> <
— Tf> + (a + n)IIf 112 for all f C E(a)D(T) with some — a, then (a +

b) n c(T+ V) = 0 or (a + b) n Ge(T+ V) = 0, respectively. This holds in
particular if V is bounded, symmetric, and 0< V
Hint: Use Theorem 7.25.

9.7. Let H be a Hubert space, and let A be an unbounded linear functional on H.
(A is a non-closable operator from H into K.) A is A-compact; however, the
A -bound of A equals 1. (In Theorem 9.7 the assumption that A or B are
closable cannot be dropped.)

9.3 Strong resolvent convergence

If T are seif-adjoint operators on the complex Hubert space
H, then we say that the sequence (Ta) converges to T in the sense of the
strong resolvent convergence if (z — .4 (z — T)' for some z E C \
Then this holds for all z E C \ on the basis of the following theorem.



9.3 Strong resolvent convergence 283

Theorem 9.15. Let T be seif-adjoint operators on the complex
Hubert space H. If (z0 — (z0 — T)' for some z0 E C \ then

(z— T)'for allzEC\R.
PROOF. If zEC and z—z01<IImz0I, then by Theorem 5.14 we have

(z— (z—

f E H. Therefore,
N

II(z- (z- Izo -
k=O

- (zn- + 2 - zIkIIm
k>N

for every N E The second sum will be arbitrarily small if N is chosen
large enough. The first sum tends to 0 for fixed N as since
(z0 — (z0 — T)_k_ I. Consequently, the assertion follows for all
z E C such that Iz — z0j <urn An iterative application of this step
provides the assertion for all z in the half-plane where z0 lies. The limit
relation (z— T)' implies that (z*_ T)' and
(as (z — and (z — T)' are normal) that

II(z* - = IKz - I(z - = II(z* -
Therefore, for all f E H

- (z* -
= IKz*_ TY'f112-2 Re<(z*_ (z*_ T)'f> + I(z*_ T)'f112

I(z* - T)'fJJ2 -2 Re<(z* - (z* - + - T)'f!12
=0.
Hence, the assertion holds for all z E C \

Now we prove a few sufficient conditions for strong resolvent conver-
gence.

Theorem 9.16. Let E and T be seif-adjoint operators on the complex
Hilbert space H. The sequence (Ta) converges to T in the sense of the strong
resolvent convergence if one of the following assumptions is satisfied:

(i) There is a core D0 of T such that for every f E D0 there exists an n0 E
with the properties that f E D( for n n0 and TJ—4 Tf.

(ii) The operators T and T.
(iii) D( T) for all n E and there are null sequences (an) and (ba)

such that

J(T— + TfJI for all f E 0(T).
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(iv) G( T) = G( Ta), i.e., G( T) is the set of those elements (f, g) from
H H for which there exists a sequence (fr) such that E and

g) (graph convergence).

PROOF.

(i) We have

(i- (i-
as n—*oo

for alifE H such that (i— As D0 is a core of T, the set of
these f is dense in H. Therefore, (i — Ta)' (i — T) 1 by Theorem
4.23.

(ii) or (iii) implies (i); these cases are therefore also proved.
(iv) It obviously follows from the formula G( T) = G( that

G(i — T) = G(i — Ta). Let g E H be arbitrary. Then there is an
f E D( T) such that g = (i — T)f. Furthermore, there is a sequence
for which f,, E and (i — — T)f= g. Due to the
inequality I(i — < 1 it follows from this that

ll(i — T) 'gil < li(i — 'g — + — (i —

= iI(i— (i— + —fit
0.

Therefore, (i— Ta)' T)'. D

Theorem 9.17. Let (n E and T be seif-adjoint operators on the complex
Hi/bert space H, and assume that (i — Ta)' (i — T) Then u(T)
for evety continuous bounded function defined on FL

PROOF. First we assume that the limits exist, and
= 0u(t). These are the functions that can be considered as continu-
ous functions defined on the Alexandroff-compactification of FL We
consider the space with the maximum norm. The polynomials in
(i — t)' and (— i — 1 can be considered as elements of The set P
of these polynomials has the following properties: (i) the constant func-
tions lie in P, (ii) the elements of P separate the points of (i.e., for
x, y E such that x there exists a u E P for which

u E P, then E P. By the complex form of the Stone-Weierstrass
theorem (cf. Hewitt- Stromberg [18], Theorem (7.34)) P is therefore dense in
C(R). Consequently, for every u E there exists a sequence (Urn) from
P such that max,ERJu(t)— as

Now let f E H and >0 be given. Then there is an in0 E such that
Iu(t)— Urn(t)I for all t E and m > in0. As Um(t) is a polynomial
in (i — t) —' and (— i — t) ', we have

as
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for all m E Consequently, there exists an n0 E such that

IIUmo(Tn)f Um(T)f for n > n0.

Hence, it follows for n > n0 that

u(T)f II +

since — and IIu(T) —
Therefore, u(T).

Now let u be an arbitrary continuous and bounded function defined on
Let be a sequence of continuous functions with compact supports

that tends to 1 non-decreasing. Then

= - fl2 as m -*00

for every f E H. Because of UfPm E we have

as n —* 00

for every m E by the first part of the proof. For all n, m E

u( Tn) H + IJU(Tn)pm(T)f

+ — + — u(T)fIJ

< Iki(Tn)I! (Pm(T)fIt ±

u( IkPm( T)f — (Pm(Tn)f H + Iu( Tn)cpm( — u(

The first two terms on the right side will be small for sufficiently large m
(observe that :t E The last two tenns will be
small for fixed m if n is chosen sufficiently large. Consequently, the
assertion is proved. 0

Now we can prove, in particular, that the unitary group induced by a
seif-adjoint operator depends on this operator continuously in the strong
sense.

Theorem 9.18. Let T be seif-adjoint operators on the complex
Hubert space H. Assume that (i — Ta)' (i — TY
(a) for all t E
(b) If T,, and T some then we also have for

all t>O.

PROOF.

(a) The function is continuous and bounded on R. The assertion
therefore follows from Theorem 9.17.
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(b) With u(s) = e tS for s y and u(s) = e
- ty for s <y we have u( T) = e tT

and u is continuous and bounded,
Theorem 9.17 can be applied again.

Now we shall investigate the influence of the strong resolvent conver-
gence on the spectral family.

Theorem 9.19. Let 1,(n E and T be self-adjoint operators on the complex
Hi/bert space H, and assume that (i — Ta)' (i — T)'. If E

and T, respectively, then, as n —* 00,

E such that E(t) = E(t —).
E(t)

PROOF. Assume that E(t) = E(t —). Let (cpm) respectively be non-
decreasing respectively non-increasing sequences of continuous functions
such that 11(s), kPm(5)I 1, and I

for all s E Then for all f E H

l(cm(Tn) — — ))f112

= f — as m 00

(Lebesgue's theorem). Therefore,

—).

It follows similarly that

'Pm(

E(t)

and

E and every
and X(- for which

we can choose p = and = with a sufficiently large m0. By
Theorem 9.17 there is an n0 E such that

forall n > n0.

We therefore have

II
for all n > n0.
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Since
1/2

IIE(t)f- =

1/2

<{ - ço(s)I2 dfIE(s)f112}

=

and

<

we obtain that

IEO)f—

< ME(t)f— p(T)fII + f cp(T)f — +

< IkP(T)f— + +

forall n n0.

It follows similarly that

II
for all n > n0.

D

It is worth noting that the results of Theorems 9.5 and 9.19 are not
comparable. It is clear that a(T) = does not imply E(t) =
s —

Conversely, from E(t) (for all t E R) we cannot infer
a( T), as the following example shows.

EXAMPLE 1. Let H be a separable infinite dimensional Hubert space, and
let (em m E } be an orthonormal basis of H. For every n E let be
the orthogonal projection onto L(em : I <m <n). Then I as
The spectral family of is given by the equality

0 for t<0,
= I— T, for

I for

t E where E denotes the spectral family
of I, i.e.,

E(t) fO for 1<1,
for t>1.

On the other hand, = (0, 1) for all n E while a(I) = (1) (cf. Exer-
cise 7.41).
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EXERCISE

9.8. Let H be a real Hubert space, and let T and E N) be seif-adjoint
operators. Assume that one of the assumptions (i)-(iv) of Theorem 9.16 is
fulfilled.
(a) For the spectral families E and T, respectively, we have

E(t) E such that E is continuous at I.
(b) If there exists a yER such that T>y and for all nEN, then

for all t >0.
Hint: Complexify.



Differential operators on

10

10.1 The Fourier transformation on

In what follows we shall use so-called multiindices. A multiindex (of m
components) is an m-tuple a = (a1,.. . , am) of non-negative integers E

j = 1, 2,. .. , m. The absolute value of a is defined by the formula

al

We set, for every x E
xa= llx?.

j= I

Correspondingly, we write

Da=
1=1 1 j=1

The space of rapidly decreasing functions (the Schwartz space) is
the vector space of arbitrarily many times continuously differentiable
functions f: for which we have the following: For every multiin-
dex a and for every p E there exists a > 0 such that

for all x E

It is obvious that this assumption can also be formulated in the following
way: For every multiindex a and for arbitrary p, q E there exists a

0 such that

(1 + lxlYl Daf(x)I çpq(l + for all x E Rm.

289
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This formulation shows that S(W) C for all p E[1, oo]. In particu-
lar, for all f E we can define the Fourier transformation F0 by the
integral

(F0f)(x) = dy,1

where

xy for x,y ERtm

Theorem 10.1. We have F0S(Rm) C S(W1). For every f E S(Rm) and every
multiindex a

DaFO f = (_l)I a Ma F0 f = F0 Daf,

where (Maf)(x) =

PROOF. It is easy to see that the function

(F0f)(x) = dy

is arbitrarily many times continuously differentiable. The differentiation
can be done under the integral sign, i.e.,

Da(F0f)(x) = (2w) _m/2( — l)Hf y af(y)] dy.

It follows from this for any multiindex /3 that

xP(DaF0f)(x) = dy

= l)IaPfe_ixY dy.

Since is in S(Rm), too, x4G(DaF0f)(x) is bounded for all a and /3.
Therefore, F0f E S(Rm), and

= (—

Both formulae follow from this. 0
Theorem 10.2. The function R defined by the equality

= for all x E Rm

is in S(Rm). We have =

If no domain of integration is indicated, then the integral always is to be taken over
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PROOF. The reader can easily verify that E To prove that =
we first consider the case m = 1. In this case we obviously have the first
order differential equation

&'(x) + = 0.

It follows from this by Theorem 10.1 that

+ = — = = 0,

i.e., satisfies the same differential equation as Due to the equalities

= (217) -I/2J'o() dx = I =

we obtain that = The result can be derived for an arbitrary m by
taking products. 0
Theorem 10.3. The Fourier transformation F0 is a bijective linear mapping of

onto itself. We have
= dy, g E S(Rm).

Moreover, (F0f)(x) = (F0 'f)( — x)for every f E S(Rm), and we have = I.

PROOF. For all f, g E S(Rm)

f dy = (217)_m/2fg(y)eixYfe_IYZJ(z) dz dy

= (217)
_m/2ff(z)fe_i(z_x)Yg(y) dy dz

= ff(z)(F0g)(z - x) dz

= f (F0g)(z)f(z + x) dz.

With g(€x) g E and >0 that

(F0gj(x) = dy

= dy

=

therefore,

f dy =

f + x) dz

= dz

= I (F0g)(z)f(€z + x) dz.
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If we replace here g by the function from Theorem 10.2, then it follows
for (as = and = 1) that

m/2feixY(Fof)(y) dy = m/2feixY(Fof)(y) dy

= lim dy

dy

= O(y) dy = f(x).

It follows from this that F0 is injective and F0 has the given form.
Moreover, for all f E

= dy = f(- x),

and thus i.e., Ft— I. Since R(I)=
the mapping F0 is surjective. 0

In what follows we consider F0 as an operator on such that
0(F0) =

Theorem 10.4. We have = and = lifli for a/If E S(Rm)
(here

II .
denotes the norm in L2(Rm)). F0 and possess uniquely

determined extensions F and F belonging to B(L2(Rm)). The operators F and
F are unitary, and F= F* = We have F4 = I. The operator F is called
the Fourier transformation on

PROOF. Forf, g E S(Rm) we have

<f, g> =

f dx} dz} dy = <F0f, F0g>.

In particular, IIF0fIl = and thus 11F0 = If II. Since is dense
in (as c there exist uniquely determined exten-
sions F and F of F0 and from We obviously have
11Ff II = 11Ff II = IIfIl for all fE 1ff, gE and (fr), are
sequences from such that and then

<Ff,g> = = = <f,Fg>,
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i.e., F* = F. Moreover,

FFJ = tim = tim = urn f,n —* —*

i.e., FP= I. We can prove similarly that PF= I. Therefore, F= F', and
thus F is unitary. From F = I it follows that F4 = I. D

The mappings F0 and can be extended to in a natural way.
These extensions F1 and F1 are defined for f E by the formulae,

(F1f)(x) =

(2 dy.

It is easy to see that F1 f and F1 f are continuous functions such that
I(F1f)(x)J and I(Fif)(x)I for all XE

Theorem 10.5. The mappings F1 and F1 of into the space of
continuous bounded functions defined on are infective. For f E

we have

(F1f)(x) = (Ff)(x) and (P1f)(x) = (F'f)(x)
almost everywhere in

PROOF. Take an f from for which F1f= 0 (i.e., (F1f)(x) 0 for all
We have to prove that f= 0. It follows from the equality F1 f=O

that

ff(x)(Fog)(x) dx = dy dx

= f g(y)(F1f)(y) dy = 0

for all g E Since F0 g runs over the whole space

ff(x)h(x) dx = 0

for all h E Then this holds also for all continuous functions h
defined on and having compact support. Define K(n) = {x E lxi

n) for n E 1ki, let be the characteristic function of K(n), and define

sgnf(x) = [f(x)lf(x)i-' for
for f(x)=O.

Then sgnf is measurable, 1, and there exists a
sequence (hi) of continuous functions with supports in K(n) such that
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almost everywhere in K(n). We can assume without loss of
generality that < 1 for all x E K(n) (since we can replace by

for those x E K(n) for which 1). Consequently,

f If(x)I dx = lim f
f(x) =0 almost everywhere in K(n). As this holds for all n E

we have f(x) =0 almost everywhere. F1 is then injective. The injectivity of
F1 can be proved similarly.

1ff E L1(LJRm)n then in L1(Rm) and in
For every n E there exists a cp,, E such that

- dx
nV(K(n))'

and thus

(f - dx V(K(n))f -
K(n) K(n)

/
\1/2

\nJ
where V(K(n)) denotes the volume of K(n). Consequently, in
and in Therefore,

(F1f)(x) = dy

and

(Ff)(x) = dy.

Here "l.i.m. = limit in mean" stands for the limit in Hence, (Ff)(x)
= (F1 f)(x) almost everywhere. We can prove in a similar way that
(F 'f)(x) = (F1 f)(x) almost everywhere.

Theorem 10.6. For all f E

(Ff)(x) = dy.
K(n)

A similar formula holds for F1.

PROOF. The functions belong to L1(Rm) and in
L2(Rm). Therefore, in Since by Theorem 10.5

= dy, almost everywhere in
K( n)

the assertion follows.
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For f, g E the convolution f * g is defined by the integral

(f* g)(x) dy.

The integral exists for all x E because f(x —. ) E and g( . ) E
implyf(x —. )g( . ) E (For the convolution of L1-functions,

see Exercise 10.1.) Moreover,

(f * g)(x) = -y)g(y) dy

= dy = (g *f)(x).

Theorem 10.7 (The convolution theorem). For f, g E L2(llr)
(a) F1 (Ff• Fg) = F1 (F - 1f. F - 'g) = f * g.
(b) The following assertions are equivalent:

(i) Ff. Fg E L2(DRm),
(ii) F'f
(iii) f * g E L2(W').
In this case

PROOF.

(a) F1(Ff Fg)(x) = <(Ff)*, h(x, .)> with

h(x,y) =

—m I —iy(z—x)= (2ir) 1.i.m. j e g(z) dz
K(n)

= dz (27,)_m/2(Fg)(y)
K(n)

where g(z + x). Moreover, let us set f(x) =f(— x). Then it is
obvious that (Ff)* = and thus

Fg)(x) = = g>

= — z)g(z + x) dz = (f * g)(x).

We can prove analogously that F1(F - 'f• F - 'g) =f * g.

(b) If Ff Fg E then in the formula f * g = F1(Ff. Fg) we can
replace the operator F1 by F ' and obtain that f * g E L2(Rm) and
f * g = F '(Ff. Fg). If f * g E then with h1 = Ff Fg E
L1(IRm) and h2 = F(f * g) E we have

(P1h1)(x) = (f * g)(x) = (F'h2)(x) almost everywhere.
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We show that h1(x) = h2(x) almost everywhere, and thus Fg = h1

E To prove this it is sufficient to prove that f(h1(x)
h2(x))p(x) dx =0 for all p E (cf. the proof of Theorem 10.5).
This follows from the equalities

f h1(x)p(x) dx = fhi(x)(Fo_1Foq)(x) dx

= f (P1h1)(x)(F0co)(x) dx

= f dx

= <(F_1h2)*, Fcp> = 'p>

= f dx.

The equivalence of (i) and (ii) and the second equality follow from the
formula F(h) = (F — 'h)_.

EXERCISES

10.1. The convolution (f * g)(x)= (2.,rym/25f(x —y)g(y) dy is defined almost
everywhere for all f, g E and is a function from L1(tIr). We have
F1(f*g)—(F1f) (Fig).

10.2. 1ff and F1f are from thenf= P1(F1f).

10.3. (a) For fE and a E Rm let fa be defined by the equality f0(x)=
f(x + a). Then (Ffa)(X) =

(Ff)(x) 0 almost everywhere in Then the set
(fa : a E is total in L2(Rm) (Wiener's theorem).
Hint: If gi. (fa : a E Rm}, then Fg) = 0.

(c) Let be as in Theorem 10.2. Then the set : a E is total in
L2(Rm).

10.4. We have (F1f)(x)—*0 as for everyfE L1(Rm) (Riemann-Lebesque).
Hint: is dense in L1(IW'), and in implies
uniformly in Rm.

10.2 Sobolev spaces and differential operators
on with constant coefficients

In what follows, for all s > 0 define

= (1 + for x E Rm
and

=
: kJEL2(Rm)}.
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L2, is obviously a dense subspace of The equality

g>(5)
= ff(x)*g(x)k5(x)2 dx for f, g E

defines a scalar product on L2, We denote the corresponding norm
by The space <. , is a separable Hubert space, since

U5: UJ= /çf
is an isomorphism of onto

The Sobolev space of order s is defined by the equality

w2,5(Llr) = : FIEL25(Rm)} = F_1L2,5(iJr).

W2 is therefore a dense subspace of L2(W'), and the equality

<f,g>5=<Ff,Fg>(S) for

defines a scalar product of W2 We denote the corresponding norm
by II .

Since F is an isomorphism of onto L2,5(Rm), the space
W2, is also a separable Hubert space.

First we show that the functions from W2, are differentiable in a
certain weak sense.

Theorem 10.8.
(a) Let 5> 1, = •

= and fJ,((x) =
f(x + for j = 1, 2,.. . , m. Then for all f E W2, and j =

MJFJ
1€

in If f E then this limit equals D7 with a =
.

We write f E W2, 5(Rm), as
well.

(b) If a is a multiindex and a s, then the derivative can be computed
by iteration. The order of differentiation is irrelevant.

(c) Ifs E then
1

is equivalent to the norms

( (

= 11f115,1 + lDafII2J

PROOF.

(a) For all x E Rm

F( _f))(x) = — l)(Ff)(x),

1)1 <(1 + 1x12)5/2,
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and

ii asJ

It follows from this that —f )—*M1Ff, and thus

By Theorem 10.1 this limit is equal to f
al = 1, then it is obvious that F Daf= xaFf E L2, Conse-

quently, E W2 If s 2, then by part (a) we can therefore
differentiate further. The commutativity of the order of differentiation
follows from the equality F 'MaFf.

(c) We have = If k5Ffff2,

= IIMaFfII2 and = IIFfII2 +
al—s

Since

1 + 1xa12 < Ci(l+fxJ2)5 C2
laHs Iaks

c3(i + max c3(i +
j=1,.. .,m als

with appropriate constants C1, C2, and C3 (that depend only on m and
s), all three norms are equivalent.

Theorem 10.9. Suppose f E W2, and a is a multiindex such that IaI <s.
(a) We have g> = lYg> for all g E W2
(b) The element E is uniquely determined by the equality

<Daf, g> = Dag> for all g E

PROOF.

(a) If g E W2,1a1(Rm), then Fg E and thus Fg belongs to the
domain of the operator of multiplication by x a• Therefore,

<Daf, g> = <F Fg> = <MaFf, Fg> = <Ff,
= <Ff,FDag> =<f,Dag>.

(b) By part (a) we have <Daf, g> = Dag> for every g E
c If fa is a further element from such that <fa' g>

Dag>, then <fa — Daf, g> =0 for all g E Therefore, fa =
since is dense in

Theorem 10.10.
(a) For every s 0 the set C0°°(Rm) is dense in with respect to the

norm II . IL.
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(b) For every s > 0 the set is dense in W2, with respect to the
norm H

PROOF,

(a) Suppose rE and r >s. We show that is dense in
with respect to r, since . ( C II II r, the assertion follows
from this. In order to prove the former statement, let E be
such that for t< I, for
t E fit For every n E let E be defined by the equality

for allxEtRtm. and we
for all n E then — as for every multi-

index a. It follows from this that —Ill,., as n—*oo.
(b) Because of part (a) we only have to show that S(Rm) is dense in

W2, Since F is an isomorphism of W2, onto L2, that
maps onto itself, it is sufficient to prove that is dense in
L2, This is surely true, as is dense in L2 (we can
prove this the same way as we did the corresponding assertion for
L2(Rm), cf. Section 2.2, Example 8). 0

An rn-variable polynomial P of degree r has the form

P(x) = caxa,

where Ca E C and Ca 0 for at least one a such that I = r. If P is a
polynomial of degree r, then the formula

m

P(D) = Ca = II
IaJ<r j=1

defines a differential form of order r. We always assume that r 0, i.e., we
only consider non-trivial differential operators. In what follows let P be a
(fixed) polynomial. The equalities

D(T0) = T0f = P(D)f for f E
define a differential operator on L2(Rm) with constant coefficients. If we
denote by the operator of multiplication by the function g, then the
following theorem holds.

Theorem 10.11. —

(a) T0 closable. For T = T0 we have T = F T is called the
maximal differential operator with Constant coefficients induced by P. The
operator is equal to the maximal differential operator induced by the
conjugate polynomial

(b) We have a(T)={P(x) : XE and (A— T)' = F1M(A_p).-IF for
A E p( T). The operator T has no eigenvalues.
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(c) If (1 + 'E then (A — T)' is a Carleman operator for every
A E p( T), and

(A— T)'f(x) = dy

with

=

PROOF.

(a) First we define T1 by the equalities

0(T1) = T1f = P(D)f for f E
Then T0 c T1 and T1 = F 1F, where denotes the restriction
of to (cf. Theorem 10.1). Since (as a restriction of a
closed operator) is closable, the operator T1 that is unitarily equivalent
to is also closable. Therefore, T0 is closable, also. Now we show

that T0 =T1 and It will follow from this that

T0 = T0 c T0 c T1. Consequently, it is

sufficient to prove that D(T1) = c 0(T0). For everyfE S(Rm) let
us construct, as in the proof of Theorem 10.10(a), a sequence from

such that — for all a. It follows from this that
— Consequently, fED(T0), and thus

D(T1)c 0(T0).
For this it is sufficient to prove that where

denotes the restriction of to In order to prove this
we have to show the following: For every f E = (f E

: Pf E L2(Rm)} there exists a sequence (fe) from such
that —>f and This can also be proved the same way as in
Section 2.2, Example 8 (cf. also the proof of Theorem 10.10(b)).

(cf. Section 5.1,
Example 1, (5.1)).

(b) Since T and are unitarily equivalent,

a(T) = {P(x) : xERm}.

For AEp(T)

(A—T)' =

=

Because of the assumption r >0, the set {x E : P(x) = s) is a null
set for every s E C Qroof!). By Section 5.2, Example 1, (5.14) the
operator therefore has no eigenvalue. Then the same holds for T.
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(c) Assume that (1 + E L2(Rm) and A E p(T), i.e., there is an >0
such that IA — P(x)l for all x E For all x E FV" such that
IP(x)! > + 1 we have the estimate

IA — lP(x)l — = — IA!) +

> = f(1+IP(x)l).
Consequently,

IA — 2(1 + IP(x)l)'

for x E such that (1 + IP(x)IY' + IAIY'.

Since, besides, IA — P(x)I 1 1 for all x E it follows that (A —
P) — 1E L2(IFr). The convolution theorem (Theorem 10.7) therefore
implies that

(A— T)'f= F'[(A—P)'Ff] = *f,

where = F — 1((A — P) Since E L2(Rm), the operator (A — T)'
is a Carleman operator. D

REMARK. In Theorem 10.11(b) the closure is superfluous for m = 1, as can
be easily seen. This is not true for m> 1, as the example of P(x1, x2) =
(1 — x1x2)2 + shows; in this case we have (P(x) : x E (0

Theorem 10.12. The following assertions are equivalent:
(i) All coefficients ca of P are real.

(ii) T0 is symmetric.
(iii) T0 is essentially seif-adjoint.
(iv) T is seif-adjoint.

The proof immediately follows from Theorem 10.11(a).

Theorem 10.13. Let T be a seif-adjoint differential operator with constant
coefficients induced by F, and let E denote the spectral family of T.
(a) For alisER

E(s) =

(b) If I P( x) I as x oo, then E( t) — E(s) is a Carleman operator for all
s, I E such that s I, and

(E(t) - E(s))f(x) = -y)f(y) dy,

where e51 = F'X{XERm :s<P(x)<t) E
(c) If P(x) oo as xl oc, then E(s) is a Carleman operator for all s E FL

The same holds for I — E(s) provided that — oo as IxI—>oo.
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PROOF.

(a) The first assertion is clear, since

F(s) MXfXERm :
for s E

is the spectral family of
(b) We have

E(t) — E(s) =

Since IP(x)I—*oo as the set (x ERtm : s <P(x) t} is bounded.
Therefore,

:
belongs to L2(Rm). The assertion then

follows from Theorem 10.7.
(c) If P(x) cc as xl cc, then { x E Rm : P(x) s } is compact, and thus

L2(Rm). If — oo as then : P(x)>s)
E L2(Fr). The assertion follows from Theorem 10.7 in both cases. 0

A polynomial P of degree r and the operators T0 and T induced by P
are said to be tic if there exists a C > 0 such that

1 + IP(x)l > C(l + = Ckr(x) for all x E Rm

(Observe that we always have 1 + P(x)( C'kr(X) with an appropriate
choice of C'> 0.) The part of P is given by

Pr(X) =
aI=r

Correspondingly, the principal part of P(D) is given by

Pr(D) = Ca
at = r

Theorem 10.14. Let P be a polynomial of degree r, and let T be the maximal
differential operator induced by P. Then the following statements are equi-
valent:

(i) P is
(ii) The principal part of P vanishes only for x =0.

(iii) 0(T) W2, (Rm)
In this case the norms II T and II II,. are equivalent.

PROOF. (i) implies (ii): Let us assume that there is an x0 E Rm, x0 0 such
that Pr(Xø) =0. Then we also have Pr(SXø) =0 for all s E R. Therefore,

lP(sxo)I = I
C(1 +

IaI<r

in contradiction with the ellipticity of P.
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(ii) implies (i): Let = min{IPr(x)I : x E Rm, IxI = 1). Then for all x

= + Ixlrui — c(l +

The ellipticity of P follows from this.
(i) implies (iii): We have

D(T) F f E L2(IRm) : Pf E

= F-l{JEL2(Rm) : =W2,r(Rm).
Since

= + 1
= + 112,

the equivalence of the norms I II T and f II r follows.
(iii) implies (i): We obtain from the equality D(T) = W2 that

= FD(T) L2,r(Rm) =D(Mkr)•

By Theorem 5.9 Mk is relatively bounded with respect to therefore
with respect to as well (since and

II =
The boundedness of Mk(l + i.e., the boundedness of the

function kr(l + follows from this by Theorem 9.9. Consequently, P
is elliptic. LI

Theorem 10.15. Let T be a self-adjoint elliptic differential operator with
constant coefficients on
(a) If m> 1, then T is semibounded.
(b) If T is bounded from below, then E(t) is a Carleman operator for every

PROOF.
(a) Since T is seif-adjoint, P is real-valued. As T is elliptic, P(x)I x as

Consequently, IP(x)I >0 for all lxi > c0. Because of the con-
tinuity of P it follows (due to the assumption m> 1) that P(x) >0 for
all jxI>co or P(x)<0 for all IxI hence or 00

as IxI—*oo. The boundedness from below or from above follows from
this.

(b) If T is elliptic and bounded from below, then we obtain (as in the
proof of part (a)) that as The assertion follows by
Theorem 10.13. LI

Corollary. Let T be a seif-adjoint differential operator on with
constant coefficients. Then
1. a(T)=Ror.i(T)=[y, oo)ora(T)—(—oo,y].
2. If T is elliptic and m> 1, then oo) or a(T)=(— oo, y].
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3. We always have
(cf. also Exercise 10.7).

EXAMPLE 1. m 1, P(x) = x, P(D)=(1/i)(d/dx). Then T is elliptic and not
semibounded; a(T)

EXAMPLE 2. m> 1, P(x) = = 1x12, P(D) — 2/3x2) = —

Then T is elliptic and bounded from below; a(T) = [0, oo).

EXAMPLE 3. m 2, P(x) = + 4, P(D) = — + Then T
is not elliptic but is bounded from below; a(T)= [0,

EXERCISES

10.5. Let f belong to W2, with s > m/2. Then f is Lipschitz with exponent
8 E(0, lJn(0, s—(m/2)), i.e., there exists a C >0 such that If(x)—f(y)I <

for all x,yERtm.

10.6. For such that r<m the set is dense in W2r(W").
Hint: If 0 E is such that 0(x)= I for 1/2 and for

I and 0(nx), then therefore, (1— in the sense of
W2 (cf. Exercise 4.25).

10.7. If P is a non-constant polynomial, then and have a pure
absolutely continuous spectrum.

10.3 Relatively bounded and relatively compact
perturbations

In this section we first give conditions in order that an operator
Mq: W2, be bounded or compact. For the sake of
simplicity, we only consider integers r; this is sufficient in most applica-
tions to differential operators. (Corresponding results for arbitrary r can be
found in M. Schechter [34], Chapter 6.)

Theorem 10.16. Let 0 s <r (not necessarily integral). Then for every >0
there exists a > 0 such that

> + f E

PROOF. The assertion is equivalent to the inequality

H fit(s) + f E L2,
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For all N >0 we have

Ifli(s) = f If(x)12(I + xI2Y dx

(1 + N2)5f If(x)12 dx + (1 + If(x)12(1 +1x12)r dx
Ix>N

<(I + + (1+

Due to the inequality s — r < 0, the assertion follows from this if N is
chosen large enough. D

A measurable function q: C is said to be locally square integrable
if E for every E This holds if and only if is
integrable over every compact subset of The set of locally square
integrable functions obviously constitutes a (complex) vector space. This
space will be denoted by L2, For every q E let us define

i
Nq(X) = f q(y)2 dy for all x E Rm

J

Nq is obviously locally bounded, i.e., it is bounded on every compact
subset. Nq is even continuous (proof!).

For every measurable function q : and every p E let us define
(the value oo is allowed)

1/2

for p<m,2

for p>m.

We denote by the vector space of measurable functions q :
for which Mq, .) is a locally bounded function. denotes the

subspace of those q E for which Mq is bounded. For
q E we set

Mq,p = sup{Mq,p(x) :

For all Pi' P2 E such that Pi P2 we have

c c L2,

(10.1)

if q E then we obviously have

M . (10.2)q,p2 q,p1

2 This definition goes back to F. Stummel [52] for p <4.

Nq(X)
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EXAMPLE 1. Every bounded measurable function belongs to for
every p>O.

EXAMPLE 2. Assume a E c > 0, and 0<6 <m/2. Assume, furthermore,
that the function q : is measurable and Iq(x)( — almost
everywhere in Then q E for all p > 26. This is obvious for
p > m, since q is locally square integrable and q(x)—>0 as JxI—. oo. Now
suppose that 26< p <m. Then

< y—a1281x

Ix—yl

<c2ff — aIP_28m dy +f Jx dy}

= 2c2f dy = C < oc.

Of course, sums of such functions also belong to

Theorem 10.17. Assume that r E and p < 2r.
(a) There is a constant C > 0 such that

kiIII <CMq,pIIfIIr for all q E andall f E

(b) For every q E and every >0 there is a C.q such that

IqfII forall fE

PROOF. Take a E such that = 1 and = 0 for lxi> 1, and
let E be defined by the equality

= - 'x) for E and s E (0, 1].

Let denote the unit sphere in Then for all f E s E(0, 1]
and

f(0) = = -f dt

= .

. fsa
dz1 . . . dtri dtr

= (— . dt4 dt1

(_l)t s

= (r— 1)! fo
dt.
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With

g(y) = = for y = 0 <1 s

we therefore obtain by integration over the unit sphere that

If(°)I Vm(r- 1)!
dt

= c1f dw dt = c1f dy,

where 17m denotes the area of and the area element on Since

= :

aI<r

we obtain for all >0 that

if (o)J2 c3f dyf dy
IYI<s

1Y12r_€_mn{ IDaf(y)12+s_2r dy.
1 kxl<r IaI<r

It follows similarly that for all s E

If(x)12 C4s€{f pDaf(y)(2dy
Ix—yI< 1

+s_2rf
Ix—yI<1

In order to estimate II
II

we distinguish between two different cases.
First assume that 2r > m. In this case, without loss of generality we can

assume on the basis of (10.1) and (10.2) that p >m. Furthermore, choose
€=2r—m. Then

f dx

x
I I

Daf(y)12+s2r dy
IaI<r
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Now let 2r<m. Then p<m. Choose We have

Daf(y)I2dy

Daf(y)I2dyT dx
)

<

In both cases we obtain assertion (a) for f E provided that we
take, for example, s = 1.

Since by Theorem 10.16 for every /L >0 there exists a 0 such that

( +

assertion (b) follows for all f E in both cases provided that first s
and then is chosen small enough.

If f E W2, then there exists a sequence from for
which in the sense of W2, ,.(Rm). Since the sequence then
converges tof also in L2(Rm), there is a subsequence (fflk) that converges to
f almost everywhere. Then this holds for and qf, as well. Since the
sequences ffl It r) and (It II) are bounded, (II II) is also bounded and
Fatou's lemma implies that qf E and

(
lim inf dx

=

= +

We can prove assertion (a) forf E W2, ,(!Ir) similarly. 0
Using this result, we can now give conditions for the relative bounded-

ness and relative compactness of the perturbations of a closed operator T
such that D(T) C W2,

r T a closed operator on such that
D(T) C W2, Let V be an operator on L2(llRm) such that

D(V) Vf= for fE

Let the functions be measurable, and assume that is bounded for I a = r,
xEllr2)=c, with pa<2(r—IaI)for Ia<r.

Then V is T- bounded. If II f I,. d Tf II + e f for all f E D( T), then the
T-bound of V is less than or equal to dc. If =0 for

I

a = r, then the
T-bound of V is equal to 0.
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PROOF. If Mk, is the operator of multiplication by kr = (1 .

and i = F - then T,. is a seif-adjoint operator on L2(Rm) and
D(Tr) = W2, By Theorem 5.9 the operator 1 is T-bounded, i.e., there
exist contants d and e such that 1.f II + for ailfE 0(T). Let

and V0=
IaIr aI<r

We obviously have

H Cliflir = Trf H TfII +

It is therefore sufficient to show that for every >0 there exists a > 0
such that

II < + f E W2,r(Rm).

Since E W2, (because MaFJ E L2, r_1a1(Rm)), by Theorem 10.17
for every >0 there exists a 0 such that for all

I
aI <r and f E

Iqa < + < +

This gives, together with Theorem 10.16, the assertion. 0
In order to prove the relative compactness of perturbations, we need the

following auxiliary results.

Theorem 10.19. Let 0 s <r (not necessarily integral). The mapping

fI-)cpf

is compact for evely E

PROOF. The operator is compact if and only if the operator K defined on
L2(Rm) by the formula

K:

is compact, since the four operators at the ends are unitary (cf. Section
10.2 for and Ut). By Theorem 10.7 we obviously have for f E
that

(Kf)(x) = f(i + -y)(1 + dy

with = (2ir)_m/2Fcp E The operator K is therefore an integral
operator with kernel

k(x, y) = (1 + —y)(1 + for x, y E Rm.
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Since E for every / E there is a B, such that

k!'(x)I < B,(1 + for all x E
For n E let us set

k(x,y) -
We shall prove the assertion by showing that for the operators and
induced by and the following holds: is a Hubert-Schmidt operator
and as

For <n and xl> 2n we have

<B,(1+lx-yl)'
It follows from this that for 1= m + 1 + s and an appropriate constant C

lP(x <C(l + for (y( <n and all x E Rm.

We therefore have

<
for lyt<n,

10 for lyl>n,
and thus E X R"t), i.e., is a Hilbert-Schmidt operator.

To estimate the norm of we use the corollary to Theorem 6.24. We
have

f
<

for lxi <n. Since E we have

f +1y12)_n/2 dy <c3f(l +iyI)_r

(1 +Ix—yi)m'(l +IyI)_r dy

+1 (1+IX_yI)_m_rdy
x

C4(1 + lxi)_nJ (1 + Jx _yI)_rn_r dy

+ c3J (1+lyl)_rn_rdy
IyI>IxI/2

< C5(1 + C5(1 + +
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for xl >n. Consequently, it follows for all x E that

as

Furthermore,

f(1 + -y)Idx cj(i + lxIY(l + Ix dx

= c7{J dx)
xI<21y1 IxI>21y1

c7{(l+21y1yf dx

—rn—s—I+f(l+lxl) dx

C8(l+Iyl)5.

Hence, for ally E such that >n (and thus for ally E

f as 00.

It follows therefore from the Corollary to Theorem 6.24 that <

0

Theorem 10.20. Assume that s E q E for some p <2s and Nq(X)_>
0 as lxl—>oo. Then the mapping

Q: fi—> af

is compact.

PROOF. Let Mk be the operator of multiplication by the function k5, and let
= F'MkF. We have to prove the of Q. By Theorem

10.17(b) the operator Q is obviously with zero.
Therefore, by Theorem 9.11 it is enough to prove the T52-compactness of
Q. This, in turn, is equivalent to the compactness of

Q: f I—> af.

We shall prove this in what follows.
If then set i—p. Then

Mq,r(X) = Mq,p(X) as Ixl—>oo.

If p <m, then we choose a T for which p <'r <min(m, 2s). Then Holder's
inequality with the exponents p = (m — p)/(T — p) and p' = (m — p)/(m — T)
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gives

Mq, f {
q(y)J2/P

) _ylT_m} dy
x I

(

J

= as ixI—*oo.

Consequently, in each case we have found a i- for which

T <2s and Mq,T(x) —*0 as xl —* 00.

Now let be such that p(x)=1 for lxi <1, for ixl >2
and 0 < 1 for all x E Let the functions E be defined
by the equality = p(n 'x) for n E and x E lFr. Then by Theorem
10.19 the operator

fi-*qJ
is compact for all n E %I. Since the mapping Q : W2 is
bounded by Theorem 10.17, the compactness of

fi—> qpJ

follows. As Mq, when ixi—* oo, we obviously have M(J
when n —*00. It follows from this for the operators

that (cf. Theorem 10.17). This implies that Q
Hence, Q is compact. 0

Theorem 10.21. Let r, T, and V be defined as in Theorem 10.18.
(a) If =0 for a = r and

Nq(X) —* 0 as —* oc for al <r,

then V is T-compact.

(b) If T is seif-adjoint, D(T") c W2, some p> 1 and s >r, and

for ixi—*oo and IaIr,

Nq(X)_*0 for ixl—*oo and Ial<r,

then V is T'-compact for every t> 1.

PROOF. The mappings

W2,r(Fr) *W2,r_iai(Fr), fH*
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are bounded, and by Theorem 10.20 the mappings

W2,rHal(Rm) g qag

are compact for a J <r. The compactness of the operators

Va :

follows from this for all a such that lal <r. This gives the T-compactness
of V for part (a) of the assertion.

We can show the compactness of

: W2,5(Rm) —*L2(Rm), fi—>

for Jaf = r in an analogous way. Since D(T") c this gives the
Tn-compactness of V. As V is T-bounded by Theorem 10.18, we obtain the
T'-compactness of V for every t> I by Theorem 9.11. This proves part (b).

EXERCISES

10.8. (a) Assume that q E for some p 2 (i.e., q is measurable and
is integrable over every compact subset of If p > 2m/p for p >2
and p m for p = 2, then q E

(b) Prove a corresponding result for

10.9. Let T be defined by the equalities D(T) = W2, 2(R), Tf— — qf, where q
is a continuous real-valued function with compact support. If fR q(t) dt <0,
then T has at least one negative eigenvalue.
Hint: Theorem 6.33, 7.26(b) and 10.21(a).

10.10. Let T be a seif-adjoint operator on L2(Fkm).
(a) If D(T) c W2, ,(Rm) for some r >m/2, then (A — T)' is a Carleman

operator for every A E p( T). The operator E(b) — E(a) is a Carleman
operator for all a, b E IFL

(b) If D(T'1) C W2, r >m/2, then E(b) — E(a) is a Carleman
operator for all a, b E IFk.

10.4 Essentially seif-adjoint Schrodinger operators

In this section we consider operators on that are induced by
differential forms

with = and with real-valued functions E and
q E L2, (we have used the notation — — —

The operator T defined on by

D(T) = and Tf = Tf for f E D(T) (10.3)
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is obviously symmetric. For f E 0(T)

Tf = + (b2 + i divb + q)f (10.4)

with b(b1, b2,.. . , and
In non-relativistic quantum mechanics operators of this form occur as

Schrodinger operators of systems consisting of finitely many charged par-
ticles in an electromagnetic field. For m = 3 we encounter the Schrödinger
operator of one particle in an electric field with potential q and a magnetic
field with the vector potential b = (b1, b2, b3),

(10.5)

For m = 3 N the Schrödinger operator of a system of N charged particles has
this form: If in this case we write

x = (x1,
1'

X1, 2' X1 X2 . . . , XN_ 1 3' XN XN, 2' XN 3)'

where = x1 2' are the coordinates of the jth particle, then

Tf(x) = - + q(x)f(x) (10.6)
k=1

with

Ni-I N

q(x) = — + (10.7)
l=2j=1 j=1

and
= eJbk for j = 1, 2, . . . , N and k = 1, 2, 3,

where the factor ej depends on the charge of thejth particle. (Here we have
replaced by I all physical quantities that are irrelevant for the properties

studied here.)

Theorem 10.22. Let the operator T be defined as in (10.3). Assume that
b1,. . . , b,,, E C are bounded with bounded derivatives, and q E
for some p <4. Then T is essentially self-adjoint and 0(T) = W2, 2(Rm). The
operator T (and thus also T) is bounded from below.

The proof can be obtained immediately from Theorems 5.28, 10.18, and
9.1 if we consider — as the unperturbed operator (cf. the representation

(10.4) of T).

The operators under (10.5) and (10.6) satisfy the assumptions of Theo-

rem 10.22 in almost all physically realizable cases.
In this section we actually prove that under much more general assump-

tions these operators still remain essentially self-adjoint, while 0(T) is then
generally no longer equal to W2, The following theorem is due to
T. Ikebe and T. Kato [44] in a somewhat more general form. Our presenta-
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tion relies on a proof of C. G. Simader [51] for a somewhat more general
result.

For r E let w2, r, denote the space of (equivalence classes of)
the functions f: for which E W2, for all i9' E For
every f E w2, r, and j {1, 2, .. . , m} there is exactly one E
W2 r I such that for all k > 0

I= —f) in the sense of L2(Rm),
(—*0 1€

where is defined as in Theorem 10.8 and denotes the characteristic
function of Mk = {x E : lxi <k} (on Mk the function can be defined
by the equality = where E and = I for x E
Mk; this definition of is independent of 0). ForfE we have

f1 = Consequently, for f E w2 r, we define If 0 E
is such that 0(x) = I for x E Mk, then

= almost everywhere in Mk.

Since E W2, r— I we can define successively all derivatives
for

I
aI <r; we have E w2, r —a, The function hf belongs to

w2, provided that h E C '(Rm) and f E W2, In particular,
the expression — is meaningful for E and f E

2, 2, loc( ).

Theorem 10.23. Let the operator T be defined as in (10.3). Let b1, b2, . . . ,

E C 1(LJr) and let q belong to for some p <4. Moreover, assume
that q = q1 + q2 with

forsome p<4,
forsome C>0 andall

Then T is essentially self-adjoint. We have

D(T) = (f E n w2,2 Tf E

for fED(T).

For the proof we need the following auxiliary theorems.

Auxiliary theorem 10.24. If q E then IqV'2 E for evety
a > p12. (A similar result holds for and M0,

PROOF. If p> 2m, then it follows by the Schwarz inequality that
(f lq(y)Idy cf dy <C1/2Mq p

Ix—yI<l I. )

for all E or, i.e., iq(11'2 E for a > m, and thus for all a > p/2.



316 10 Differential operators on L2(Rm)

If and a>p/2>m/2, then

f I

(

tf
q(y)I2dyf CMq,p,

Ix—yI<I Ix—yI<1

because 2a — 2m> — m.
If p <m and a > p/2, then it follows for a — (p/2) >0 that

f Iq(y)I(x -yI°m
Ix—yI< 1

= f — m/2)] dy
Ix—yJ< I

(

< <CMq,p*

Consequently, the assertion is proved in each case.

Auxiliary theorem 10.25. Let the functions = 1, 2,... , m) and q1 be the
same as in Theorem 10.23. For evea'y >0 there exists a > 0 such that

<Iq1lf,f> +

for alifE
PROOF. belongs to Ma(Rm) for some a <2 by Auxiliary theorem
10.24. Take a i.Jj E such that iji(x) = 1 for x E supp f, and set
h = grad + Set, furthermore, = (If (x)12 + for every >0.
Then by Theorem 10.17

<Iq1If,f>
= +

dx + +

= x)121f(x)* Di(x) dx

+

=
bj) -f(Dj- dx +

dx + 12

J - dx + 12.

The assertion follows by letting c tend to 0, because h(x) = 1 for x E supp f.
D
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Auxiliary theorem 10.26. Let T be defined as in Theorem 10.23. For n E N
let

and

There exists a C 0 such that for a/if E and all n E N

— dx 2f
I

TfI2 dx + Cn2f fl2 dx

and

f I

dx + Cn2f lfl2

PROOF. Let E be such that

1 for
1

for andlxl>3.

Moreover, for all n E N set = — 'x). Since E

C supp(grad C

by Auxiliary theorem 10.25 we have for all f E that

+ llmJIl2 > ijj) = 2Re<Tf,

= 2Re{ <(Di - - 1)> + <qnj,

= 2Re{

+ + ni>
(m lm

>
112

j=1 j=1

112

- -
Since

tI(D, — = — H2

2( 112 + — '!,)f112),

and

for all n E N and all x E
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we can further estimate:

+ > - C4n2f If(x)12 dx

f (D1 - dx - c4n2f lf(x)12 dx.
j=1

The first assertion follows from this immediately. The second assertion
can be proved analogously if we replace by a function E

LI

Auxiliary theorem 10.27. Let T be defined as in Theorem 10.23. For every
E C > 0 such that

+ iifli} for all f E

PROOF. By (10.4) and Auxiliary theorem 10.26 we have for fE
that

= + D1@f) - (b2 + i div b +

= + Dj— (b2 + i div b +
j=1

+ DJ1

+ll(b2+idivb)OfiI +

< TfIi + lIlt) +

where C1 depends on (more precisely, on the supremum of grad
and on the supremum of b2 and div bi on supp If we set

q0(x) = q(x) for x E supp and q0(x) =0 for x supp then q0 obviously
belongs to for some p <4, and by Theorem 10.17 and by the
inequality ii gil2 + gjf

= +

and thus

< +lifti} + c2iiftI.

The assertion follows from this. LI

PROOF OF THEOREM 10.23.
(a) First we prove the essential self-adjointness of T. Take a p E

such that
11 for0 <q(x) ( 1, p(x) =

for txI > 2.
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For every n E let = p(n 'x), and let
T provided that we replace the functions and q, by the functions

= =

Then it is obvious that for all n E and f E

and T(gJ) =

Now assume that g E R(i — T) We have to show that g =0. Since the
operators are essentially seif-adjoint by Theorem 10.22, for every
n E there exists an E for which

- (i-
Then we have in particular that (cf. Theorem 5.18)

- +

Therefore, the sequence is bounded. Auxiliary theorem 10.26
implies that

— dx 2f
I

dx + Cin2f dx

= 21 dx + C1n2j dx

= 2f1(i— — + dx

+ Cin2f dx

4n2 + 4f — dx+Cin2f dx

4n2 + +

< I + < C3(1 +

and thus (because <Kn' with K= sup x E Fr1))

m m

j=1 j=1

m 2 1/2

= {
- dx}

{
-
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Consequently, because of the equality <g, (i — = <g, (i — T)
=0 we obtain the estimate

= (i—

1Kg, - +

= (i-

+

1/2 m

<{ g{2 dx }
{

-
}

+

1/2

dx}
{

!± } +

Since the left side tends to gJJ2 and the right side tends to 0 as n—*c.o,
it follows from this that g =0. Hence, R(i — T)' = (0). We can prove
similarly that R( — i — T)' = (0). The operator T is therefore essen-
tially self-adjoint.

(b) If f E flW2, 2, and — b3)2f+ qf E L2(Rm), then
fED(T*)=D(T) and

T*f=

because for every g E C000(Rm)= D(T) with supp gc (x ERtm: lxi <k)
and for any E with = 1 for (xl <k we have

Tg> = <of, Tg> = (n - + g>

=

Now letf E D( T). There exists a sequence (fm) from for which
—*f and Tf. In particular, (fe) and are Cauchy sequences.

Then is also a Cauchy sequence for every E by
Auxiliary theorem 10.27. Since 1h112 ( + lhll for h E the
sequence is also a Cauchy sequence in W2 2(Rm). Let g be the
limit of the sequence in W2, 2(Rm). Since in L2(Rm), we
then have g E W2, 2(Rm).
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For an arbitrary r >0 let E be such that = 1 for
lxi r. Then for all g E E xI <r})

<Tf,g> = <T*f,g> = Tg> = Tg>

= (D1 - + g>

=

As the set of these g is dense in L2({x E <r}), it follows that

=
- + q(x)f(x)

almost everywhere in {x E : lxi <r). Since r was arbitrary, this
equality holds almost everywhere in In particular, —

+ qf belongs to

REMARK. The operator T of Theorem 10.23 is still essentially seif-adjoint if
q=q1+q2 with

q1 E for some p <4, q2 EL2

q2(x) — Clxl2 for some C > 0 and all x E

The above proof can then be employed without change if we first show
that the corresponding operators are essentially seif-adjoint. A proof is
given, for example, by C.G. Simader [51]. The reader can find further
references concerning this circle of problems there.

In order to apply the results of Section 9.2, it is useful to have criteria for
the T-compactness and the T2-compactness of a perturbation of T. We
shall prove such a criterion now. If A and B are operators on L2(Rm), then
we say that A is B-small at infinity if A is B-bounded and for every >0
there exists an r() 0 such that

liAfil €(llBfll + iflI)

for alif E 0(B) such that f(x)= 0 for lxi <r(€).

Theorem 10.28. Let T be defined as in Theorem 10.23. If V is closed and
T-small at infinity, then V is T2-compact. If, in addition, the T-bound of V is
zero, then V is T-compact.

If V is T-bounded with T-bound zero, then it is also T-bounded
with T-bound zero. Consequently, the second statement follows from the
first with the aid of Theorem 9.11 d. It remains to prove the first statement.
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First step: The operator A defined by the formulae

0(A) D(T) and Af = f
for E C000(Rm).

Proof of the first step. It is sufficient to prove that A is T-compact. Let './i
be an element of such that 4'(x) = 1 for x E supp The operator
B defined by the equalities

D(B)—D(T) and for fED(B)
is T-bounded by Auxiliary theorem 10.27. Since Af= A

A is B-compact, and thus also
T-compact (cf. the proposition preceding Theorem 9.7).

Second step: The operator C defined by the equalities

0(C) =D(T) and Cf = i9if— f
for E

Proof of the second step. Again, it is sufficient to show that C is
T-compact. Since C is a differential operator of the first order having
continuous coefficients with compact support, the B-compactness and thus
also the T-compactness of C follow as in the first step.

Third step: V is T2-compact. —

Proof of the third step. It is clear that V is also T-small at infinity. Let
€> 0 be given, and let r(€) be chosen according to the definition of
T-smallness at infinity. Moreover, let be an element of such
that I for lxi r(€) and 0 < 1 for all x E Since V is
T-bounded by assumption, we have for all f E D( T) with appropriate
a, b > 0 that

H Vfii < II V(iftf)ii + ii V[(1 —

< + bli + €( J(i — 'O)fH + H — ii }

<afIOfll + +

+ €( j(1 — + 11(1 —

If we replace here f by a sequence from D( T2) for which 0 and
0, then we also have 0, and by steps 1 and 2 the first three

terms of the right side converge to zero. The fourth term is bounded by
sup + Since >0 was arbitrary, it follows that

V is T2-compact. 0

EXERCISE

10.11. Let T be the seif-adjoint Schrodinger operator from Theorem 10.23 for
m < 3. Then (z — T)' is a Carleman operator for every z Ep(T). The
operator E(b) — E(a) is a Carleman operator for all a, b E
Hint: M,(z — T)' is a Carleman operator for E
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10.5 Spectra of Schrödinger operators

In this section we prove some properties of the spectra of seif-adjoint
operators of the form considered in the previous section. The results can be
applied equally well to one particle and several particle Schrodinger
operators (Theorems 10.29(a), 10.30 and 10.33).

In what follows let T always have the form

D(T) Tf = (Di— qf for f E D(T),

(10.8)

where the coefficients satisfy the assumptions of Theorem 10.23. Therefore,
T is essentially seif-adjoint. We denote by S the closure of T (that is, the
uniquely determined self-adjoint extension of T). Moreover, let the self-
adjoint operator S0 be defined by (cf. Section 10.2)

D(S0) = w2, 2(p) and S0f = — zXf for f E D(S0), (10.9)

and let V be defined by the formulae

D(V) =D(S)n W2,2(Rm),

m (10.10)

Vf= Sf— S0f= —2
j=1

Theorem 10.29.
(a) If q_ E for some p <4, then S is bounded from below (here

q_(x)=max(—q(x), 0)). If q>0, then S is non-negative.
(b) If b2 E div b E q E for some p <4, and

f (b4(y) + Idiv b(y)12 + dy 0 as 00,
1

then V is relatively compact with respect to S0, and pe(S) = [0, 00).

PROOF.

(a) By Auxiliary theorem 10.25 with 'q = 1 we have for alif E that

Sf> = - + qf>
j=1

i—i

This then holds for all f E D(S), since is a core of S. If q > 0,
then q - =0. The above estimate then gives that S > 0.

(b) We have E for some a <2 (j = 1, 2, . . . , m) by Auxiliary
theorem 10.24. Consequently, the assertion follows from Theorem
10.21 together with (10.10) and Theorem 10.11. D
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The spectrum of the operator S0 is [0, oo); the operator S0 has no
eigenvalue. We can actually prove for a large class of operators S of the
form given above (without magnetic field) that no eigenvalues lie in [0, oo).

Theorem 1030. Assume that = Oforj= 1, 2,. .. , m, q E for some
p<4, and

q(ax) = for x E

with some -y E (0, 2). 1ff is an eigenelement of S belonging to the eigenvalue

A, then

2<f, + qf> = 0 (virial theorem).

The interval [0, oo) contains no eigenvalue of S. (For a somewhat more
general result we refer to J. Weidmann [55].)

PROOF. If f is an eigenelement of S belonging to the eigenvalue A, then

— tXf(x) = Af(x) — q(x)f(x). (10.11)

It follows from this for every a >0 using the notation fa(X) =f(ax) that

= —a2QXf)(ax) = a2Qtf(ax)—q(ax)f(ax))

= a2Afa(x) — (10.12)

It follows from (10.11) and (10.12) that

A<f,fa> - <qf,fa> - a2A<f,fa> +

a I we obtain by dividing by (a — 1) that

a tend to I, it follows from this that

= (2—y)<f,qf>.

Since — qf= Af, this implies

2<f, -sf> = -2<f, qf> + = - <f, qi>

(this is the virial theorem) and

= (2-y)<f,qf-Af> = (2-y)<f, sf>.
It follows from the last equality that A <0 provided that 0.

REMARK. The assumptions of Theorem 10.30 are satisfied in particular by
every Schrodinger operator without magnetic field with pure Coulomb
interaction (this also holds for many-particle operators).
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The operators of Theorem 10.29(b) also satisfy the assumptions of part
(a); the negative part of the spectrum therefore consists of at most
countably many eigenvalues of finite multiplicity that are bounded from
below and can only cluster at 0. The following theorem shows that in
many interesting cases there actually exist infinitely many negative eigen-
values.

Theorem 10.31. Let S be as in Theorem 10.29(b). Assume further that there
exist constants C > 0, c >0 and r> 0 such that

q(x) ( forall with lxi >r,
and

p(t) : = + div b(x)() —* 0 for t oo.

Then S has infinitely many negative eigenvalues accumulating at zero.

PROOF. We only have to prove that S has infinitely many negative
eigenvalues. According to Theorem 7.26(b) it is sufficient to find an
infinite-dimensional subspace M of D(S) with Sf> <0 for every non-
vanishing fE M. Let 0 e such that = 1 and supp 0 C
{x E 1 <lxi <2}. Then for the function 01(x) = tm/20(t - 'x) we have

= 1 and supp 0, c (x E : t < Ixi <2t}. Therefore it follows for t >r
that

<0,, (0,, qO, + (b2+i div b)0, —

— +

t2<O, +

<0

t for ixl > t, which follows
from the definition of p.) Therefore there exists a t0 0 such that

50,> <0 for t > t0.

Let now = n E These functions have mutually disjoint supports.
Therefore M= : n E is infinite-dimensional and (f, Sf> <0 for
allf E M, f=,= 0. This implies the theorem.

Now we want to show that the smallest eigenvalue of a Schrodinger
operator (without magnetic field) is always simple, i.e., that the system has
a uniquely determined ground state. The proof is essentially taken from a
work of W. Fans [41]. We need some preparation.
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In the following for an element f E we write f 0 (f> 0)
provided that f is real and f(x) > 0 (f(x) >0) almost everywhere in
Such elements are said to be non-negative (positive). A bounded operator
A on is said to be positivity preserving if f> 0 implies 41 > 0. It is
said to be positivily improving if f> 0 and 0 imply Af> 0.

Theorem 10.32. Let A E B(L2(Rm)) be a real3 positivity improving self-
adjoint operator. Assume that A I is an eigenvalue of A. Then the multiplic-
ity of the eigenvalue

I

A
II

equals 1 and there is an f> 0 that spans the

eigenspace N(IIA — A).

PROOF. Assume and Af= IA If. Since A is real, we may assume
that f is real (otherwise we could replace f by Ref or Imf, because
A(Re f) = A(f+ Kf)/2 = (Af+ KAf)/2 = (IIAIIf+ KIIAIIf)/2 =
IIAII(Ref) and A(Imf)=JIAII(Imf)). From the inequality ±f<IfI it
follows that ± If I. Therefore, fAf and thus

<f,Af> lAfI> <IfI,AIfI>.
This implies that

IA 11f112 = Af> A fl> MAIl IIIf1II2 hit
i.e., that

<f,Af> = AIf(>.

Let us define and f_ by the equalities

= max(0,f(x)}, =f+ —f.

Then IfI =f÷ +f_. Consequently,

= = 0.

Hence we have f+ =0 or f_ =0, since f 0 imply that

Af_ >0, and thus that Af_> 0. Consequently, we have proved that
f> 0 or f < 0. We can assume, without loss or generality, that f> 0. Since
f= 1

it then follows that we even havef>0, because A is
positivity improving.

The theorem will be proved if we show that f spans the space N(IIA I! —

A). For every element g of N(JlA — A) the functions Re g and Im g do not
change sign. Such an element can only be orthogonal to the positive
elementfifg=0. Therefore, N(IhAii —A)= L(f). El

Theorem 10.33. Let S be defined as above with = 0 (j = 1, 2,. . . ,

q E M, and q E for some p <4. Then S is bounded from
below. If the lowest point of a(S) is an eigenvalue, then it is simple.

3Here "real" refers to the natural conjugation K on (Kf)(x)=f(x)* (cf. Section
8.1, Example 1).
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PROOF. By Theorem 10.29(a) the operators S and S0 — q - are bounded
from below. The lower bound of S0 — q is, at the same time, a lower
bound of the operators S, and S — Q,, used in steps 2 and 3. These
operators therefore have a common lower bound, so that Theorem 9.18(b)
can be applied.

First step: Let S0 be defined as above. Then the operator exp( — tS0) is
order improving for all t >0.

Proof of the first step. With = exp( — tJxI2) for x E we have

exp(—tS0) =

where denotes the operator of multiplication by Hence, by the
convolution theorem (Theorem 10.7) the operator exp( — tS0) is equal to
the operator of convolution by the function F - With 0(x) =
exp(— 1x12/2) we obtain from Theorem 10.2 that

(F - 'Oj(x) = m/2feixYo(y) dy

= dy

= x
z)0(z) dz

= (2t)_m/2(F_10)( x = (2t)_m/20( X

for all x E and t >0. Since the operator of convolution by a positive
function is obviously positivity improving, the assertion follows.

Second step: exp( — IS) is positivity preserving for all t> 0.
Proof of the second step. For every n E let be defined by the

equality

I q(x), if (n
=

0, if q(x){ >n.

Let be the operator defined by instead of q. By Theorem 7.41

= s— urn exp(_iQn)]"
k-*oo k

for all t > 0, where denotes the operator of multiplication by Since
every term on the right side is order preserving, it follows from this that
exp(— is also positivity preserving. Since by Theorem 9.16(i) (with
D0 = C000(Rm)) we have (i — S) ', it follows by Theorem
9.18(b) that

exp( — tSp) exp( — tS) for all t 0.

Therefore, exp( — tS) is also positivity preserving for all t > 0.
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Third step: 1ff> 0, g >0 and then there exists a t >0 such
that exp(— tS)g> >0.

Proof of the third step. It is sufficient to prove that if f > 0 and 0,
then

K(f) = :g>0,<g,exp(—1S)f)=0 forall 1>0)

contains only the zero element. The set K(f) is closed. It is mapped into
itself by exp( — sS) for s> 0, since s, t > 0 and g E K(f) imply that
<exp( — sS)g, exp( — tS)f> = <g, exp[ — (s + t)S]f> =0. This then holds
for as well: It follows from f> 0, g > 0, <g, exp(— tS)f> =0 and
exp(— tS)f >0 (ci. step 2) that g(x)[exp(— tS)f ](x)= 0 almost every-
where; we also have then that exp( — tS)f> =0. Since

exp(—t(S— Q,j) = s — urn [exp(_ fs)

the operator exp( — t(S — also maps the closed set K(f) into itself.

Since, moreover,

exp( — t(S — exp( — tS0) for all t > 0,

this follows also for exp( — tS0). If g E K(f), then we therefore have
<g, exp( — tS0)f> =0 for all t > 0. Because exp( — tS0) is positivity improv-
ing, it follows from this that g 0.

Fourth step: If A E is smaller than the lower bound of S, then
(S — A)' is positivity improving.

Proof of the fourth step. If y is the lower bound of 5, then

for t > 0.

Consequently, the following integrals exist. For all f, g E

e_tsf> dt =

f f dt

f E(s)f>
0

[X, oc)

If f> 0, 0, g > 0 and g 0, then the second and third steps imply that
<g, >0 for all 1>0 and (g, e_bosf> >0 for some to> 0. Since the

function etsf> is continuous on [0, oc), it follows from this that
<g, (S — A) 'f> >0. Therefore, (S — is positivity improving (if we had

for sornef>0 such then there would be a g>0
such that g 0 and g(x) =0 for all x with (S — A) 'f(x) 0; we would
therefore have <g, (S — A) 'f> = 0).
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Fifth step: The smallest eigenvalue of S is simple.
Proof of the fifth step. Since the lowest point -y of a(S) is an eigenvalue,

— A)— (-y — an eigenvalue of the positive operator (S — A) '.
This eigenvalue is simple by Theorem 10.32 and the fourth step. Conse-
quently, the assertion follows for S.

EXERCISE

10.12. Let T be defined as in Theorem 10.23, and assume that q(x)—*oo as xH.*oo.
Then has a pure discrete spectrum.
Hint: The identity operator is T-small at infinity and its T-bound is equal
to 0. The compactness of (i — 'follows from this by Theorems 10.28,
9.11(d) and 9.10.

10.6 Dirac operators

In this section we consider the Hubert space

=

The elements of this space are the 4-tuples of elements
E and the scalar product is defined by the equality

g> = ffj(x)*gj(x) dx.

The elements of may also be considered as equivalence classes of
functions f: then

g> = f(f(x), g(x)) dx,

where (., .) is the usual scalar product in C4 ((c, = for E
C4; the corresponding norm in C4 will be denoted by

I . ). For any
continuously differentiable function f : C4, f(x) = (f1(x), f2(x),
f3(x), f4(x)) let us define

= #-f3(x), j = 1, 2, 3.

For an arbitrary function f: and a 4 X 4 matrix-valued function -y

we define yf by the equality

/4 4

(yf)(x) = y(x)f(x) = I Y4k(x)fk(x) I;
\k=1 k=l /

we use a similar definition if y is a constant matrix. The operator norm of
4 x 4 matrices corresponding to the norm . I

on will be denoted by I
. I'

as well.
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The free Dirac operator (which describes the free electron in relativistic
quantum mechanics) is defined on by the differential form

3

Tf(X) = Dj(x) + f3f(x)
j=1

with the matrices

10 0 0
10 a\ 0 1 0 0=

o')
for j = 1,2,3,

= 0 0 —1 0

01 = (?
a2

=
a3

= ?)
Pauli matrices).

Here we have made all physical constants 1 again. Since the matrices a3

and /3 are Hermitian, the operator T0 defined by

0(T0) = and T0f = Tf for f E 0(T0)

is symmetric on as a simple computation shows.

Theorem 10.34. The operator T0 defined above is essentially seif-adjoint. For
T= T0 we have:
(i) D(T) = W2, 1(1R3)4 and 1 Tf II = f E 0(T),4

(ii) a(T)=(—oo, —1}u[1, oo),
(iii) T has no eigenvalue.

PROOF.

(i) Let T1 be defined by

0(T1) = and T1f = 'rf for f E 0(T1).

It is clear that T1 c T0 (cf. the proof of Theorem 10.11(a)), and thus
T = T0 = T1. On the other hand,

FT1F' =
where

= S(R3)4, 1f = Pf,

and

1 0 x3 x1—ix2
0 1 x1+ix2 —x3

x3 x1—1x2 —1 0

x1+ix2 —x3 0 —1

In what follows we also write IL and
.

for the norms in and
respectively.
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(Here the Fourier_transformation is applied to the elements of
component-wise.) 1= where denotes the maximal operator of
multiplication by the matrix-valued function P (cf. the proof of Theorem
10.11(a)):

= {f E Pf E = Pf.

The reader can easily verify that the eigenvalues and the correspond-
ing orthogonal eigenelements of the matrix P(x) are given by the
formulae (observe that ak + ak =2

p1(x) = p2(x) = —p3(x) = —p4(x) = (1 + 1x12)I/2,

(1
kO

ê1(x)= aix1+a2x2+a3x3(1\ ,

1+(1+1x12)l/2

— aiX! + U2X2 + a3X3 (1

1+(1+1x12)h/2 \o

(1\
k o)

The corresponding normalized eigenelements are

e1(x) = [2+21x12+2(1 + Ix(2)h/2]h/2[2+ +

Consequently,
4

= f E
j=1

It follows that

= :

= {fEL2(R3)4: (1+1. 12)'/2JEL(R3)4} =

0(T) = = F'L2, = w2, 1(R3)4,

Tf= for fED(T),
and

Tf(I = PFJ
II = H (1+1 . = II = lifli

(ii) If A> 1, then there is an x0 E for which p1(x0) = A. Since Pi is
continuous, for every 0 there is a ball iç around x0 such that
Ipi(x) — <€ for all x E If E is such that 0 and

(?)
a1x1 + a2X2 +

(?)I + (1 +

— a1x1+a2X2+a3X3(0)

1+(1+1x12)l//'2

(?)
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= 0 for x E then for f= E

II(A- 112 = JIA dx =

Since >0 was arbitrary, A — is not continuously invertible. If
A < — 1, then we can prove this analogously if we use p3 and e3 instead
ofp1 ande1. Therefore, —l]u[l,

If now AE(—l, 1), then

I(A - 12

=
- f(x))12 dx

> (1- I dx = (1- 1AI)2l1fI12

for all f E Consequently, A — is continuously invertible.
Hence, (—1, 1) c p(T) = and thus cr(T) = (—00, —1] U [1, oo).

(iii) If (A — 0, then we must have

= 0 almost everywhere (j= 1, 2, 3,4).

As the set of zeros of A — is a null set (it is either empty, consists
of the origin, or is a sphere), we must have

0 almost everywhere (j= 1, 2, 3, 4).

It follows from this (as is a basis in C4) that f(x) =0 almost
everywhere; therefore, f— 0. Consequently, no A can be an eigenvalue
of (and hence of T). LI

The Dirac operator of an electron in the electric field with potential q
has the form

S = T+ Q,

where Q is the operator of multiplication by a function q : and
qf= (qf1, af3, Because of physical reasons, the Coulomb

potential q(x) c(l/IxI) is particularly interesting. As this q does not
belong to for p <2, the results of Section 10.3 cannot be applied to
it. The following auxiliary theorem enables us to treat such potentials. We
prove it with somewhat more generality than we need.

Auxiliary theorem 10.35. Forf E c000(llr) (m >3) and forf E
(m=l)

fIxI2lf(x)12 dx
(m_2)2 dx.
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ForfE

I 1x121f(x)12 dx dx.

PROOF. Let denote the unit sphere in and let dWm be the area
element on For m> 3 we have

f dx = f °°rm3f If(rw)I2 dWm

=

= urn €m_2f
dWm

— 2 f°°rm_2Ref
m—2

Here the first term vanishes as since the integral tends to f(O)f
as Therefore,

2 1/2

dx < m2_2 fixi 'If(x)I { }
dx

2 1/2

m-2 {fIX 21f dx}

The assertion follows from this for m > 3. The case m = I can be proved
similarly though with certain simplifications. In the case m =2 a logarith-
mic term arises after the integration by parts; everything else goes as
above. fl

Theorem 10.36. Assume that q = q1 + q2, where q1 and q2 are measurable
Hermitian 4 x 4 matrix-valued functions such that

and q2( .) E for some p <2.

Then Q is T-bounded with T-bound less than or equal to 2 C. If C < 1/2,
then S T+ Q is essentially seif-adjoint on and seif-adjoint on
W2,
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PROOF. By Auxiliary theorem 10.35

IIq1fH2 dx <4C2 dx
j=1 k=.tj=1 Xk

= 4C2 fIxk(Ffj)(x)i dx
k= 1j=1

= 4C2f IIxI(Ff)(x)12 dx < 4C2IITfII2,

for all f E The operator Q1 induced by q1 is therefore T-bounded
with T-bound < 2C. The operator Q2 induced by q2 has T-bound 0, since
D(T) = W2, (cf. Theorem 10.18). Consequently, the T-bound of Q =
Q1 + Q2 is not greater than 2C. The remaining assertions follow from
Theorem 5.28. o

Theorem 10.37. Let q be as in Theorem 10.36. Assume, moreover, that
as Then Q is T2-compact. If C < 1/2, then ae(S)=

Ge( T) = (— 00, — 1] U [1, oo). If, in addition, q <0, then the eigenvalues of S
in (— 1, 1) can only accumulate at 1; if q > 0, then the eigenvalues of S in
(— 1, 1) can only accumulate at — 1.

PROOF. We have T2 = F - Therefore,

0(T2) = = = W2,2(R3)4.

Since = q1 + E for some p <4, the operator Q is T2-compact
(ci. Theorem 10.21). (We can show in the same way that the operator Q2
induced by q2 is T-compact.) The remaining assertions follow from Theo-
rems 9.13, 9.14 and 10.36. 0

In analogy with the virial theorem (Theorem 10.30), we can now prove
yet the following result.

Theorem 10.38. Let q be as in Theorem 10.36 with some C < 1/2. Moreover,
assume that q(ax)= q(x)/a for all a >0 and x E Then S = T+ Q
has no eigenvalue in (—00, —1)u(1, oc). If q(x) is diagonal, then —1 and 1
are not eigenvalues of S, either.
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PROOF. If (A — S)f= 0, then the fUnctiOn fa(X) =f(ax) obviously belongs to

D(S) and

(Sfa)(X) =

a + (/3 + q(x))f(ax)

a
{

+ ( /3 + q(ax))f(ax) } + /3(1- a)f(ax)

= a(Sf)(ax) + /3(1 — a)fa(x)
= aAf(ax) + /3(1 — a)fa(x) = aAfa(x) + /3(1 — a)fa(x).

It follows from this that

0 = <Sf,fa> — <f, = A<f,fa> — aA<f,fa> —(1— a)<f,

= (l—a)<f,

For a 1 we can divide by (1 — a). Taking the limit as a—* 1 gives

0 = (A—/3)f>.

For A E (— 00, — 1) U (1, oo) the matrix A — /3 is strictly positive or
strictly negative; this equality is therefore possible only if f= 0.

If A = I and q is diagonal, then it follows first that f3 =f4 =0. The
eigenvalue equality (1 — S)f= 0 then gives

( x3 xi—ix2\(fi(x)
—o

kxi+ix2 —x3 —

This implies that f1 =f2 =0, and thus f= 0. We can argue similarly if
A=—1.

To conclude this section, we give a general criterion for the essential
self-adjointness of Dirac operators (cf. also Exercise 10.13).

Theorem 1039. Assume that q = q1 + q2, where q1 and q2 are measurable
Hermitian 4 x 4 matrix-valued functions such that

1

forsome

1q2( forsome p<2.
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Then S = T + Q is essentially seif-adjoint on The closure S is given
by the formulae

D(S) = { f E n w2, Tf+ qf E

Sf=Tf+qf for fED(S).

PROOF. Let be as in the proof of Theorem 10.23, let = and let
= T+ where is the operator of multiplication by 4,. The function

4,, satisfies the assumption of Theorem 10.36 for every n E the operator
is therefore essentially seif-adjoint on

The rest of the proof follows the proof of Theorem 10.23; however, it is
essentially simpler : Let g E R(i — S)'. Since S,, is essentially seif-adjoint,
for every n E fk.J there exists an f,, such that

Hence, S,,)f,,II < +(l/n). It follows from this that

kpngII2 = (i—S,,)f,, +[q,,g—(i—S,,)f,,]>

I<g, - S,,)f,,>I +

<I<g, (i- + II,, +

as

This implies that g =0. Consequently, R(i — S)= The equality
R(— i — S)= L2(R3)4 follows analogously. The rest of the proof is analogous
to part (b) of the proof of Theorem 10.23.

EXERCISE

10.13. (a) In the first part of Theorem 10.36 the assumption on q1 can be replaced
by the assumption — with N different points

(b) In the second part of Theorem 10.36, in Theorem 10.37, and in Theorem
10.39 the assumption on q1 can be replaced by the assumption <

— - with N different points E and 0 for I
1,...,N.

(c) In Theorem 10.39 we can allow an infinite sum of the above form for
the bound of q1 provided that the aj have no accumulation point.
Hint: If E 1 for IxJ for >s, and
0 I for all XE then there is a C >0 such that

dx 4f dx + cf f(x)12 dx.
IxI<sj=I Ixt<s



Scattering theory

fl

11.1 Wave operators

The theory of wave operators provides a useful means of studying the
absolutely continuous spectrum. We wish to present this theory briefly in
what follows. For any two self-adjoint operators T1 and T2 on the complex
Hubert space H we define T1) by the equalities

T1)) = { f E H: urn rT2e_i (Tf exists
±00

T1)f = urn e1tT2e_utTf for f E T1)).
(—3±00

It is obvious that T1) are linear operators. Since & tT2e_i tT1 is
unitary for all t E R, the operators T1) are obviously isometric (as
mappings from T1)) into H).

Theorem 11.1. The subspaces ± ( T2, T1)) are closed and reduce T1. The
subspaces (T2, T1)) are closed and reduce T2. We have T1))
= ± ( T1, T2)) and ± ( T2) = ± ( T2, T1) '.Moreover, for all s E R

T1) eisTI = T1)

and
T1)E1(s) = T1),

where E1 and E2 are the spectra/families of T1 and T2, respectively. We have
T1)u(T1) =

u : ("intertwining" property).

337
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PROOF. First we show that T1)) is closed. LetfE T1)).
We have to show that for every >0 there exists a t0 E R such that

I

e_ItTf_ <

for all s, 1 In order to prove this, we take an f0E T1)) such
that IIf—f011 <€/3. Since & iT2 TIf0 exists, there is a t0 E such
that

ci IT2 1T!f — e_ <

for all s, t > Consequently, for all s, I > t0

lIe'
iT2

e < €.

We can show in a similar way that T1)) is closed. As the
operators T1) are isometric, the ranges T1)) are also
closed.

If g = T1)f E T1)) with some f E T1)), then

lleitTj =

as 1—*oo, i.e., g E T2)) and T2) g =f. If g E T2))

and f= T2)g, then we can show similarly that f E T1))

and g = T1)f. Therefore, T1)) = T2)) and
= T1) '. We can show analogously that T1))

T2)) and T1)1.
1ff E T1)) and g = T1)f, then for every s E

e1 IT2 eTl(eisTi) = as t 00.

Consequently, e' sTif E + ( T1)) for all s E R. By Theorem 7.39 the
operator T1 is therefore reduced by + ( T1)). We can prove this
assertion for T1)) similarly. Since T1)) =

T2)), the operator T2 is reduced by T1).

For every s E R the operator e' sT1 maps the space T1)) onto
itself (cf. Theorem 7.39). Since for allfE T1)) and all sE R

T1) = lim cit

= urn = T1)f,
t-900

it follows that (T2, T1) & sT1 = e' T1). A corresponding equality
holds for T1).
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For j = 1, 2, Im z >0, and all f, g E H

— if dt d<f, Ej(s)g>} dt

= dt} d<f,

= f(z_s11 d<f,

= <f, (z-
Similarly, for Im z <0

if° dt = (z—

Together with the representation (7.22) of the spectral family, it follows
therefore that T1)E1(s) = E FL The last
assertion follows from this, because u(7)) = fu(t) dE1(t). U

REMARK. If f is an eigenelement of T1 for the eigenvalue A, then f E
T1)) if and only if f is also an eigenelement of T2 for the same

eigenvalue. The same holds for T1).

PROOF. 1ff E 0(T2) and T2f=Af, then

IT2 ITif = e' tT2 = e' e' txf = f
for all t E FL Consequently, f E T1)). If f E T1)), then
for every s E R

s(T2_A)f
—

= Iei(t+s)T2e_i(:+s)Af —
iT2 t —* 00

(since and e' tT2e_i txf converge to T1)f). Hence,

e' = f for all s E FL.

This implies that f E D( T2 — A) = D( T2) and

(T2—A)f= 0,
s—.30 S

i.e., that T2f=Af. 0

In what follows we write M C T1)) if M is a closed subspace
of T1)) that reduces T1. If M T1)) and P denotes
the orthogonal projection onto M, then we define

W÷(T2, T1, F) = T1)P.

These operators are called generalized wave operators. In particular, we
write W+(T2, T1) for W÷(T2, T1, I) provided that T1)) = H. The
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operators W± ( T2, T1) are called wave operators. In the sequel we say that
W÷(T2, T1, F) exists if R(P) c T1)). (Some of the following
statements still hold when T1 is not reduced by R(P).) The operators
W÷(T2, T1, F) are obviously partially isometric with initial domain R(P)
and final domain R(W±(T2, T1, F)). Now we prove a few simple proper-
ties of the generalized wave operators.

Theorem 11.2. Assume that T1 and T2 are seif-adjoint operators on the
complex Hubert space H, M1 C + ( T2, T1)), P1 is the orthogonal projec-
tion onto M1, and M2 = R( (T2, T1, F1)). Then M2 T2)), and
with the notation = T1, F1) we have

& ST2W+ = for all s E
and

= D

If P2 is the orthogonal projection onto M2, then

TW* = W*TP .

I + ±22—' ±2
The operators TIIM1 and are unitarily equivalent. If M1 C or
M1 C Hac(Ti), then M2 c or M2 C Hac(T2), respectively. A similar result
holds for W_(T2, T1, P1).

PROOF. Since M1 is closed and is contained in T1)), the subspace
M2 = T1)M1 is also closed. By Theorem 11.1

= T1)P1 = T1)

= T1)P1 =

for all s E In particular, e1 sT2g. E M2 for all g = f E M2 and all s E III,
i.e., M2 reduces T2(cf. Theorem 7.39). The equality e' sT2W± =
implies that

= = = W÷

e' sT1 and to M1 and M2, respectively, hence are
unitarily equivalent. This then follows also for their infintesimal genera-
tors, i.e., T2P2 = W÷ T1P1 and thus

T2W÷ = = W÷T1P1

By taking adjoints, we obtain via Theorem 4.19 that

W*÷ T2 = c (T2 W+)* c T1)* = = T1

On the basis of what we have proved so far, T21M2 and TIIM1 are unitarily
equivalent. If M1 c or M1 C Hac(Ti), then TIIM1 has a pure continu-
ous or a pure absolutely continuous spectrum, correspondingly. Then this
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also holds for the operator T2IM, unitarily equivalent to TIIM, i.e., M2

C or M2 C Hac(T2), respectively. El

Theorem 11.3. Assume that T1 and T2 are self-adjoint operators on the
complex Hubert space H, M1 T1)), P1 is the orthogonal projec-
tion onto M1, M2 = R( ( T1, P1)), and is the orthogonal projection
onto M2. Then with the notation = W+(T2, T1, P1) we have, as
that

(11 1)

e' tT1 tT2W÷ P1, (11 2)

(113)

(W÷ —I) (114)

—I) (115)

& ITJW± iT1 P1, (11.6)

e' tTIW*+ tT1 P1, (11 7)

(I— P2) (11.8)

We have W÷(T1, T2, P2) = T1, P1)*. Similar results hold for W_ =
W_(T2, T1, P1) as 00.

PROOF. (11.1) follows from the definition of by multiplication by
:T2•

(11.2) follows from (11.1) by multiplication by tT1•
If we multiply

(11.2) by from the right, then we obtain (11.3). Relation (11.4) follows
from (11.1), because e' tT2W = iT1 = P1 iT1 =

(Tip1 If we multiply (11.4) by then (11.5) follows, because
tT1p1 = P1 tTip = (Tip Relations (11.6) and (11.7)

follow from (11.4) and (11.5), respectively, by multiplication by e1
Finally, (11.8) follows from the equalities

11(1— F2) c_i tTipf11 = 1T2(j_ F2) e' tT1p

= eitT2 W÷ fIl = 0.

The equlaity W÷(T1, T2, F2) = T1, P1)* follows from (11.3).

The following chain rule is useful in many investigations.

Theorem 11.4. Assume that T1, T2, and I'3 are seif-adjoint operators on the
complex Hubert space H, M1 CT1 + ( T1)), M2 CT2 + ( T3, T2)), P3 is
the orthogonal projection onto (j = 1, 2), and R( T1, F,)) C



342 11 Scattering theory

Then M1 C + ( T3, T1)) and

T1, F1) = T2, T1, F1).

A similar result holds for W.

PROOF. For f E M1

iT3 IT!f = (e1 IT3 e1 tT2)(e1 IT2

= et iT3

t

since T1)f= W÷(T2, T1, P1)fE M2 and

eutT2 e_itTlf_

T1)f for fEM1.

Because of the inclusion T1)M1 C we have

T1, F1) = T1)P1 = T1)F1

T1)F1

= (T3, T2, F2) ( T1, F1). 0

Theorem 11.5. Assume that T1 and T2 are seif-adjoint operators on the
complex Hubert space H, M1 and M2 are closed subspaces, P1 and F2 are the
orthogonal projections onto M1 and M2, respectively. If M1 CT T2, T1)),
M2 CT2 + (T1, T2)), R( ( T1, F1)) C and R( W÷ ( T2, F2))
C M1, then

T1, F1)*

and
T2, F2)) =M1.

PROOF. We obviously have T1, F1) = P1 and T2, F2) = P2.
It therefore follows from Theorem 11.4 that

T1,

T2, F2) =

T2, F2)) CM1 and P1 =
T1, P1)* W÷(T2, T1, F1) it follows that

w÷(T1, T2, F2) = P1

T1, T2, F2)

= W÷(T2, T1, P)*P
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Because T1, P1)* is a partial isometry with initial domain
P1)) C we have

W÷(T1, T2, F2) = W+(T2, T1, P)*P = W÷(T2, T1, P1)*.

The equality R( ( T1, F2)) M2 follows from the fact that
T2, P2)* is a partial isometry with final domain

M2. The equality T2, P2))= M1 follows from W÷(T1, T2, P2)=
T1, .P1)* correspondingly. 0

On the basis of the remark after the end of Theorem 11.1, an eigenele-
ment fof T1 belongs to + ( T1)) only if f is also an eigenelement of
T2 for the same eigenvalue. Consequently, it is unrealistic to expect that an
eigenelement belongs to (T2, T1)). We shall therefore always assume
in the sequel that M1 c If M1 c n T1)) and P1 is the
orthogonal projection onto M1, then T1, F1)) c HC(T2) by Theo-
rem 11.2. Actually, for technical reasons we shall consider only subspaces
M1 of Hac(Ti). Particularly, we obtain from Theorems 11.2 and 11.5:

Theorem 11.6. Let T1 and T2 be seif-adjoint operators on the complex
Hubert space H, and let ac be the orthogonal projections onto Hac( for
j = 1, 2. If T1) c + (T2, T1)) and Hac ( T2) c + ( T1, T7)), then

R(W÷(T2, T1, =Hac(T2), R(W+(T1, T2, Hac(Ti)

and

W+(T1, T2, = W+(T2, T1,

the absolutely continuous parts of T1 and T2 are unitarily equivalent. The
corresponding results hold for W_. (In the assertions of this theorem
and Hac( T) can be replaced by and 7).)

Corollary. Assume that ( T1, F1, ac) exists. Then R( W÷ ( T1,

ac)) = R(P2 ac) if and only if T1, T'2, ac) also exists.

11.2 The existence and completeness of
wave operators

Useful existence results for W÷(T2, T1, F) are known only in the case
where P = F1, ac (or P ( P1, ac) Consequently, we shall consider only this
case in what follows. If, for example, T1 is a (non-trivial) differential
operator on with constant coefficients, then F1, ac = Therefore in
many cases there is no loss of generality in assuming that P P1 ac
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The wave operator T1, is said to be complete if
R( ( T1, P1 ac)) Hac( T2). By the Corollary to Theorem 11.6 this is
the case if and only if T2, P2 ac) also exists; this wave operator is
then also complete, and the absolutely continuous parts T1 ac and T2 ac are
unitarily equivalent. A similar result holds for W_(T2, T1,

ac) If R(W_(T2, T1, R(W÷(T2, T1, Piac))' then
the scattering operator S(T2, T1) = T1, P1 ac)* W_(T2, T1, ac)
obviously a unitary operator on Hac(Ti); this holds in particular if

W(T2, T1, P1, ac) are complete.
The purpose of this section is to prove a few abstract criteria for the

existence and completeness of W÷(T2, T1, These will then be ap-
plied to differential operators in the next section. The reader can find
further references, for example, in T. Kato [45].

Assertions similar to those occunng in the following theorem are known
in the literature as Cook's lemma.

Theorem 11.7. Let T1 and T2 be seif-adjoint operators on the complex
Hilbert space H. If e E D( T1) n D( T2) for all t E the function

t T1) c_i lTf

is continuous, and

fII(T2— T1) e_itTiII dt < 00,

thenfE T1)).

PROOF. Since e' tT1 E D(T2) n D(T1), the function e'
t is

i

derivative is

T1) du.

Since the integral over (— 00, oo) is bounded, the limits T1)f=
1im1,÷ exist. U

Theorem 11.8. Let T1 and T2 be seif-adjoint operators on the complex
Hilbert space H, and let E be the spectral family of T1. If f E Hac( T1),
Hf = L( E( t)f: t E }, is the orthogonal projection onto Hf, Hjr C D( T1) fl
D(T2), and (T2— B1(H), then Hf C T1)).
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PROOF. The proof is in three steps.

First step: Without loss of generality we can assume that Hjr= L2(J) with
J a bounded interval and that the restriction Tl,f of T1 to the reducing
subspace H1— L2(J) is equal to the operator of multiplication by the
variable.

Proof of the first step. The subspace reduces T1, because it obviously
reduces E(t) for all t E R (cf. Theorem 7.28). The operator T11 is self-
adjoint on H1 and is defined on the whole of H1. Therefore, T11 is bounded
(Theorem 5.6). Hence there exists an interval (t1, t2) such that IIE(t)f II = 0
for t t1 and = Ilfil for t > t2.

If we set pAt) = II E then there exists (cf. the proof of
Theorem 7.16) a unitary mapping V1: Pj) for which V1T1,1V/'
is the multiplication operator on L2(R, pf):

xg(x) for g E p1).

Because f E Hac( T1), the function p1 is absolutely continuous, i.e., there
exists a a E L1(R) such that

pf(t) = ds fta(s) ds for t E

Denote Sf = (t E : a(t) 0). (Since a is uniquely determined only up to
a Lebesgue null set, S1 is uniquely determined only up to a null set; the
reader can verify that this plays no role in what follows.) The set is
measurable and can obviously be chosen to be bounded. The formula

W1: L2(IR, p1) —L2(S1), g

defines a unitary mapping. With the notation = Wa,- V1 the operator
U1T11Uf' is the multiplication operator on L2(S1). Let us extend the
operator Uf to the operator

U: U1P1g).

U is obviously unitary; U maps H1 onto L2(S1) and transforms T11 to the
multiplication operator on L2(S1). The subspace H?- and the restriction of
T1 to H?- remain invariant under U. Consequently, we may assume
without loss of generality that L2(S) with some bounded measureable
subset S of and that T11 is the multiplication operator on L2(S).

Let J be a bounded open interval with S c J, and denote J\ S and
H L2(J). The operators on H (j = 1, 2) will be

extended to seif-adjoint operators IS', on !! if we define

+ h) = 7)g + Mh for g E h E
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where M denotes the multiplication operator on The restriction of
to L2(J) is then equal to the multiplication operator on L2(J). We

therefore have L2(J) c Hac(Ti). If we choose anf E L2(J) such thatf(x) = 1
for all XE J, thenfE Hac(ti) and

H1:

where F denotes the spectral family of t1. Since f2 — vanishes on
the operator (t2 — T1)Pj belongs to where P1 denotes the orthogo-
nal projection onto Hf. If we prove that Hjc T1)), then it follows
that Hf C t1)). Since ehtT2 = e1tT2 e1 for g E H1, we
also have then that Hf c T1)).

Second step: Let V = T2 — T1. The assertion of the theorem holds if
has the form

forall gEH,

where E C000(J), E H and II = 11h11 I = 1. Then for all g E (with

= e' iT2 1TI)

- {f

F is the Fourier transformation on and is taken to be
equal to zero outside J). A similar estimate holds for the integrals over
(— oo, t) and (— oo, s).

Proof of the second step. E Hf C D(T2) for all g E H1= L2(J) and
t E The function

= VP1e_utTlg

is therefore continuous for all g E Hf. Moreover, for g E H1 = L2(J)

'T'gII
=

g.*(x)ei (xg(X)

g.*g)(t)(.

If g E C000(J), then the (extended) function belongs to and
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thus F( E Hence, in this case

f°° dt < oo for all

Therefore, c T1)) by Theorem 11.7. Since the subspaces
T1)) are closed by Theorem 11.1, it follows that Hf= L2(J)

T1)).
With = T1) we have for g E that

2

2

g —

2 Re g, eIST2VPj ds

= —2 Imf VPje_isTIg> ds (cf. Theorem 11.1)

= cjf ds

1/2
dsf ds}

Since e' E Hf, we have

/1)12 ds = ds

= I ds
2

=f
< =

and
ds = 2TTf ds.

Consequently, we obtain that

g -

and hence the assertion follows from the inequalities

— gil +



348 11 Scattering theory

Third step: The assertion of the theorem holds in general.
Proof of the third step. Let the operator V0 be defined by the equality

V0 = + VPf— PJVPJ.

V0 is obviously self-adjoint and belongs to B1(H). For all g E H

<h, V0g> = <h, (VPf)*g+ Vg—

= <VPfh — VPf/i, g> + <h, Vg> = <h, Vg>,
i.e., VPf.

The operator V0 E B1(H) has the form

for gEH,

where E H, = I and < 00. For allj E Iki we choose sequences
from H with the properties ,, E 1 and g1 ,,—*

as n—*oo. With

for

it follows that — since for every N E and n > N

II
2 Jig1, - +2
j=1 j=N+1

If we now set T2 ,, = T2 + — V0), then by Theorem 9.16 and Theorem
9.18.

as tER.
If we set = & iT2, ne_i iT1 then

as tEFt
The second step can be applied to T2 ,, in place of T2, since

T1)Pf= (V+ Va— VO)PJ =

and has the form required in the second step:

=
g)g1 for g E H.

Therefore, (11.9) holds for all g E C000(J) with in place of ) and
with P1g1 in place of g1. We obtain from this for that

- du}'

+
(11.10)
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for the proof we notice that ,j*g) converges to F(( in
as Since the right side of (11.10) tends to zero as t, s—÷co, we have

C T1)). We can
prove similarly that H1 c Ti)).

This completes the pro.of of Theorem 11.8. Li

Theorem 11.9. Let T1 and T2 be self-adjoint operators on the complex
Hubert space H, and let E be the spectral family of T1.
(a) If J is a bounded interval, R(E(J)Pi,ac) C (T2 —

T1)E(J)P1 ac E B1(H), then the wave operators W±(T2, T1, E(J)P1, ac)
exist.

(b) If the assumption of (a) is satisfied for eveiy bounded interval J, then the
wave operators W÷(T2, T1, exist.

PROOF.

(a) If fE R(E(J)Pi,ac) then H1CR(E(J)Pi,ac), and thus (T2— T1)PJE
B1(H). By Theorem 11.8 H1 c T1)); therefore, f E

T1)). As this holds for all f E R(E(J)P1 ac)' we have
R(E(J)P1 ac) c T1)), i.e., W÷(T2, T1, E(J)PJ ac) exist.

(b) R(E(J)P1, ac) C T1)) for every bounded interval J, by part
(a). Since the linear hull of these spaces (for all bounded intervals J) is
dense in R(P1, ac)' the assertion follows. LI

Theorem 11.10. Let T1 and T2 be seif-adjoint operators on the complex
Hi/bert space H. The wave operators

T2, ac) and are complete provided that R(E1(J)) c D(T2),
R(E2(J)) C 0(T1) and (T2 — E B1(H) for j = 1, 2 and for every
bounded interval J. This holds in particular if one of the following assump-
tions is satisfied:
(i) There is an operator V E B1(H) such that T2 = T1 + V (Kato-Rosen-

blum).
(ii) D(T1)= D(T2) and (T2 — T1)(z — E B1(H) for some z Ep(T1).

(iii) D(T1)= 0(T2) and (T2 — T1)(z — T2)2 E B1(H) for some z Ep(T7).
(iv) 0(T1) = 0(T2), and there exists an n E such that — T1)(z —

E B1(H) for some zEp(T1) and (T2— T1)(z— for some
z Ep(T2).

(v) There exists an n E such that 0(T2) R(E2(J)) for every
bounded interval J and (T2 — T1)(z — E B1(H)for some z Ep(T1).

PROOF. If (T2 — E B1(H) forj = 1, 2 and for every bounded inter-
val J, then the wave operators W÷(T2, T1, P1 ac) and W±(T1, T2, P2, ac)
exist by Theorem 11.9(b). These wave operators are complete by the
Corollary to Theorem 11.6.

(i) obviously implies (iv) for all n E The assumptions (ii) and (iii) are
equivalent according to (9.7) (observe that the assumptions of (9.7) are
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fulfilled. (iv) follows from (ii) and (iii). In order to prove that (i), (ii), (iii),
or (iv) implies the assertion, it is sufficient to prove that (iv) implies the
assertion: For every bounded interval J

(T2— T1)E1(J) — (Ti— T1)(z— T1)'1E1(J) EB1(H).

The formula (T2 — T1)E2(J) E B1(H) follows similarly.
It remains to prove that (v) implies the assertion: For this, we prove

(T2 — T1)E1(J) E B1(H) as above. Since R(E2(J)) c D((z — the opera-
tor (z —

T1)E2(J) (T2 — T1)(z — — E B1(H).

In the case 0(T1) = D(T2) Theorem 11.10 can be essentially sharpened.

Theorem 11.11. Let T1 and T2 be seif-adjoint operators on the complex
Hubert space H. Assume that 0(T1) D(T2) and (T2 — T1)E1(J) E B1(H)for
every bounded interval J. Then the wave operators W÷(T2, T1) exist and are
complete.

I am indebted to Dr. R. Colgen for the proof given here. The case where
= D(T2'/2) can be also treated without many changes. First we

prove the following auxiliary theorem.

Auxiliary theorem 11.12. Let T1 and T2 be seif-adjoint operators on the
complex Hubert space H. Assume that 0(T1) = D( T2).

(a) 11(1 — E1 (( — n, n))) E2( J) II —*0 as n —* for every bounded interval J.
(b) If the limits s — n, n))e' fT1 IT2E2(J)P2, ac exist for all

n E N, then the limits

s — urn e1tTl

also exist.

PROOF.

(a) It is obvious that (I — E1(( — n, n)))E2(J) = (I — E1(( — n, n)))( T1 + i)
x (T1 + i)(T2 + i) '(T2 + i)E2(J) for all n E N. Since (T2 + i)E2(J) and
(T1 + i)(T2 + i) ' are bounded and since 11(1 — E1((— n, n)))(T1 + i) 'ff
<(1/n), the assertion follows.

(b) This assertion immediately follows from

jJejtT1 J)P2 ac — Ei((—n, n))euTI e_utT2E2(J)P2aclI

= n)))E2(J)

< II(I—E1((—n,n)))E2(J)H—*0 as n—*oo.

n
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PROOF OF THEOREM 11.11. The existence of W÷( T2, T1) follows from
Theorem 11.9(b), because R(E1(J)) c 0(T1) = D(T2) for every bounded
interval J. It therefore remains to prove the existence of

( T2, E2(J) P2, ac) = s — urn &
tT1 e — tT2E (J) P2,

t—* ±00

for every bounded interval J.
Let J be a bounded interval. As (T2 — T1)E1(J) E B1(H), the operator

V0 : = (T2— T1)E1(J) + ((T2— T1)E1(J))* — E1(J)(T2— T1)E1(J)

is a self-adjoint element of B1(H) and

V0E1(J) = (T2--- T1)E1(J),

E1(J)V0= (V0E1(J))* D E1(J)T2— T1E1(J).

Define T3 = T2 — V0. Since R(E3(J)) C 0(T3) = 0(T2), we then have

E1(J)V0E3(J) = (E1(J)T2— T1E1(J))E3(J),

and thus

T1E1(J)E3(J) —E1(J)T3E3(J) = (T1E1(J)— E1(J)T2+E1(J)V0)E3(J) = 0.

If we define.A : by the equality
A(t) = E1(J)& iT,

then

A(t)v>= i<u, eutTl(T1E1(J)E3(J)_ E1(J)T3E3(J)) = 0

for all u, v E H. A is therefore constant, i.e., A(t) = A(O) = E1(J)E3(J)P3
for all t E

Since I'3 = T2 — V0 with V0 E B1(H), the operators

w÷(Tr3, T2, E2(J)P2ac) = s — urn eutT3 CIIT2E2(J)P2,ac

exist by Theorem 11.9(a), and

W± ( I'3, T2, E2(J) P2 = E3(J) ac ( T2, E2(J)P2 ac)

by Theorem 11.2. This implies

s — lim (I — E3(J)P3 ac) e' iT3 1T2E2(J)P2
ac = 0,

±00

and thus the existence of
s — lirn E1(J) eitTj e_iIT2E2(J)P2,ac

00

= s — urn E1(J) eitT3 e_utT2E2(J)P2,ac
±00

= s — lim E1(J) e_1tT3E3(J)P3,ac e11T3
±00

= s — tim A(0) eutT3 e_uIT2E2(J)P2,ac.
i—*± 00
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As this holds for all bounded intervals J (in particular, for J = (— n, n), as
well), the existence of

s — urn E1((—n, n)) e1tTI
t—* ±

also follows for all n E Consequently, the assertion of the theorem is
obtained by Auxiliary theorem 11.12(b). LI

In what follows we would like to prove a version of the so-called
invariance princzple for wave operators (cf. also T. Kato [22j, X.4).

Theorem 11.13 (Invariance principle). Let the assumptions of Theorem 11.8
be satisfied (let H1 and P1 be defined as there). Assume that the function

is twice continuously differentiable and 0 '(x) >0 (respectively
0'(x) <0) for all x E Then H1 C 0(T1))), and

= T1)g (respectively 0(T1))g = T1)g) for
allgEH1.

For the proof we need an auxiliary theorem.

Auxiliary theorem 11.14. Let 0 : be twice continuously differentiable.
Assume that 0'(x)> 0 (respectively 0'(x) <0) for all x E Then for all
gE

>

as oo (respectively — oo). (A similar result holds for j?... if we
exchange "s—*oo" with "s—÷ —

PROOF. The inequality is clear since F: is unitary and
= for all s E IFL It is therefore enough to prove the conver-

gence relation for all g from a total subset of for example, for
characteristic functions of bounded intervals. We consider the case 0' >0.
Then for g = X[a, b)' s>0, and u >0

= (2ir) 1/2fbe_iux dx

= 1/2f b(
+ sO'(x))' ux—ith(x)

h
• —1/2 e

=
u + sO'(x)

a

sO"(x)
a (u+sO'(x))2

There exist C1 >0 and C2 >0 such that 0'(x) > C1 and I0"(x)I C2 for all
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x E [a, b]. Consequently, for all u >0 and s >0

C3(u+s)',
and thus

fIF(e)g)(u)I2du for all s >0.

The case <0 can be treated in a similar way if we consider u >0 and
s<0. 0
PROOF OF THEOREM 11.13. As in the proof of Theorem 11.8, we can assume
without loss of generality that H1 = L2(J) with some bounded interval J
and that the restriction of T1 to L2(J) is equal to the operator of multi-
plication by the variable.

Let >0. We consider First we remark that (11.10) obviously
holds for g E C(J), as well. If we replace g by = . )g(

. ),
then we obtain for s =0 and oo that

T1) —

icji{f

By Auxiliary theorem 11,14, the expressions in the braces are bounded by
H

and tend to 0 as Consequently,

T1) — —*0 as s —* 00

for all g E Then this holds for all g E L2(J), as well. Hence, for all
gE

T1)g — —*0 as s —* 00

(cf. Theorem 11.1). Multiplication by & siNT2) gives assertion in this case.
The other cases can be handled similarly. 0
Theorem 11.15. Let T1 and T2 be seif-adjoint operators on the complex
Hi/bert space H, and let E denote the spectral family of T1. Assume that
R(E(J)P1, ac) C 0(T2) and (T2 — T1)E(J)P1, E B1(H) for evely bounded
interval J. Assume, furthermore, that the function : is twice continu-
ously differentiable and >0 (or <0) for all x E R. Then

= Hac(Ti), the wave operators P1 ac) exist, and
W±(T2, T1, 1'iac) (or

= W÷(T2, T1, respectively).

PROOF. A subset N of is a null set if and only if is a null set. If F is
the spectral family of then F(S) = '(S)) for every Borel set S
(cf. Section 7.3, Proposition 6). It follows that Hac(O( T1)) = Hac( T1). The
rest of the assertion follows from Theorem 11.13 (cf. the proof of Theorem
11.9). fl
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Theorem 11.16. Let T1 and T2 be seif-adjoint operators on the complex
Hubert space H. Assume that T1 T2 >y, and (T1 —A)tm° C
B1(H) for some Xe such that A <-y and some p C Then the wave
operators W÷(T2, T1, F1, ac) exist and are complete.

PROOF. Let R be a twice continuously differentiable function such
that = A + t - I/P for t > (y — A) and '(t) <0 for all t C (hence,

— = 7; forj = 1, 2). The wave operators

W÷(T2, T1, Piac) = (T1 Piac)
and

W± ( T2, ac) = W1, (( — A) (T2 — A) F2, ac)

therefore exist according to Theorems 11.10 and 11.15. The assertion thus
follows. EIJ

11.3 Applications to differential operators on

If T1 is a seif-adjoint differential operator on with constant coef-
ficients, then in many cases the existence of W÷(T2, T1) can be proved
without using Theorem 11.8 or any of its consequences. We only have to
apply Theorem 11.7 and appropriate estimates of exp( — i tT1)f that can be
proved with the aid of the Fourier transformation. Here we prove a special
case of a result of K. Veselié and J. Weidmann [53], [54] (compare also with
L. Hörmander [43]).

Auxiliary theorem 11.17. Let A C be a closed set. Assume that the
function h is infinitely many times continuously differentiable in
Rm \ A and grad h(x) 0 for x C \ A. Then for evely function g C

\ A) and for every p> 0 there is a constant C such that

IfeixY

C or C a function defined on
with g(x)=Ofor xEA).

PROOF. For there is ajE(1, 2, . . . , m} for which
= 0. Since is continuous, there is a neighborhood U3, of y
in such that for all z C 14. The compact set supp g can
be covered by finitely many such neighborhoods ., U,. Then there
are functions C such that supp c and 1 for all
y C supp g (partition of unity; cf. W. Rudin [33], Theorem 6.20). It is obvi-
ously sufficient to prove the assertion for the functions in place of g,
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i.e., we can assume that aj E (1, 2, . . . , m} exists for which for
all y E supp g. (In many concrete cases there is a j E (1, 2, .. . , m} such
that for ally E then the foregoing step of the proof is
superfluous.)

Hence, let for ally Esupp g. Then by k-fold partial integra-
tion with respect toy1 we obtain for all k E and t that

f XYi th(Y)g(y) dy = fe-i dy

= (i t)'
J

= (i .. . a1[

... ]] dy

= (i t)_kf eix th(Y)x(xj,y) dy,

where

x(x1,y) =

and the supports of the functions E \ A) are contained in supp g.
Therefore,

f th(Y)g(y) dy = (i 1)_ks dy.

We consequently obtain for every k E that

dy{ <CkItl (1 +ixl)k.

This estimate evidently holds for k =0, as well.
Now let be such that k<p<k+l. Then

+ Itl_k(l + {x{)k for tI_1(l + lxi)> 1,

for 111(l+lxl)<l.
If we apply the above result with k and k — 1, then we obtain the assertion.

U

In what follows, for a real-valued measurable function h defined on
let Mh denote the maximal operator of multiplication by h on L2(Rm), and
let Th = F — 1Mh F. If h is a polynomial, then Th is a differential operator
with constant coefficients.
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Theorem 11.18. Let us assume that with a closed set A c of measure zero
we have

h E \A) and grad h(x) 0 for x A.

Let V be a symmetric operator on L2(W") such that c D( V), and
assume that there exist a p E a 0> 1, and a C > 0 with the property that
for all r> 0

C(l + f E S(Rm) such that f(x) = 0 for xJ <r.

Then for eveiy seif-adjoint extension T of Th + V (provided that any exist)
the wave operators W÷(T, Th) exist.

In the following we shall not prove this theorem but a somewhat more
general one that also considers operators on (for example, Dirac
operators). For this let H be a measurable function defined on whose
values are M x M Hermitian matrices (such a function is said to be
measurable if the entries of the matrix are measurable functions). Let MH
again be the maximal "operator of multiplication" by H on L2(Rm)M and
let TH = F - 'MBF. The operator TH is evidently seif-adjoint. We denote by
h,(x), . . . , the M (not necessarily different) eigenvalues of H(x) and
by e1(x), . . . , the corresponding normalized eigenelements. (There
is a great deal of freedom [especially if multiple eigenvalues occur] in the
choice of these functions; in what follows it will be possible to choose them
in such a way that the functions h1 and are infinitely many times
differentiable.) The operator TH is a differential operator if all entries of
the matrix function H are polynomials; however, the functions and
are in general then not polynomials (cf., for example, the Dirac operator,
Section 10.6).

A function H defined on whose values are Hermitian M X M
matrices is said to be permissible if the functions and can be chosen
such that there exists a closed set A C of measure zero for which

E c°°(Rm\A), E

grad

Theorem 11.19. Let H be a permissible function. Let V be a symmetric
operator on with the properties: C D( V), and there exists a
p E a 0> 1, and a C 0 such that for all r 0

C(1 + T) f
for IxI <r.

is the norm of
2Here denotes the norm in



11.3 Applications to differential operators on L2(Rm) 357

Then the wave operators W± ( T, TH) exist for every seif-adjoint extension T
of TH+ V.

PROOF. We prove that if Ff E \ thenf satisfies the assumptions
of Theorem 11.7. Since \ A)M is dense in = \
this will prove the assertion.

Let Ff E \ Then, in particular, f E S(Fr)M. The assumption
on V (for r =0) implies that

II

=

1/2
= c

{

f(ei sH(x)
— IH(x)121(Ff)(x)I2(1 + IxI2Y dx

}

—*0 as

The function tT11f is therefore continuous on
Now let 0 E be such that 0 0(s) < 1, 0(s) = I for s 0 and

0(s)= 0 for s> 1. With some E(1/e, 1) let E be defined by
the equai.ity 0,(x) = O(txl — t E ilt

The assumption on V (for r =0) implies (cf. Theorem 10.8(c)) that

V0,e' max f I(Da e' ITIIJ)(x)12 dx

= c1 max f xyei IH(Y)ya(Ff)(y) dyI2 dx

The operator induced on CM by the matrix e can be written in the
form

for E CM,

where (. , .) is the scalar product in CM. Consequently,

fei a(Ff)(y) dy
=

fei a(Ff)(y))e(y) dy.

Since Ff E \ A)M, we also have y E \ Therefore, the
functions y also belong to \ A)M. Hence
we can apply Auxiliary theorem 11.17 to the last integral. We thus obtain
for all p> 0 and It

I
I that

I
IVOte_itTHf

Ii f



358 11 Scattering theory

We obtain similarly from the assumption on V (for r = that

V(l — + max tTHDafIl
!aI(p

=
a <p

If we choose p so large that 1) + — — I, then

1

V + V(l —

for tI> 1. Since n—* Ve_itTHf is continuous, the integrability of
V tTRf11 follows from this.

Theorem 11.20.
(a) Let T1 be the self-adjoint operator defined by the formulae 0(T1)

= W2, T1f= — zXffor f E 0(T1). Let V be defined by the equality

Vf(x) = ca(x)Daf(x) for fES(llr),
aI<k

and assume that Ica(x)I C(1 + xI) some C >0 and some >0.
Then the wave operators W± (Ta, T1) exist for every seif-adjoint exten-
sion T2 of T1 + V.

(b) A corresponding result holds if T1 is the free Dirac operator on
and the ca(x) are 4 x 4 matrices.

PROOF.

(a) We have T1 = Th with h(x)= 1x12. Since grad for x the
assumption of Theorem 11.18 is obviously satisfied with p = k.

(b) The functions h1 and e3 are known from Section 10.6 and satisfy the
assumptions of Theorem 11.19 with A = {O). Theorem 11.19 is there-
fore applicable if we choose p = k. 0

The assumptions of Theorem 11.20 on the coefficients ca can be essen-
tially weakened (cf. Exercise 11.1).

In Theorems 11.18 to 11.20 we showed the existence of W±(T2, T1) in
many cases where T1 is a. differential operator with constant coefficients.
Since in these cases Hac(Ti) H (cf. Exercise 10.7; this is clear for and
the unperturbed Dirac operator), this is equivalent to the existence of
W±(T2, T1, '°i, We cannot expect that the completeness (i.e., the equal-
ity R(W÷(T2, T1))= Hac(T2)) can be proved under such general assump-
tions. A few simple assertions can be proved with the aid of the results of
Section 11.2. In order to be able to apply them we need the following
auxiliary theorems.

Auxiliary theorem 11.21. If r, s > 0, r — s >m/2 and p E then the
operator

'I: W2,r(Rm) pf
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If r — s > m, then F E

PROOF. We recall the proof of Theorem 10.19. t is a Hubert-Schmidt
operator if and only if the integral operator K on defined there is a
Hubert-Schmidt operator. The kernel of K is given by the formula

k(x,y) = (1 + y12)_n/2 for E

with = F(p E Because of the inequality k!i(x)I C(1 +

Ix + 1x12)s/2(1 +

for

c1(1 + Ix + for

If we choose 1 > (m/4) + (s/2), then k E L2(Rm X the operator K is
therefore a Hubert-Schmidt operator.

Now assume that r — s > m, = (r + s)/2 and E with (p1(x) =
1 for x E supp (p. Then 1 can be considered the product of the mappings

(p1f,

cpf.

As both of these operators are Hilbert-Schmidt, 1 belongs to
B1( W2, W2, (cf. Theorem 7.9). 0
Auxiliary theorem 11.22. Let T be a seif-adjoint operator on Assume
that c W2, 1(11r2) for some n E and some t >m. Let V be a symmet-
ric operator on such that D( V) D W2, for some s E [0,
t — m). Assume that there exist a C > 0 and a e > m such that for all r > 0

C(1 +

for all fE such that f(x)=0 for IxI <r. Then

V(i— E B1(L2(Rm)).

(An analogous result holds in

PROOF. Let = E be defined as in Section 2.2, Example 8 (i.e.,
0 5(x) =0 for IxI> I and dx = 1). For all m-tuples y =
(Yl, * ' Ym)E7Lm let

= j=1,2,...,m},

= dy.
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Then we obviously have

= I for all x E
E im

where the sum is finite for every x E (with at most 3m summands). By
Auxiliary theorem 11.21 the operator

W2, W2, for every y E 7Lm, and the trace norm

)
does not depend on y (we have where

denotes the operator of translation by -y : =f(x —

The operator (i — is a continuous mapping from into
W2, As in the proof of Theorem 10.18 we can prove that .

C1 . for some C1 > 0, and thus

< T)?112+ —

Now let for j=1,2,...,m},
I dy, and

Then = and as an operator from W2, into L2(Rm), is,

by assumption, bounded by

L2) C3(1 + 11Y°.

Observe now that (B1,
-

is a Banach space by Exercise 7.10 and
that by Theorem 7.8(c) lAB IIi< and JICA < 11CM JAIl1 for
bounded B and C. It therefore follows that

IIV(i— = II

y F

<C4 (1+JJ)° <c5f <
yElLtm

n
From Auxiliary theorem 11.22 we can immediately derive criteria for the

existence and completeness of wave operators with the aid of Theorem
11.10. (These existence statements are weaker than those contained in
Theorem 11.20). Here we only give a typical result. Actually, for m > 2
much better results can be proved using entirely different methods. We
shall not consider them here (compare with, for example, S. T.
Kuroda [47, 48] and M. Schechter [49, 50] for further references).
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Theorem 11.23. Let T1 be equal to — with 0(T1) = W2 Let V be
symmetric such that D( V) 0(T1), and let T2 = T1 + V be self-adjoint.
Assume that there exist an s > 0, a > m and a C > 0 such that for all r > 0

H VfII C(1 +

f E W2, n D( V) such that f(x) =0 for IxI <r. Then the wave
operators W±(T2, T1) exist and are complete.

PROOF. Since = W2, by Auxiliary theorem 11.22 V(i —
E for every n E such that 2n — s > m, and thus

VE1(J) E for every bounded interval J.

The assertion therefore follows from Theorem 11.11.

REMARK. The assumptions of Theorem 11.23 hold in particular if V is a
differential operator of order 2 whose coefficients decrease as x 0 for
some e > m. An analogous result can be proved for Dirac operators.

EXERCISES

11.1. The assertion of Theorem 11.20 holds also if the functions ca are locally
square integrable and C(1 + for some C 0 and some >0.
Hint: Choose p > k + (m/2) in the proof.

11.2. Assume m 3, T1 = — D(T1) = W2, 2(R) and q E n If V is
the operator of multiplication by q, then V is T1-bounded with T1-bound
zero; consequently, T2 = T1 + V is self-adjoint and D(T2) = D(T1). The wave
operators W÷(T2, T1) exist and are complete.
Hint: (T1 + s) '

— + s) 1 = + s) 'V(T2 + s) ' E for
sufficiently large s, since

=

are Hubert-Schmidt operators (Theorem 11.16).



Appendix A

Lebesgue integration

In this appendix we shall compile and prove a few results of Lebesgue
integration theory that are used in several places in this book. We essen-
tially follow the presentation of F. Riesz and B. Sz.-Nagy [31]; but notice
that only the measure induced by the volume function is studied in detail
there. For complete presentations of the theory of measure and integration
we refer the reader to, for example, E. Hewitt and K. Stromberg [18] or W.
Rudin [32].

A. 1 Definition of the integral

Let = be the set of bounded intervals J= J1 X J2 X ... X
where the 4 are arbitrary open, half-open, closed, one-point or empty

intervals in LQ Let = be the set of finite unions of intervals from
It is obvious that every M E can be written as a union of finitely many

mutually disjoint intervals from
A mapping p : —p is called a function of an interval or a interval

function on if we have:
(Al) Monotonicity: J1, J2 E and J1 C J2 imply p(J1) <p(J2).
(A2) Additivity: J1, J1nJ2=ø and implyp(J1uJ2)

= p(J1) + p(J2).
The mapping p can be extended to by the formulae

p(M) = p(4) for M U 4 with 4 fl Jk = 0 for j k.
j=1

11n the following we omit Rm if no confusion is possible.

362
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This definition is obviously independent of the choice of the representation
M = u71 This extended mapping is also monotone and additive.

The monotonicity and additivity immediately imply that

p(M) > 0 for all ME p(ø) = 0. (A3)

An interval function p is said to be regular if we have:
(A4) For every J E and every > 0 there exists an open interval 3

such that J C 3 and p(3) p(J) + €.
It is easy to see that p is regular if and only if we have:
(A5) For every J E and every >0 there exists a closed interval 3

such that 3 c J and p(J)> p(J) —
A regular interval function on will be called a measure in the sequel.

EXAMPLE 1. The volume function

for J= {xERm : a<x<b)

is a measure. A is called the Lebesgue measure.

EXAMPLE 2. 1ff: is a right continuous non-decreasing function, then
the formula

f(b)—f(a) for J=(a,b],
f(b)—f(a—) for

p(J)
f(b—)—f(a) for J=(a,b),
f(b—)-—f(a—) for J=[a,b)

defines a measure.

EXAMPLE 3. If Pi is a measure on W and P2 is a measure on then the
equality

p(J1 x J2) = p1(Ji)p2(J2) for J1 E J2 E

defines a measure on W + q

In what follows let p always be a measure on R". A set N c is called
a p-null set if for every >0 there exists a sequence from such that

NC U and p(J,1) <€.
nEf%J

Since p is regular, these intervals can always be chosen to be open.

EXAMPLE 4. All finite and countable subsets of are A-null sets.
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EXAMPLE 5. Every subset of a p-null set is a p-null set.

EXAMPLE 6. Countable unions of p-null sets are p-null sets: If the Nk(k E
are p-null sets, then for every >0 there are sequences (Jkfl)flEN from

for which Nk C and This implies that
C and

In what follows we say that a certain assertion holds p-almost everywhere
(or for p-almost all x) if there exists a p-null set N such that the given
assertion holds for all x E \ N. In particular, we write f = g or —* g if

p p
there exists a p-null set N such that f(x) = g(x) or for all
x E Rm \ N, respectively.

A function f: is called a step function if

f
=

with 4 E for j = 1, . . . , n

(here XM denotes the characteristic function of M). Of course, the intervals
4 are not uniquely determined by f. However, we can choose the intervals
4 to be mutually disjoint. We denote the set of step functions defined on

by T= The set is a complex vector space.
For an f E T we define the p-integral by the equality

ffdp = ff(x) dp(x)
=

for f
=

This definition is independent of the choice of the representation of f as a
linear combination of characteristic functions.

The following properties of the p-integral of step functions are obvious:
(A6) 1ff, g E T are real-valued and g, then ff dp fg dp.
(A7) Jff dp f

dp is linear.
Concerning the extension of this notion of an integral to a wider class of

functions we need a few preliminary remarks. First we consider only
real-valued functions.

Auxiliary theorem Al. If M E and (Ia) is a sequence from such that
M C then p(M) (

PROOF. Let M = 4 with pairwise disjoint intervals 4. Since p is
regular, for every 0 there exist closed intervals for which C 4 and

p(4) — €/(2k) and open intervals for which c and

E + €/2. The set i'ci 4 is a compact subset of M and
> p(M) — /2. Consequently, there is an N E such that M c
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and thus

p(M) + < + + €.
n=I

As this holds for all >0, the assertion follows. 0

Auxiliary theorem A2. If is a non-increasing sequence from T > 0,
then

PROOF. Let N0 be the p-null set on which the sequence does not
converge to zero, let K E be chosen such that we have K >f1 (then we
also have K for all n E and let be an interval such that f1(x) =0
for x E \ Jo (then =0 for x E Rm \ and all n E I%l).

For a given >0 let €' = €(K+ p(Io)) '. Let be the set of mutually
disjoint intervals where assumes constant values not smaller than €'.
Then with the notation = U we have

M1 DM2 . and fl cN0,

because of the monotonicity of the sequence This implies that

Mk = U u fl c U U N0. (A9)
n—k nEN n=k

For every n E let be a finite set of mutually disjoint intervals for
which \ ± = U J. Since M1 D U \ for k E and
(Mn\Mn+i)fl(Mm\Mm±i)0 for we have

1k—1 fk—1 \ k—I

p(M1) Pt U = p( U U =
\n=l / \n=1 / ,i=I

and therefore

p(J) p(M1) < oo.
n=I

Consequently, there exists a k0 E such that

p(J) for k > k0.
n=k

Since the p-null set N0 can be covered by countably many intervals of total
measure <€'/2, by (A9) the set Mk can be covered by countably many
intervals of total measure <c'. By Auxiliary theorem Al we therefore have
p(Mk) <€' for k > k0, and thus

jfk dp Kp(Mk) + €'p(!o) = for k > k0. LI
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Auxiliary theorem A3. If (f,j is a non-decreasing sequence from T and the
sequence of integrals dp) is bounded, then there exists a function
f: for which

p

PROOF. Without loss of generality we may assume that the functions are
non-negative (otherwise we would consider the sequence —f1)). Let N0
be the set of those x E or for which the sequence diverges. We have
to show that N0 is a p-null set.

Let >0 be given. Let C > 0 be such that dp <C for all n E Let
be the set of disjoint intervals on which assumes constant values not

smaller than C/€, and define

Na— U for

If for some nERJ}, then and
c We can therefore choose a sequence (Jk) of disjoint intervals so

that

k(n)

= U for all n E and thus N= U Jk N0.
k=1 k=1

It therefore follows for all n E that

k(n)

= p(J)— dp <C,
k=I

and hence

<

i.e., N0 is a p-null set. 0

Auxiliary theorem A4. Let (f,j and (ga) be non-decreasing sequences from T
such that f,, —* g and f < g. Assume that the sequences of integrals

dp) and dp) are bounded. Then

urn dp < urn dp.
n—*oo

PROOF. For every m E the sequence (fm — E is non-increasing and

p— urn
p p p

Consequently, for every m E the sequence ((fm — is non-in-
creasing and p-converges to 0 (here = max{0, h)). By Auxiliary theorem
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A2 we therefore have f(fm — dp—>O as and thus

ffm dp— dp = (fmgn) dp

< urn f(fm — dp = 0 for all m E
fl 00

The assertion follows from this if we let m tend to Qo.

In what follows let T1 = T1(Rm, p) be the set of the functions f:
for which there exists a non-decreasing sequence (fe) from T for which

and the sequence of integrals is bounded. Since the sequence of

integrals dp) is non-decreasing and bounded, it is convergent and we

can define

ff dp = urn dp.
fl—*00

By Auxiliary theorem A4 this definition is independent of the choice of the
sequence (having the required properties). If f, g E T1 and a, b 0,
then af+ bg obviously also belongs to T1 and

f (af+ bg) dp = affdp + bfg dp.

Now let T2 = p) be the real vector space that is spanned by T1, i.e.,

= {f=f1 —f2 : f?' f2 E T1). On T2 let us define the p-integral by the
equality

dp = f = f1 — f2 with E T1.

This definition is independent of the choice of the functions f1 and f2, since
f=f1—f2=g1—g2 with f1,f2,g1,g2E T1 implies f1+g2=g1 +f2, ff1 dp+
fg2 dp = fg1 dp + ff2 dp, and thus

dp_ff2dp =fg1 dp_fg2dp.

The elements of T2(Rm, p) are called p-integrable functions (observe that
only real functions have been considered so far).

Theorem A5.
(a) The mapping dp is linear.
(b)f,gE g imply ffdp<fgdp.

(c) 1ff E T2, then If E T2.
(d) Jff dpj fIJI dp for every f E T2.
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PROOF.

(a) This assertion is evident.
(b) It is obviously sufficient to consider the case f= 0 (g can be replaced

by g —f). Let g = g1 — g2 with g1, g2 E T1. Then g2 g1, and hence
fg2 dp fg1 dp by Auxiliary theorem A4, i.e., fg dp >0.

(c) Let f=f1 —f2 with f1, f2 E T1. Then max{f1, f2} E T1 and min(f1, f2) E
T1 (proof!). The assertion then follows from the formulae

fl = max{f1,f2} — min(f1,f2},
= max ( f1, f2 } — f2, f_ = max ( f1, f2 } — f1.

(d) We have

I ff dp ff
dp dp f ffl dp. 0

Theorem A6. For evea'y function f E T2 there exists a sequence from T
such that and I —fl In particular, dp.

PROOF. Let f=f1 —f2 with f1, f2 E T1. Then there exist non-decreasing
sequences (f3, from T such that —3ff and ,, dp—*f4 dp for
I = 1, 2. =f1 we and dp — ff dpi —fI dp

—f1 as

0

A.2 Limit theorems

The following theorem asserts that the extension process of the previous
section (which took us from T over T1 to T2) does not lead from T2 to any
wider class of functions. In the rest of this section we shall prove theorems
which show, under which assumptions the passage to the limit and the
integration are exchangeable. These theorems show the essential advantage
of the Lebesgue integral when compared with the Riemann integral.

Theorem A7 (B. Levi). Let be a monotone sequence (non-decreasing or
non-increasing) from T2 for which the sequence of integrals dp) is
bounded. Then there is an f E T2 for which

and ff dp.
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PROOF. We may assume without loss of generality that (fj is non-decreas-
ing (otherwise we consider

First step: There are non-decreasing sequences (ga) and from T1
with bounded sequences of integrals for which — (i.e., it is
sufficient to prove the theorem for a sequence from T1).

Proof of the first step. Define k1 =f1 and =f3 for j> 2. Then
= and > 0 for all n E We have = — 2 with

E T1. For everyjENJ there exists an Tsuch that and
If we set and then

and = — 2 for all j E The series is convergent
(since dp If C is a bound of the sequence dp), then

dp = dp <C for all n E

Then the series 1fk3 dp is also convergent. The functions

=
and

=
2

have the required properties.

Second step: The theorem holds for any sequence from T1.
Proof of the second step. For every n E there is a non-decreasing

sequence ,fl)m E from T with a bounded sequence of integrals such
that Define = max{ : n <m}. Then is a non-decreas-
ing sequence from T. Since m fn fm for n <m, we have fm and

dp < ffm dp <C for all m E I%i. By Auxiliary Theorem A3 there exists
an f E T1 for which —*f and dp. From the inequality

p
for all n<m we obtain, by letting m—*oo, <f, and thus

<f. Consequently, and dp. fl

Theorem A8 (Lebesgue's dominated convergence theorem). Let (fr) be a
sequence from T2 for which —* f. Assume that there exists a g E T2 such that

<gfor all n Then belongs to T2 and dp—*ffdp.

PROOF. For all n E F%i let = Then belongs to T2:
Since } = E T2, it follows by induction that

. . . E T2. Moreover, since

fmax(ffl,ffl+l,...,ffl+k}dp<fgdp forall

and max ( + ± } as k oo, the function indeed belongs
to T2 by B. Levi's theorem. The sequence (ga) is non-increasing and
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fg dp. Therefore, f= p — urn E T2 and dp by B.
Levi's theorem.

If we define = }, then we can show analogously that
and dp—>ff dp. The assertion then follows, because

0
Theorem A9. Let (f,3 be a sequence from T2 and assume that If there

p
exists a g E T2 such that If I g, then f also belongs to T2.

p

PROOF. —g)) for all nEN. E T2.
for all n E and The assertion therefore follows from Lebesgue's

p
theorem.

Theorem A10 (Fatou's lemma). Let (f,,) be a non-negative sequence from T2
for which the sequence of the integrals is bounded Then f E T2 and

ffdp < dp.

PROOF. Let = } for all n E N. The sequence (he) is

non-decreasing and —>f. The inequalities < ffl+k for all n, k E N imply
p

f h,, dp lim inf f dp = urn inf ffk dp, n E N.

Consequently, B. Levi's theorem implies that f E T2 and

ff dp = lim dp liminf dp. 0

A.3 Measurable functions and sets

In the sequel let p be a measure on A functionf: is said to be
p-measurable if there exists a sequence from T for which f,, It is
obvious that every continuous function defined on if?'1 is p-measurable.
The sum, product, and quotient (if the denominator 0) of two p-measur-
able functions are p-measurable. Along with f, the function g ° f is also
p-measurable for every continuous function g : In particular, If I is
p-measurable if f is p-measurable. Every f E p) is p-measurable
(ef. Theorem A6).
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Theorem All.
(a) 1ff: is p-measurable and there exists a g E T2 such that If

I

then f also belongs to T2.
(b) If is a sequence of p-measurable functions such that then f is

p-measurable.

PROOF.

(a) This immediately follows from Theorem A9.
(b) Let h E T2 be such that h(x) >0 for all x E (the reader is advised to

prove the existence of such a function). With = (h + I ) - for all
n E we have g = (h + IfIY 'hf. Since all are measurable and
since

I I

h, we obtain that all belong to T2. Consequently, it
follows from Lebesgue's theorem that g E T2. The function g is there-
fore p-measurable. This then holds forf= (h — 'hg, as well. fl

A subset M of is said to be p-measurable if its characteristic function
XM is p-measurable. If XM is p-integrable, then the measure p(M) of M is
defined by the equality p(M) = fXM dp. If M is p-measurable and XM is not
p-integrable, then we set p(M) = Co. All sets M E are obviously
p-measurable and have the finite measure p( M); for these M the definition
coincides with the earlier one. Every p-null set N is p-measurable with
p(N) = 0.

Theorem A12. Countable unions and intersections of p-measurable sets, as
well as the complement of a p-measurable set are p-measurable. If
M1, M2, . . . are disjoint p-measurable sets, then

U = p(M,,).

If M1 D M2 j ... are p-measurable sets and p(M1) < cia, then

p( fl = lim
/

The proof of this theorem can be left to the reader. One has to consider
the characteristic functions and apply the previous theorems. The cases
where infinite measures occur have to be treated carefully.

Theorem A13. A function f: R"1 is p-measurable if and only if the set
M3 = (x E : f(x) > s } is p-measurable for every S E The same holds for
the sets { x E : f(x) s), (x E R"1 : f(x) >s } and (x E : f(x) <s }.
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PROOF. Let f be p-measurable. We can assume without loss of generality
that s = 1 (otherwise we replace f by f— s + 1). The function g =
min(1, max{O, f}) is p-measurable and as The function
is therefore p-measurable.

Let now be p-measurable for all s E FL Then the sets

and

are also p-measurable. The functions

1.. 0 otherwise

are therefore p-measurable for all n E The assertion follows, because
0

The family of Borel sets in Rm is the smallest family of subsets of
that contains all intervals and is closed with respect to taking complements
and countable unions and intersections. It is obvious that all open and all
closed subsets of are Borel sets. A function f: is said to be
Borel measurable if the set (x E : f(x) > s} is a Borel set for every s E R.
(A function f: Rm C is said to be Borel measurable if Re f and Imf are
Borel measurable.)

If p is a measure on then every Borel set is p-measurable and every
Borel-measurable function defined on is p-measurable. (The measures
considered here are hence called Borel measures, as well.)

Now we extend the notion of the integral to complex valued functions.
A function f: is said to be p-integrable if Ref, Imf E T2. We
define

ffdp = fRef dp + iflmfdp.

The set of p-integrable functions is a complex vector space. It will be
denoted by p). The mapping dp is obviously
linear.

Theorem A14.
(a) 1ff: is p-measurable and there exists a p-integrable function g

such that If I g, then f is p-integrable and Iff fg dp.
(b) 1ff dpi f If! dp for every f E p).
(c) For every f E p) there exists a sequence from T for which

dp>0.
(d) For any p-measurable function f: —* C we have f = 0 if and only if

p) and fIfI dp=0.
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PROOF.

(a) The functions Ref and Imf are p-measurable, and iRe fI g and
llmfi <g. The functions Ref and Imf are therefore p-integrable by
Theorem A 11(a), i.e., f E e1(Rm, p). The inequality follows from (b).

(b) Let a = sgn(ff dp)*. Then by Theorem A5(d)

1ff dpi = affdp = fRe(af) dp f iaf dp = fifi dp.

(c) This follows by applying Theorem A6 to Re f and Imf.
(d) The equality f = 0 implies ifI = 0, f E p) (since the sequence

p p

whose members are all zero p-converges to f), and I dp =0. If
lift dp = 0, then B. Levi's theorem can be applied to the sequence (ga)
with g E T2 for which = nlfJ —* g. This

p
is possible only iff=0.

Theorem A15 (Lebesgue). Let (fj be a sequence from p) such that
Assume that there exists a g E p) such that f,j <g for all

nE. ThenfE e1(Rm, p) and

PROOF. We can obviously apply Theorem A8 to the sequences (Re and
(Im f,j. This gives the assertion. 0
Corollary. If is a sequence from p) such that dp < 00,
then there exists an f E (Fe", p) such that 1f1 and ff dp =

dp.

PROOF. We can apply B. Levi's theorem to the sequence and
obtain a g E T2 c p) for which —pg. Consequently, there
exists a function f: such that as Since

g for all n E the assertion follows from Lebesgue's theorem. 0

Let M be a p-measurable subset of A functionf: is said to be
p-measurable (p-integrable) if the function

f: f(x) [f(x) for xEM
for

is p-measurable (p-integrable). If f: is p-integrable, then we define

= ffdp.

1ff: is p-measurable (p-integrable), then the restriction JIM of f to

M is p-measurable (p-integrable), since ftM= xd. If f: R"'-+C is p-
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measurable and is p-integrable, then we define

If = dp = fxd dp.

We denote the vector space of p-integrable functions f: by
p).

Theorem A16.
(a) If f: is p-integrable, (Ma) is a sequence of mutually disjoint

p-measurable subsets of and M = U fleNMfl, then fMf dp =

(b) If f: is p-integrable and f,J dp <ap(K) (1 Kf dp > ap(K)) for
every p-measurable subset K of M, then f < a (f> a).

p p
(c) If f: is p-measurable, f E p), and fj dp = 0 for all

bounded intervals J, then f = 0.
p

PROOF.

(a) Apply the above corollary to the sequence (x,4f).
(b) Let Ka = (x E M : f(x) >a). Then x,ç(f— a)> 0 and f MXIç(f— a) dp =

0. By Theorem A 14(d) we therefore have x,ç(f— a) = 0. This gives the
assertion.

(c) It is sufficient to consider real f. It is obvious that fgf dp =0 for every
g E T. If I is a bounded interval and M C I is p-measurable, then there
exists a sequence (ga) from T such that 0< < 1, =0 for x I,

and XM• Then it follows from Lebesgue's theorem for the sequence

(g,J) fMJ dp = fxd dp =0. By part (b) we obtain that f= 0.

A.4 The Fubini-Tonelli theorem

In what follows let Pi and p2 be measures on and respectively. Let p
denote the product measure on (ef. Al, Example 3).

Auxiliary Theorem A17. If N is a p-null set in then for p1-almost all
x E the set (y E : (x, y) E N) is a p2-null set, i.e.,

N1 = (x E W { E : (x, y) EN) is not a p2-null set)

is a p1-null set.

PROOF. Since N is a p-null set, there is a sequence (Jk) of intervals for
which Jk = J1, k x J2, k EN Jk, EkE J,) < oo, and each z E N is
covered by infinitely many Jk (we choose the union of infinitely many
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covers by intervals with total measures 1, 2_2, 2—i, . . .). We have

dpif XJ2k dp2 = Pi(JI,k)P2(J2,k) = p(J,) <
kEfkJ kEN

We can therefore apply B. Levi's theorem to the sequence of step functions

(
XJIk(x)fXJ2k

k=1

Consequently, there is a p1-null set F1 such that

xJIk(x)1xJ2/. dp2 < 00 for all x E W \ F1.

kEN

It remains to prove that N1 C F1. Let x0 E W \ F1. Then

f XJIk(Xo)XJ2k(Y) dp2(y) < oo.

kEN

For every y E such that (x0, y) E N the element (x0, y) belongs to
infinitely many Jk = J1, k k• The non-decreasing sequence

(
± xJI,k(xo)xJ2k(Y))

k=1 nEN

is therefore divergent. Since the corresponding sequence of integrals with
respect to y is bounded, it follows from B. Levi's theorem (or from
Auxiliary theorem A3) that { y E : (x0, y) E N) is a p2-null set. There-
fore, x0 E N1, and thus N1 cF1. LI

Theorem A18 (Fubini). Let P2 and p be as above, and letf E
Then we have: For p1-almost all x E W the function f(x,.) belongs to

P2)• The function F defined by the equality

F(x) = dp2(y) f(x, . )E

L 0 otherwise

belongs to (W, Pi) and

ffdp __fFdpi.

A similar result holds If we exchange the roles of x and y. To express the
content of this theorem, we briefly write

ffdp dp1(x)

= fRq{ ff(x, y) dp1(x) } dp2(y). (AlO)
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PROOF. Since f=f1 —f2 + if3 — if4 with 4 E T1, it is enough to study the
case f E T1. Then there exists a non-decreasing sequence (fr) from T and a
p-null set N such that for all z E N and dp—>ff dp.
Formula (A 10) is evident for the step functions Define

dp2(y). Then (ga) is a non-decreasing sequence from T(W) and

dp1 <ff dp. By B. Levi's theorem there hence exists a g E for
which g and dp1 dpi. Consequently, by Auxiliary theorem
A17 the set

N0 = E W: E : (x, y) E N) is not a p2-null set)

u (x E R" : is not convergent)

is a p1-null set. For x N0 the non-decreasing sequence .) has the
properties

. ) —*f(x,.) and y) dp2(y) = g(x) < 00.

By B. Levi's theorem f(x, . ) therefore belongs to P2) for all x N0

and

f f(x,y) dp2(y) = urn f dp2(y) = urn

g g is also p1-integrable and
P1

fFdpi fgdpi = urn dp1

dp1(x) = dp = ffdp.

Theorem A19 (Tonelli). Let Pi' P2 and p be as above, and letf: be
p-measurable. Assume that f(x,

.
) E P2) for p1-almost all x E R" and

that the function F defined by the formula

P(x) = dp2(y), if f(x,
.

) E P2)'

0 otherwise

belongs to p1). ThenfE

PROOF. For every n E let

=

f is p-measurable, every is p-integrable by Theorems A13 and
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A14(a). The sequence is non-decreasing and An application
of Fubini's theorem to ILl gives

dp = dp1(x)

dp1(x) < 00.

Consequently, the p-integrability of lf( follows from B. Levi's theorem.
Sincef is p-measurable,f E p) by Theorem A14(a). 0

A.5 The Radon-Nikodym theorem

Let p and p. be two measures on The measure p. is said to be absolutely
continuous with respect to p (in symbols: p. <<p) if every p-null set is also a
p.-null set. (Then every p-measurable set is p.-measurable, as well).

Theorem A20 (Radon-Nikodym). Let p and p. be two measures on Fr. We
have p. <<p if and only if there exists a p-measurable non-negative function
h: Fr such that E (Fr, p) for evely bounded interval J and
p.(M) = fxMh dp for every p-measurable set M (here we consider the integral
to be equal to oo if xMh is not p-integrable). Every p-measurable function is
also 4u-measurable. 1ff: is p-measurable and p.-integrable, then

ffdp.=fjhcip.

PROOF. If p. has the above form, then p.<<p obviously holds. Now let p. 4(p
and let J be an arbitrary bounded interval in Fr. Let us consider the
Hubert space L2(J, T) with the measure T = p + p.. The mapping

is a continuous linear functional, since If] dT
By the Riesz representation theorem (Theorem 4.8) there exists a g E

L2(J, T) (more precisely, a g E T)) such that

ffdp.=fgfdT for fEL2(J,T). (All)

If here we replace f by XM' where M is an arbitrary p-measurable subset of
J, then we obtain

p.(M) = JXM dp. = dr = fg dT.
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Since 1i(M) <r(M), it follows that

It follows from this by Theorem A16(b) that

0 g(x) 1 for p-almost all x E J.

We obtain from (Al 1) that

f(l — g)f di = fgf dp for f E L2(J, T). (A 12)

Now set N = (x E J: g(x) = I) and L = J \ N. Then (A 12) implies for
f=XN that

p(N) = JXN dp = dp = f(i — = 0,

and thus 0, as well, because If in (A12) we set f=(1 + g + g2
+ then it follows for all n E that

f g(l+g+ dp.

The integrands of both sides constitute non-decreasing sequences the
integrals of which are bounded by jt(M). The left integrand converges to
XL' and hence the left side tends to n L). By B. Levi's theorem there
exists an h E L1(J, p) such that g(l + g + +g'1) h as and

+ g + + dp. Consequently, it follows that

= = = f/i dp.

Since g > 0, we also have h 0. Without loss of generality, we can choose
p p

h>0.
Now let be a sequence of disjoint intervals for which = U

Let be functions such that

= dp for every p-measurable set

Let h : be defined by the equalities h(x) = h
for every p-measurable subset M of 11km

= f h dp = f h dp.
M

1ff is p-measurable, then there is a sequence from T such
Consequently, we also have —*f, and thus f is si-measurable.
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It remains to prove the last assertion for non-negative functions f. For
every n E let

k = {x E : (k — 1)2 — f(x) <k2 — } for k = 1, 2, . . . ,

and

=
k=1

for all and

22n 22n

= (k — k) = (k — 1)2-nj h dp = dp.
k=1 k=I

It follows from this by B. Levi's theorem that ff = ffh dp.

A function F: is said to be absolutely continuous if there exists a
A-measurable (i.e., Lebesgue measurable) function f: that is A-inte-
grable (Lebesgue integrable) over every bounded interval and

F(x) = F(O) +ff(t) dA(t).2

This function f is called the derivative of F. (It is possible to show that F is
A-almost everywhere differentiable and F'(x) = f(x).) The derivative f is
uniquely determined by F. (This follows from Theorem A16(c).)

If p is a measure on R, then p<<A if and only if the function

p((O,x]) for x>O
x =

—p((x,O]) for x<O

is absolutely continuous, i.e., if p is induced by an absolutely continuous
function f in the sense of Section Al, Example 2.

Let F and G be absolutely continuous functions on R, and denote by f
and g their respective derivatives. If F(O) = G(O) =0, then we obtain by
Fubini's theorem that

JX(Fg+fG) = f{g(t)f dA(s)+f(t)jtg(s) dA(s)} dA(t)

= f {f(s)f g(t) dA(t)+g(s)f f(t) dA(t)} dA(s)
0 s S

= 2F(x)G(x)
_f0X(fG+gF)

dA,

and thus
F(x)G(x) = fX(Fg+fG) dA.

2Here we set f — 5 for x <0.
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If we do not necessarily have F(0) = G(0) =0, then

F(x)G(x) - F(0)G(0) = j (Fg+fG) dA.

Consequently, for — oo <a <b < oo we have the formula of integration by
parts

Fg dA = F(b)G(b) — F(a)G(a) _f"fG cIA. (A13)



Appendix B

A representation theorem for
holomorphic functions with

values in a half-plane

A function h: is said to be of bounded variation when it can be
written in the form h h1 — h2 + ih3 — ih4, where the functions h1 :

are non-decreasing bounded functions. (We can show that h is of this form
if and only if there is a C > 0 such that — C for every
sequence ((an, be]) of disjoint intervals. The smallest C of this kind is called
the variation of h. We do not need this result here.) If h is a right
continuous function of bounded variation, then the integral

f°°(z_ty' dh(t) for z EC\R

can be considered as a Riemann-Stieltjes integral. We will retain this
notation in the sequel. We can also view this integral as a linear combina-
tion of the corresponding integrals with respect to the measures
(cf. Section Al, Example 2). Consequently, the theorems of Appendix A
are at our disposal.

Theorem B!. Assume that w : R—> is right continuous and of bounded
variation, = 0, and

f(z) =f dw(t) for z E G= {zEC: Imz>0}.

(a) For all t E R we have the Stieltjes inversion formula

w(t) = urn lim lft±SIf(+i €) ds.
?T

(b) Iff(z)=0 for all zE G, then w(t)=0 for all
381
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PROOF. Part (b) follows from part (a). Consequently, it is sufficient to
prove (a). Since w is real-valued,

Imf(s+i€) Im[(s+i€—uY'] dw(u)
1.00

-00
[(s— u)2+ €2]—! dw(u)

for every >0. It follows from this by Fubini's theorem that
f00 1r

2 2
ds dw(u)

—oc +€
= _JOO dw(u).

and

r—u '7T

Iarctan +—I
2

forall

C

Lebesgue's theorem implies that

¶ for r>u,
'iT

2
for r=u, as

0 for r<u,

7Tdw(u)_f
(r} 2

(In order to be able to apply Lebesgue's theorem, we write f• . . dw =
• dw1 — •

where w1 and w2 are non-decreasing right continu-
ous functions, w = w1 — w2, and 0.) If we
set r = t + 8 with 6 >0 and let 6 tend to zero, then the assertion follows. LI

Theorem B2. Assume that w: R C is right continuous, of bounded varia-
tion, and 0 for all z E C\ R then
w(t)=Ofor all tEFL

PROOF. For z E G = (z E C : Im z > 0} we have

and

00

-00
(z—t)' dw(t) = 0

00

—00

00(z-t)' dw*(t)
= {L00

(z*_t)' dw(t))* = 0.

Imf(s+i€)ds= —

Since

r— u ¶

lim
jr

Imf(s + i €) ds
—00

=
dw(u)—f Odw(u)

(r, oo)
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Therefore,

(z - t)' d[Re w(t)] = f00(z - t)' d[Im w(t)] =

for all z E G. It then follows from Theorem B 1(b) that Re w(t) = Im w(t) =
0

Theorem B3 (Herglotz). Let G = (z E C: Im z > 0), and let f: C be
holomorphic such that Im f(z) <0 and I f(z)Im z <M for all z E G. Then
there exists a unique right continuous non-decreasing function w: for
which as — oo and

f(z) = f(z — t)' dw(t) for all z E G.

For all t E R we have w(t) <M and

w(t) = urn urn f 1+ öJf(
+ i €) ds.

IT

PROOF. The last equality will follow from Theorem B 1(a) if we prove the
existence of a function w having the remaining properties.

For 0 <c <r let the paths I., and F00 be defined as the above figure
shows. For z=x+iyEG such that Imz=y>€ and for r>IzI the point

+ 2i lies outside I.. Therefore, by the Cauchy integral formula

f(z)
= 2IT

= 2IT
i

=

=

00

-00

I

-I,

Ill

r
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For E we have for fixed z that

< C'M and
The integral over 1. therefore tends to 0 as r—> 00, and there remains

f(z) = !j
100

= — +i z)(t — i — +i €) dt

= _f (y_€)[(x- t)2+(y-€)2]'f(t+i €) dt.

If we set v(z) = Tm f(z), then it follows for 0 <Tm z = y that

v(z) = (y_€)[(x_ dt.

The inequalities Im <M imply for 0 <€ <y that

- )2[(x - t)2 + (y - 'v(t + i €) dtf = - c)v(z)I M.

By we obtain from Fatou's lemma (observe that v 0) that
v( . + I ) is integrable over R and

—10 <_f v(t+i() dt M for all >0.

Since

I(y- €){(x- t)2+(y -y[(x-

for O<€<y,
\y(y—€) /

it follows that

JO0
—y[(x— t)2+y2]'}v(t+i €)

as c—*0 +. Therefore, for all z E G

v(z) = urn — f y[(x— t)2+y2]'v(t+i €) dt.
—00

In what follows let

= v(s+i €) ds for t E 0.

The functions are all non-decreasing and bounded, 0 M for all
t E Let us construct, with the aid of the diagonal process, a positive null

'The following steps can be much shortened if we make use of the fact that the family of
measures induced by : 0 < 1) is compact in the "vague" topology.
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sequence in such a way that is convergent for all rational
numbers t. If we set

0(t) = urn 0 (t) for rational t,
fl 00

then 0(s) <0(t) for all rational s and t such that s <t. If we extend 0 to a
function 0 : by defining

0(t) = : s >t, s rational} for irrational t,

then 0 is obviously non-decreasing, and lime 0(0(t) — 0( — t)) <M.
We show that in the sense of the Riemann—Stieltjes integral

v(z)
= —f for zEG.

Since
100

v(z) = urn — I y[(x — t)2 +y2] — 1v(t + i €) dt
TTJ_00

= — urn
dt

= — urn f00y[(x_t)2+y2]_1d0€(t),
—00

this assertion is equivalent to the equality

lim f00y[(x — t)2+y2]'
= f °°y[(x — t)2+y2]' dO(t).

For the proof of this equality we notice that if we wish to approximate this
Riemann-Stieltjes integral (with a continuous integrand) by Riemann
sums, then it is enough to consider only partitions of (—00, oo) with
rational division points. For every such rational partition P and for fixed
z = x + i y let U, and be the upper and lower sums of the
integrals

j =f°°y[(x_t)2+y2]_1 dO(t)

respectively

=f00y[(x_t)2+y2]_1

that correspond to P. For every rational partition P we obviously have
and ,, L,. For every 6 >0 there exists a rational partition P

for which — <6/2. For this P there is an n0 E such that —

Up, <8/2 and ,, — <6/2 for all n > n0. Since < , and
<J < it follows that IJ — I <6 for n n0. Therefore, —il as

fl —3 00.
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Consequently, we have shown that for z E G

Imf(z) = v(z) =

= Imf

Since f and — t)' dO(t) are holomorphic in G and have the
same imaginary part, it follows that

f(z) = — t)' + C with some C E

Because If(z) Im zI M and

(Im z)f(z — z)' J I M for z E G,

we must also have C Im <2M, and thus C =0.
If we now define

= lim + 6) for I E R
+

and

w(t) =
—

x) for t E

then w has the required properties: The passage from to does not
change anything in the integral formula we have just proved, since 0 has at
most countably many points of discontinuity and they can be avoided
during the formation of the partitions. The passage from 0 to w does not
influence the integral formula. El
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This book presents a well-organized introduction to the theory of linear
operators and its applications to differential operators of mathematical
physics. Only a fundamental knowledge of complex variables and ordi-
nary differential equations is assumed. Among the many topics covered
are: pre-Hilbert and Hilbert spaces, the basic elements of the theory of
linear operators on Hubert spaces (not necessarily bounded), some
important classes of linear operators, the spectral theory of seif-adjoint
operators, von Neumann's extension theory with an application to the
Sturm-Liouville problem, the Fourier transform, spectral theory of
Schradinger and Dirac operators and some typical results from pertur-
bation theory for self-adjoint operators including scattering theory. The
text contains many exercises and examples.
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